
Chaos, Solitons and Fractals 174 (2023) 113805

A
0
n

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

journal homepage: www.elsevier.com/locate/chaos

Pattern formation and bifurcation analysis of delay induced fractional-order
epidemic spreading on networks
Jiaying Zhou a,b, Yong Ye a,b, Alex Arenas b,∗, Sergio Gómez b, Yi Zhao a,∗

a School of Science, Harbin Institute of Technology, Shenzhen, 518055, PR China
b Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain

A R T I C L E I N F O

MSC:
92D30
92C42

Keywords:
Time-fractional order
Delay
Spatiotemporal pattern
Average degree

A B S T R A C T

The spontaneous emergence of ordered structures, known as Turing patterns, in complex networks is a
phenomenon that holds potential applications across diverse scientific fields, including biology, chemistry, and
physics. Here, we present a novel delayed fractional-order susceptible–infected–recovered–susceptible (SIRS)
reaction–diffusion model functioning on a network, which is typically used to simulate disease transmission but
can also model rumor propagation in social contexts. Our theoretical analysis establishes the Turing instability
resulting from delay, and we support our conclusions through numerical experiments. We identify the unique
impacts of delay, average network degree, and diffusion rate on pattern formation. The primary outcomes of
our study are: (i) Delays cause system instability, mainly evidenced by periodic temporal fluctuations; (ii) The
average network degree produces periodic oscillatory states in uneven spatial distributions; (iii) The combined
influence of diffusion rate and delay results in irregular oscillations in both time and space. However, we also
find that fractional-order can suppress the formation of spatiotemporal patterns. These findings are crucial for
comprehending the impact of network structure on the dynamics of fractional-order systems.
1. Introduction

The study of reaction–diffusion system patterns has been a central
focus in research for a long time. The inception of these studies dates
back to 1952 when Turing demonstrated that the activator-to-inhibitor
diffusion coefficient ratio could cause the destabilization of a steady
state, leading to the emergence of periodic spatial patterns [1]. This
phenomenon is now known as the Turing pattern. Turing patterns
have been observed in various scenarios, such as autocatalytic chemical
reactions with inhibition [2–5], epidemic spreading [6–11], and even
ecology [12–14]. Othmer and Scriven, as early as 1971, highlighted
that Turing instability might occur in networked systems and play
a significant role in the initial stages of biological morphogenesis,
as it spreads through the network connections between cells [15].
They proposed a general mathematical framework to analyze network
instability and further investigated it [16–18], leading to a series of
related works [19–21]. For instance, in 2010, Nakao and Mikhailov
studied Turing patterns in large random networks and observed mul-
tiple steady-state coexistences and hysteresis effects [22]. Especially
during the spread of epidemics, the diffusion of pathogens (similar sub-
stances) from high-density spatial regions to low-density spatial regions
has led to the development of recognizable spatial explicit models.
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The research results of pattern dynamics can reveal the distribution
structure of populations after spatial diffusion. This enables people
to effectively utilize and control population resources. Additionally,
these findings provide the scientific basis for preventing and controlling
infectious diseases [23,24].

Delays are a widespread phenomenon in natural environments.
They can be observed in the gestation period of animals, or in disease
transmission models, where delays arise from latent periods or healing
cycles, leading to periodic disease outbreaks [25–27]. Subsequently,
several studies proposed the use of fractional derivative equations to
establish mathematical models for predicting COVID-19 [28–30]. For
example, in 2020, Zhang et al. demonstrated that impacts of death
and human activities on nonlocal memory could be captured through
a time-fractional derivative equation, contributing to our understand-
ing of COVID-19’s death and remission rates [31]. In the same year,
Xu and colleagues proposed an improved fractional order SEIQRP
model. When tested with epidemic data from the United States, this
model successfully predicted short-term epidemic trends. Their results
showed that the model effectively characterized the process of disease
transmission, providing a theoretical basis for understanding the epi-
demic [32]. Given the universality of delays, in 2019, Chang and his
vailable online 21 July 2023
960-0779/© 2023 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.chaos.2023.113805
Received 30 April 2023; Received in revised form 3 July 2023; Accepted 7 July 20
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

23

https://www.elsevier.com/locate/chaos
http://www.elsevier.com/locate/chaos
mailto:jyzhou0513@gmail.com
mailto:yong_ye1994@163.com
mailto:alexandre.arenas@urv.cat
mailto:sergio.gomez@urv.cat
mailto:zhao.yi@hit.edu.cn
https://doi.org/10.1016/j.chaos.2023.113805
https://doi.org/10.1016/j.chaos.2023.113805
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 174 (2023) 113805J. Zhou et al.

w
d

w

𝐶
𝑡

w

colleagues examined delay-induced Turing patterns using the modi-
fied Leslie–Gower model. They analyzed pattern formation in various
networks [33]. The following year, they studied Turing patterns on
multiplex networks with both self-diffusion and cross-diffusion. Their
research resulted in the discovery of heterogeneous patterns exhibiting
rich characteristics [34].

Since the life cycle incorporates memory, fractional calculus equa-
tions have been employed to study system dynamics, as integral-order
equations cannot account for this inherent memory [35–37]. Therefore,
in 2022, Zheng et al. explored Turing patterns of a fractional-order
system on a random network based on the SIR model, discovering that
delay and diffusion coefficients influence pattern generation [38]. How-
ever, they used a small random network built with a certain probability,
which could not effectively reveal the impact of the network’s average
degree on pattern formation.

Motivated by Nakao and Mikhailov’s work [22], we aim to conduct
research based on Erdős–Rényi (ER) random networks to reflect the
average network degree’s influence on pattern formation, which has
been well-established in integer-order systems. To the best of our
knowledge, there are limited frameworks that study the effects of
delay, diffusion coefficient, time-fractional order, and network average
degree on Turing patterns in a delay time-fractional order system.
Consequently, this paper plans to introduce factors like delay, diffusion
coefficient, and network average degree based on a simple SIRS model,
and further investigate whether the time-fractional order affects the
uniform stationary state of space, considering diffusion terms in the
three-component system as in [39].

The delay-induced time-fractional SIRS equations are formulated as
follows:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐷𝑞𝑆𝑖(𝑡) = 𝛬 − 𝛽𝑆𝑖(𝑡 − 𝜏)𝐼𝑖(𝑡 − 𝜏) − 𝜇𝑆𝑖(𝑡) + 𝜈𝑅𝑖(𝑡) + 𝑑1
𝑁
∑

𝑗=1
𝐴𝑖𝑗

(

𝑆𝑗 − 𝑆𝑖
)

,

𝐷𝑞𝐼𝑖(𝑡) = 𝛽𝑆𝑖(𝑡 − 𝜏)𝐼𝑖(𝑡 − 𝜏) − (𝛾 + 𝜇 + 𝛼)𝐼𝑖(𝑡) + 𝑑2
𝑁
∑

𝑗=1
𝐴𝑖𝑗

(

𝐼𝑗 − 𝐼𝑖
)

,

𝐷𝑞𝑅𝑖(𝑡) = 𝛾𝐼𝑖(𝑡) − (𝜇 + 𝜈)𝑅𝑖(𝑡),

𝑆𝑖(0) = 𝑢𝑖(𝑡), 𝐼𝑖(0) = 𝑣𝑖(𝑡), 𝑅𝑖(0) = 𝑤𝑖(𝑡),

(1)

here 𝐷𝑞 is the Caputo derivative and 𝑞 ∈ (0, 1] is the order of the
ifferential operator. 𝑆𝑖, 𝐼𝑖 and 𝑅𝑖 represent the density of 𝑆 (suscep-

tible), 𝐼 (infected) and 𝑅 (recovered) in node 𝑖. Disease transmission
(reaction term) occurs inside the node. Concurrently, the diffusive flux
of the susceptible 𝑆 or infected 𝐼 to node 𝑖 is the diffusion term,
which is expressed as ∑𝑁

𝑗=1 𝐴𝑖𝑗
(

𝑆𝑗 − 𝑆𝑖
)

or ∑𝑁
𝑗=1 𝐴𝑖𝑗

(

𝐼𝑗 − 𝐼𝑖
)

, where
𝑖, 𝑗 ∈ {1, 2,… , 𝑁}. Here, 𝐴𝑖𝑗 is one if nodes 𝑖 and 𝑗 are connected,
zero otherwise, i.e., 𝐴 is the adjacency matrix of the diffusion network.
We suppose this network is undirected, thus 𝐴 is symmetric. Note
that, for simplicity, we have considered that there is no diffusion for
recovered individuals. Other parameters carry the following biological
significance: 𝛬 indicates the birth rate of 𝑆, 𝛽 is the transmission rate
between susceptible and infected populations, 𝜇 represents the natural
mortality rate of populations 𝑆, 𝐼 , and 𝑅, 𝜈 is the ratio at which the
recovered population returns to the susceptible compartments without
acquiring immunity, 𝛾 denotes the recovery rate of infected individuals,
𝛼 is the disease-related death rate, 𝜏 corresponds to the disease’s
latent period, and 𝑑1 and 𝑑2 represent the self-diffusion coefficients of
susceptible and infected, respectively.

The remainder of this paper is organized as follows. In Section 2,
we present the basic definition and stability lemma for fractional
differential equations. In Section 3, we theoretically prove the stabil-
ity of the model without delay and subsequently analyze the Turing
instability condition induced by delay. In Section 4, we conduct rel-
evant numerical experiments to validate the theoretical findings from
previous sections and examine the effects of network average degree,
delay, diffusion coefficient, and fractional order on the spatiotemporal
2

pattern. Finally, we discuss the results of our analysis and provide an
outlook for future work in Section 5.

2. Preliminaries

The Caputo fractional derivative is widely used in engineering ap-
plications due to its convenience. Therefore, we provide the definition
of the Caputo fractional derivative and some essential lemmas for
analyzing the stability of fractional-order systems as follows:

Definition 1 ([40]). The Caputo fractional-order derivative is defined
as

𝐶
𝑡0
𝐷𝑞

𝑡 𝑓 (𝑡) =
1

𝛤 (𝑛 − 𝑞) ∫

𝑡

𝑡0

𝑓 (𝑛)(𝜏)
(𝑡 − 𝜏)𝑞+1−𝑛

𝑑𝜏,

here 𝑞 ∈ (𝑛−1, 𝑛) and 𝛤 (⋅) is Gamma function. In particular, we have

0
𝐷𝑞

𝑡 𝑓 (𝑡) =
1

𝛤 (1 − 𝑞) ∫

𝑡

𝑡0

𝑓 ′(𝜏)
(𝑡 − 𝜏)𝑞

𝑑𝜏.

when 𝑞 ∈ (0, 1). For convenience, we denote 𝐶
𝑡0
𝐷𝑞

𝑡 𝑓 (𝑡) as 𝐷𝑞𝑓 (𝑡).

Lemma 1 ([41]). Consider the fractional-order system

𝐷𝑞
𝑡 𝑥(𝑡) = 𝑓 (𝑡, 𝑥(𝑡))

ith initial condition 𝑥
(

𝑡0
)

= 𝑥𝑡0 , where 𝑞 ∈ (0, 1]. The equilibrium points
are locally asymptotically stable if all eigenvalues 𝜆𝑖 of the Jacobian matrix
𝜕𝑓 (𝑡,𝑥)
𝜕𝑥 calculated at them satisfy |

|

|

arg
(

𝜆𝑖
)

|

|

|

> 𝑞𝜋
2 .

Lemma 2 ([42]). Consider the following 𝑛-dimensional linear fractional-
order system with time delay

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐷𝑞1𝐰1(𝑡) = 𝜛11𝐰1
(

𝑡 − 𝜏11
)

+𝜛12𝐰2
(

𝑡 − 𝜏12
)

+⋯ +𝜛1𝑛𝐰𝑛
(

𝑡 − 𝜏1𝑛
)

,
𝐷𝑞2𝐰2(𝑡) = 𝜛21𝐰1

(

𝑡 − 𝜏21
)

+𝜛22𝐰2
(

𝑡 − 𝜏22
)

+⋯ +𝜛2𝑛𝐰𝑛
(

𝑡 − 𝜏2𝑛
)

,
⋮

𝐷𝑞𝑛𝐰𝑛(𝑡) = 𝜛𝑛1𝐰1
(

𝑡 − 𝜏𝑛1
)

+𝜛𝑛2𝐰2
(

𝑡 − 𝜏𝑛2
)

+⋯ +𝜛𝑛𝑛𝐰𝑛
(

𝑡 − 𝜏𝑛𝑛
)

,

(2)

where 𝑞𝑖 ∈ (0, 1), 𝑖 = 1, 2,… , 𝑛. In system (2), define the time delay matrix
𝜏 =

(

𝜏𝑖𝑗
)

∈
(

R+)𝑛×𝑛, the coefficient matrix 𝜛 =
(

𝜛𝑖𝑗
)

∈ R𝑛×𝑛, and then
state variables 𝐰𝑖(𝑡),𝐰𝑖

(

𝑡 − 𝜏𝑖𝑗
)

∈ R. Define

𝛥(𝜆) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜆𝑞1 −𝜛11𝑒−𝜆𝜏11 −𝜛12𝑒−𝜆𝜏12 ⋯ −𝜛1𝑛𝑒−𝜆𝜏1𝑛
−𝜛21𝑒−𝜆𝜏21 𝜆𝑞2 −𝜛22𝑒−𝜆𝜏22 ⋯ −𝜛2𝑛𝑒−𝜆𝜏2𝑛

⋮ ⋮ ⋱ ⋮
−𝜛𝑛1𝑒−𝜆𝜏𝑛1 −𝜛𝑛2𝑒−𝜆𝜏𝑛2 ⋯ 𝜆𝑞𝑛 −𝜛𝑛𝑛𝑒−𝜆𝜏𝑛𝑛

⎤

⎥

⎥

⎥

⎥

⎦

.

Then the zero solution of system (2) is Lyapunov globally asymptotically
stable if all the roots of the characteristic equation det(𝛥(𝜆)) = 0 have
negative real parts.

3. Results

In this section, we primarily focus on the Turing instability of
system (1). Utilizing the Turing stability theory for delayed reaction–
diffusion models in continuous media, it is crucial to ensure that the
endemic equilibrium of system (1) is locally stable in the absence
of diffusion and delay. To achieve this, we first need to investigate
the stability of endemic equilibrium in the corresponding ordinary
differential model.

3.1. Stability analysis of the dynamic without diffusion and delay

The equilibrium of system (1) can be derived as follows

⎧

⎪

⎨

⎪

𝛬 − 𝛽𝑆∗𝐼∗ − 𝜇𝑆∗ + 𝜈𝑅∗ = 0,

𝛽𝑆∗𝐼∗ − (𝛾 + 𝜇 + 𝛼)𝐼∗ = 0, (3)
⎩
𝛾𝐼∗ − (𝜇 + 𝜈)𝑅∗ = 0.
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⎧

⎪

⎪

⎪

⎪

⎪

⎪
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⎨
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⎪

⎪

⎪

⎪

⎪

⎩
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𝐴

𝐷

𝑋

𝑏

So we have the endemic equilibrium 𝐸∗ =
(

𝑆∗, 𝐼∗, 𝑅∗
)

, where 𝑆∗ =
𝛾+𝜇+𝛼

𝛽 , 𝐼∗ = (𝜇+𝜈)[𝛽𝛬−𝜇(𝛾+𝜇+𝛼)]
𝛽(𝛾+𝜇+𝛼)𝜇+𝛽(𝜇+𝛼)𝜈 , 𝑅∗ = 𝛽𝛾𝛬−𝜇𝛾(𝛾+𝜇+𝛼)

𝛽(𝛾+𝜇+𝛼)𝜇+𝛽(𝜇+𝛼)𝜈 . In addition,

system (1) has the disease-free equilibrium 𝐸0 =
(

𝛬
𝜇 , 0, 0

)

. We mainly
tudy the situation that diseases appear in the initial state, so in this
rticle we do not consider the disease-free equilibrium 𝐸0.

heorem 1. When 𝛽 < 𝛽𝑐 , the disease-free equilibrium 𝐸0 of system (1)
s locally asymptotically stable for all 𝜏 ⩾ 0.

roof. The characteristic matrix of system (1) at the disease-free
quilibrium 𝐸0 is

(𝜆) =

⎛

⎜

⎜

⎜

⎝

𝜆𝑞 + 𝜇 𝛽𝛬𝑒−𝜆𝜏

𝜇 −𝜈

0 𝜆𝑞 + (𝛾 + 𝜇 + 𝛼) − 𝛽𝛬𝑒−𝜆𝜏

𝜇 0
0 −𝛾 𝜆𝑞 + (𝜇 + 𝜈)

⎞

⎟

⎟

⎟

⎠

.

The characteristic equation at 𝐸0 is

det(𝛥(𝜆)) = (𝜆𝑞 + 𝜇)
(

𝜆𝑞 + 𝛾 + 𝜇 + 𝛼 −
𝛽𝛬𝑒−𝜆𝜏

𝜇

)

(𝜆𝑞 + 𝜇 + 𝜈) = 0. (4)

When 𝜏 = 0, let 𝑠 = 𝜆𝑞 , Eq. (4) can be rewritten as

(𝑠 + 𝜇)
(

𝑠 + 𝛾 + 𝜇 + 𝛼 −
𝛽𝛬
𝜇

)

(𝑠 + 𝜇 + 𝜈) = 0.

Hence, the eigenvalues are 𝑠1 = −𝜇, 𝑠2 = 𝛬
𝜇 (𝛽 − 𝛽𝑐 ) and 𝑠3 = −𝜇 − 𝜈,

where 𝛽𝑐 = 𝜇(𝛾+𝜇+𝛼)
𝛬 . Obviously, |

|

|

arg
(

𝑠1,2,3
)

|

|

|

> 𝑞𝜋
2 if 𝛽 < 𝛽𝑐 . It

follows from Lemma 1 that the disease-free equilibrium 𝐸0 is locally
asymptotically stable if 𝛽 < 𝛽𝑐 . When 𝜏 ≠ 0, the eigenvalues in the first
and last terms of Eq. (4) are obviously negative. Therefore, we only
need to analyze the second term of Eq. (4),

𝜆𝑞 + 𝛾 + 𝜇 + 𝛼 −
𝛽𝛬𝑒−𝜆𝜏

𝜇
= 0. (5)

ubstituting 𝜆 = 𝑖𝜔, (𝑤 > 0), into Eq. (5) we have

𝑖𝜔)𝑞 + 𝛾 + 𝜇 + 𝛼 −
𝛽𝛬𝑒−𝑖𝜔𝜏

𝜇
= 0,

hich is equivalent to

𝑞
(

cos
( 𝑞𝜋

2

)

+ 𝑖 sin
( 𝑞𝜋

2

))

+𝛾+𝜇+𝛼−
𝛽𝛬
𝜇

(cos(𝜔𝜏) − 𝑖 sin(𝜔𝜏)) = 0. (6)

Separating the real and imaginary parts of Eq. (6), one obtains

⎧

⎪

⎨

⎪

⎩

𝜔𝑞 cos
( 𝑞𝜋

2

)

+ 𝛾 + 𝜇 + 𝛼 =
𝛽𝛬
𝜇

cos(𝜔𝜏),

𝜔𝑞 sin
( 𝑞𝜋

2

)

= −
𝛽𝛬
𝜇

sin(𝜔𝜏).
(7)

By adding the squares of the left and right sides of the two equations
in Eq. (7), we get

𝜔2𝑞+2(𝛾+𝜇+𝛼) cos
( 𝑞𝜋

2

)

𝜔𝑞+
(

𝛾 + 𝜇 + 𝛼 +
𝛽𝛬
𝜇

)(

𝛾 + 𝜇 + 𝛼 −
𝛽𝛬
𝜇

)

= 0.

(8)

If 𝛽 < 𝛽𝑐 , Eq. (8) has no positive roots. Thus, Eq. (8) has no pure
imaginary roots. Hence, one obtains

|

|

|

|

arg
(

𝜔𝑞
1,2,3

)

|

|

|

|

> 𝑞𝜋
2 . According to

Lemma 1, 𝐸0 is locally asymptotically stable. □

As the diffusion term analysis in the subsequent section involves
the stability of the endemic equilibrium 𝐸∗ when 𝜏 ≠ 0, here we will
limit our discussion to the stability of the endemic equilibrium 𝐸∗

when 𝜏 = 0. The characteristic matrix of system (1) at the endemic
equilibrium 𝐸∗ if 𝜏 = 0 is

𝛥(𝜆) =
⎛

⎜

⎜

𝜆𝑞 + 𝜇 + 𝛽𝐼∗ 𝛽𝑆∗ −𝜈
−𝛽𝐼∗ 𝜆𝑞 + (𝛾 + 𝜇 + 𝛼) − 𝛽𝑆∗ 0

𝑞

⎞

⎟

⎟

.

3

⎝ 0 −𝛾 𝜆 + (𝜇 + 𝜈) ⎠
The characteristic equation at 𝐸∗ is

det(𝛥(𝜆)) =
(

𝜆𝑞 + 𝜇 + 𝛽𝐼∗
) (

𝜆𝑞 + 𝛾 + 𝜇 + 𝛼 − 𝛽𝑆∗
)

(𝜆𝑞 + 𝜇 + 𝜈)

+ 𝛽𝐼∗
[

𝛽𝑆∗(𝜆𝑞 + 𝜇 + 𝜈) − 𝛾𝜈
]

.
(9)

etting 𝑠 = 𝜆𝑞 , Eq. (9) can be rewritten as

𝑠3 + 𝐴𝑠2 + 𝐵𝑠 + 𝐶 = 0,

where 𝐴 = 2𝜇 + 𝜈 + 𝛽𝐼∗, 𝐵 = 𝜇(𝜇 + 𝜈) + (2𝜇 + 𝛼 + 𝜈 + 𝛾)𝛽𝐼∗, 𝐶 =
[(𝜇 + 𝛼)(𝜇 + 𝜈) + 𝛾𝜇]𝛽𝐼∗. According to Routh–Hurwitz criterion, when
𝐴 > 0, 𝐵 > 0, 𝐶 > 0, 𝐴𝐵 > 𝐶, 𝐸∗ is locally asymptotically stable.
Obviously, 𝐴 > 0, 𝐵 > 0, 𝐶 > 0, 𝐴𝐵 > 𝐶, if 𝐼∗ > 0. That is to say, 𝐸∗ is
locally asymptotically stable if 𝛽 > 𝛽𝑐 .

3.2. Turing instability induced by delay

In Section 3.1, we have given the conditions for the stability of
endemic disease equilibrium, and on this basis, this section plans to
study the impact of delay on the stability of system (1). Therefore, the
linearization form of the fractional-order system (1) with a delay at the
endemic disease equilibrium 𝐸∗ is rewritten as follows

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐷𝑞𝑆𝑖(𝑡) = −𝜇𝑆𝑖(𝑡) + 𝜈𝑅𝑖(𝑡) − 𝛽𝐼∗𝑆𝑖(𝑡 − 𝜏) − 𝛽𝑆∗𝐼𝑖(𝑡 − 𝜏) + 𝑑1
𝑛
∑

𝑗=1
𝐿𝑖𝑗𝑆𝑗 ,

𝐷𝑞𝐼𝑖(𝑡) = −(𝛾 + 𝜇 + 𝛼)𝐼𝑖(𝑡) + 𝛽𝐼∗𝑆𝑖(𝑡 − 𝜏) + 𝛽𝑆∗𝐼𝑖(𝑡 − 𝜏) + 𝑑2
𝑛
∑

𝑗=1
𝐿𝑖𝑗𝐼𝑗 ,

𝐷𝑞𝑅𝑖(𝑡) = 𝛾𝐼𝑖(𝑡) − (𝜇 + 𝜈)𝑅𝑖(𝑡),

(10)

here 𝐿𝑖𝑗 are the components of the graph Laplacian 𝐿 corresponding
o the diffusion graph with components 𝐴𝑖𝑗 , i.e., 𝐿 = 𝐾 − 𝐴, where 𝐾
s the diagonal matrix with the degrees of the nodes. By applying the
aplace transform to both sides of system (10), we obtain the following:

𝜆𝑞𝑋𝑖 − 𝜆𝑞−1𝑢𝑖(0) = − 𝜇𝑋𝑖 + 𝜈𝑍𝑖 − 𝛽𝐼∗𝑒
−𝜆𝜏

(

𝑋𝑖 + ∫

0

−𝜏
𝑒−𝜆𝑡𝑢𝑖(𝑡)𝑑𝑡

)

− 𝛽𝑆∗𝑒
−𝜆𝜏

(

𝑌𝑖 + ∫

0

−𝜏
𝑒−𝜆𝑡𝑣𝑖(𝑡)𝑑𝑡

)

+ 𝑑1
𝑛
∑

𝑗=1
𝐿𝑖𝑗𝑋𝑗 ,

𝜆𝑞𝑌𝑖 − 𝜆𝑞−1𝑣𝑖(0) = − (𝛾 + 𝜇 + 𝛼)𝑌𝑖 + 𝛽𝐼∗𝑒
−𝜆𝜏

(

𝑋𝑖 + ∫

0

−𝜏
𝑒−𝜆𝑡𝑢𝑖(𝑡)𝑑𝑡

)

+ 𝛽𝑆∗𝑒
−𝜆𝜏

(

𝑌𝑖 + ∫

0

−𝜏
𝑒−𝜆𝑡𝑣𝑖(𝑡)𝑑𝑡

)

+ 𝑑2
𝑛
∑

𝑗=1
𝐿𝑖𝑗𝑌𝑗 ,

𝜆𝑞𝑍𝑖 − 𝜆𝑞−1𝑤𝑖(0) =𝛾𝑌𝑖 − (𝜇 + 𝜈)𝑍𝑖,

(11)

here 𝑋𝑖, 𝑌𝑖, 𝑍𝑖 is the Laplace transform of 𝑆𝑖, 𝐼𝑖, 𝑅𝑖, respectively. Sys-
em (11) can be reformulated in the following matrix form:
(

𝐴 −𝐷𝐿1
)

𝑋 = 𝑏, (12)

here

=
⎛

⎜

⎜

⎝

𝜆𝑞 + 𝜇 + 𝛽𝐼∗𝑒−𝜆𝜏 𝛽𝑆∗𝑒−𝜆𝜏 −𝜈
−𝛽𝐼∗𝑒−𝜆𝜏 𝜆𝑞 + (𝛾 + 𝜇 + 𝛼) − 𝛽𝑆∗𝑒−𝜆𝜏 0

0 −𝛾 𝜆𝑞 + (𝜇 + 𝜈)

⎞

⎟

⎟

⎠

⊗𝐸,

=
⎛

⎜

⎜

⎝

𝑑1 0 0
0 𝑑2 0
0 0 0

⎞

⎟

⎟

⎠

⊗𝐸,

=
(

𝑋1, 𝑋2,… , 𝑋𝑛, 𝑌1, 𝑌2,… , 𝑌𝑛, 𝑍1, 𝑍2,… , 𝑍𝑛
)𝑇 ,

=
(

𝑏11, 𝑏12,… , 𝑏1𝑛, 𝑏21, 𝑏22,… , 𝑏2𝑛, 𝑏31, 𝑏32,… , 𝑏3𝑛
)𝑇 ,
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I
o
z

T
e
|

|

|

|

|

|

|

|

n

𝑃

w
𝑃

W

⎛

⎜

⎜

⎝

𝑏1𝑖
𝑏2𝑖
𝑏3𝑖

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

𝜆𝑞−1𝑢𝑖(0) − 𝛽𝐼∗𝑒−𝜆𝜏 ∫
0
−𝜏 𝑒

−𝜆𝑡𝑢𝑖(𝑡)𝑑𝑡 − 𝛽𝑆∗𝑒−𝜆𝜏 ∫
0
−𝜏 𝑒

−𝜆𝑡𝑣𝑖(𝑡)𝑑𝑡
𝜆𝑞−1𝑣𝑖(0) + 𝛽𝐼∗𝑒−𝜆𝜏 ∫

0
−𝜏 𝑒

−𝜆𝑡𝑢𝑖(𝑡)𝑑𝑡 + 𝛽𝐼∗𝑒−𝜆𝜏 ∫
0
−𝜏 𝑒

−𝜆𝑡𝑣𝑖(𝑡)𝑑𝑡
𝜆𝑞−1𝑤𝑖(0)

⎞

⎟

⎟

⎟

⎠

,

𝐿1 =
⎛

⎜

⎜

⎝

𝐿 0 0
0 𝐿 0
0 0 𝐿

⎞

⎟

⎟

⎠

,

matrix 𝐸 is an 𝑛×𝑛 identity matrix and ⊗ is Kronecker product. 𝐴−𝐷𝐿1
represents the characteristic matrix of system (10).

Since the Laplacian matrix is a real symmetric matrix, it can be
diagonalized. An orthonormal basis 𝜙𝑖 makes the following equation
hold:

𝐿1𝜙 = 𝛬𝜙,

where 𝛬𝑖 is the eigenvalue of 𝐿,𝜙 =
(

𝜙1,… , 𝜙𝑛, 𝜙1,… , 𝜙𝑛, 𝜙1,… , 𝜙𝑛
)𝑇

is an invertible matrix, 𝜙𝑖 is the eigenvector of 𝛬𝑖, and

𝛬 =
⎛

⎜

⎜

⎝

𝛬(1) 0 0
0 𝛬(1) 0
0 0 𝛬(1)

⎞

⎟

⎟

⎠

,

𝛬(1) =

⎛

⎜

⎜

⎜

⎜

⎝

𝛬1 0 … 0
0 𝛬2 … 0
0 … … 0
0 … 0 𝛬𝑛

⎞

⎟

⎟

⎟

⎟

⎠

.

Supposing 𝑋 = 𝜙𝑌 , system (12) can be rewritten as

𝐴𝜙𝑌 −𝐷𝐿1𝜙𝑌 = 𝑏 ⇒ 𝐴𝜙𝑌 −𝐷𝛬𝜙𝑌 = 𝑏 ⇒ (𝐴 −𝐷𝛬)𝑋 = 𝑏.

Thus, system (12) can be reduced to
⎛

⎜

⎜

⎜

⎝

𝜆𝑞 + 𝜇 + 𝛽𝐼∗𝑒−𝜆𝜏 − 𝑑1𝛬𝑖 𝛽𝑆∗𝑒−𝜆𝜏 −𝜈
−𝛽𝐼∗𝑒−𝜆𝜏 𝜆𝑞 + (𝛾 + 𝜇 + 𝛼) − 𝛽𝑆∗𝑒−𝜆𝜏 − 𝑑2𝛬𝑖 0

0 −𝛾 𝜆𝑞 + (𝜇 + 𝜈)

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

𝑋𝑖

𝑌𝑖
𝑍𝑖

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

𝑏1𝑖
𝑏2𝑖
𝑏3𝑖

⎞

⎟

⎟

⎟

⎠

.

t is widely recognized that initial values do not affect the stability
f linear fractional differential systems. Assuming all initial values are
ero, the stability of system (1) can be determined by:
⎛

⎜

⎜

⎜

⎝

𝜆𝑞 + 𝜇 + 𝛽𝐼∗𝑒−𝜆𝜏 − 𝑑1𝛬𝑖 𝛽𝑆∗𝑒−𝜆𝜏 −𝜈
−𝛽𝐼∗𝑒−𝜆𝜏 𝜆𝑞 + (𝛾 + 𝜇 + 𝛼) − 𝛽𝑆∗𝑒−𝜆𝜏 − 𝑑2𝛬𝑖 0

0 −𝛾 𝜆𝑞 + (𝜇 + 𝜈)

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

𝑋𝑖

𝑌𝑖
𝑍𝑖

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

0
0
0

⎞

⎟

⎟

⎟

⎠

.

herefore, the stability of system (1) depends on the following characteristic
quation

𝜆𝑞 + 𝜇 + 𝛽𝐼∗𝑒−𝜆𝜏 − 𝑑1𝛬𝑖 𝛽𝑆∗𝑒−𝜆𝜏 −𝜈
−𝛽𝐼∗𝑒−𝜆𝜏 𝜆𝑞 + (𝛾 + 𝜇 + 𝛼) − 𝛽𝑆∗𝑒−𝜆𝜏 − 𝑑2𝛬𝑖 0

0 −𝛾 𝜆𝑞 + (𝜇 + 𝜈)

|

|

|

|

|

|

|

|

= 0,

amely,

1(𝜆) + 𝑃2(𝜆)𝑒−𝜆𝜏 = 0, (13)

here

1(𝜆) =𝜆3𝑞 + (𝛾 + 3𝜇 + 𝛼 + 𝜈)𝜆2𝑞 + [(𝛾 + 𝜇 + 𝛼)𝜇 + (𝜇 + 𝜈)(𝛾 + 2𝜇 + 𝛼)] 𝜆𝑞

−
(

𝑑1 + 𝑑2
)

𝛬𝑖𝜆
2𝑞 −

[

𝑑1(𝛾 + 𝜇 + 𝛼) + 𝜇𝑑2 + (𝜇 + 𝜈)
(

𝑑1 + 𝑑2
)]

𝛬𝑖𝜆
𝑞

+ 𝑑1𝑑2𝛬
2
𝑖 𝜆

𝑞 + (𝜇 + 𝜈)(𝛾 + 𝜇 + 𝛼)𝜇

− (𝜇 + 𝜈)
[

𝑑1(𝛾 + 𝜇 + 𝛼) + 𝜇𝑑2
]

𝛬𝑖 + 𝑑1𝑑2(𝜇 + 𝜈)𝛬2
𝑖 ,

𝑃2(𝜆) =𝛽
(

𝐼∗ − 𝑆∗
)

𝜆2𝑞 +
[

(𝛾 + 𝜇 + 𝛼) 𝛽𝐼∗ + 𝛽
(

𝐼∗ − 𝑆∗
)

(𝜇 + 𝜈) − 𝜇𝛽𝑆∗
]

𝜆𝑞

+
(

𝑑1𝛽𝑆∗ − 𝑑2𝛽𝐼∗
)

𝛬𝑖𝜆
𝑞 + (𝜇 + 𝜈)

(

𝑑1𝛽𝑆∗ − 𝑑2𝛽𝐼∗
)

𝛬𝑖
[ ]
4

+ (𝛾 + 𝜇 + 𝛼)𝛽𝐼∗ − 𝜇𝛽𝑆∗ (𝜇 + 𝜈) − 𝛽𝐼∗𝛾𝜈.
e substitute 𝜆 = 𝑖𝜔 = 𝜔
(

cos
(

𝜋
2

)

+ 𝑖 sin
(

𝜋
2

))

= 𝜔𝑒𝑖
𝜋
2 into system

(13), and have

(

𝐴1 + 𝑖𝐵1
)

+
(

𝐴2 + 𝑖𝐵2
)

(cos(𝜔𝜏) − 𝑖 sin(𝜔𝜏)) = 0, (14)

where

𝐴1 =𝜔3𝑞 cos(3∕2𝑞𝜋) + (𝛾 + 3𝜇 + 𝛼 + 𝜈)𝜔2𝑞 cos(𝑞𝜋)

+ [(𝛾 + 𝜇 + 𝛼)𝜇 + (𝜇 + 𝜈)(𝛾 + 2𝜇 + 𝛼)]𝜔𝑞 cos(1∕2𝑞𝜋)

−
(

𝑑1 + 𝑑2
)

𝛬𝑖𝜔
2𝑞 cos(𝑞𝜋) + 𝑑1𝑑2𝛬

2
𝑖𝜔

𝑞 cos(1∕2𝑞𝜋)

−
[

𝑑1(𝛾 + 𝜇 + 𝛼) + 𝜇𝑑02 + (𝜇 + 𝜈)
(

𝑑1 + 𝑑2
)]

𝛬𝑖𝜔
𝑞 cos(1∕2𝑞𝜋)

+ (𝜇 + 𝜈)(𝛾 + 𝜇 + 𝛼)𝜇 − (𝜇 + 𝜈)
[

𝑑1(𝛾 + 𝜇 + 𝛼) + 𝜇𝑑2
]

𝛬𝑖

+ 𝑑1𝑑2(𝜇 + 𝜈)𝛬2
𝑖 ,

𝐵1 =𝜔3𝑞 sin(3∕2𝑞𝜋) + (𝛾 + 3𝜇 + 𝛼 + 𝜈)𝜔2𝑞 sin(𝑞𝜋)

+ [(𝛾 + 𝜇 + 𝛼)𝜇 + (𝜇 + 𝜈)(𝛾 + 2𝜇 + 𝛼)]𝜔𝑞 sin(1∕2𝑞𝜋)

−
(

𝑑1 + 𝑑2
)

𝛬𝑖𝜔
2𝑞 sin(𝑞𝜋) + 𝑑1𝑑2𝛬

2
𝑖𝜔

𝑞 sin(1∕2𝑞𝜋)

−
[

𝑑1(𝛾 + 𝜇 + 𝛼) + 𝜇𝑑2 + (𝜇 + 𝜈)
(

𝑑1 + 𝑑2
)]

𝛬𝑖𝜔
𝑞 sin(1∕2𝑞𝜋),

𝐴2 =𝛽
(

𝐼∗ − 𝑆∗
)

𝜔2𝑞 cos(𝑞𝜋) +
(

𝑑1𝛽𝑆∗ − 𝑑2𝛽𝐼∗
)

𝛬𝑖𝜔
𝑞 cos(1∕2𝑞𝜋)

+
[

(𝛾 + 𝜇 + 𝛼) 𝛽𝐼∗ + 𝛽
(

𝐼∗ − 𝑆∗
)

(𝜇 + 𝜈) − 𝜇𝛽𝑆∗
]

𝜔𝑞 cos(1∕2𝑞𝜋)

+ (𝜇 + 𝜈)
(

𝑑1𝛽𝑆∗ − 𝑑2𝛽𝐼∗
)

𝛬𝑖 +
[

(𝛾 + 𝜇 + 𝛼)𝛽𝐼∗ − 𝜇𝛽𝑆∗
]

(𝜇 + 𝜈)

− 𝛽𝐼∗𝛾𝜈,

𝐵2 =𝛽
(

𝐼∗ − 𝑆∗
)

𝜔2𝑞 sin(𝑞𝜋) +
(

𝑑1𝛽𝑆∗ − 𝑑2𝛽𝐼∗
)

𝛬𝑖𝜔
𝑞 sin(1∕2𝑞𝜋)

+
[

(𝛾 + 𝜇 + 𝛼) 𝛽𝐼∗ + 𝛽
(

𝐼∗ − 𝑆∗
)

(𝜇 + 𝜈) − 𝜇𝛽𝑆∗
]

𝜔𝑞 sin(1∕2𝑞𝜋).

Separating the real and imaginary parts of Eq. (14), one obtains

{

𝐴2 cos(𝜔𝜏) + 𝐵2 sin(𝜔𝜏) = −𝐴1,

− 𝐴2 sin(𝜔𝜏) + 𝐵2 cos(𝜔𝜏) = −𝐵1,

then,

{

(𝐴2
2 + 𝐵2

2 ) cos(𝜔𝜏) = −𝐵1𝐵2 − 𝐴1𝐴2,

(𝐴2
2 + 𝐵2

2 ) sin(𝜔𝜏) = 𝐵1𝐴2 − 𝐴1𝐵2.
(15)

By adding the squares of the left and right sides of the two equations
in Eq. (15), we get

(𝐴2
2 + 𝐵2

2 )
2 = (𝐵1𝐵2 + 𝐴1𝐴2)2 + (𝐵1𝐴2 − 𝐴1𝐵2)2, (16)

where 𝜔 can be solved from system (15). The critical value of 𝜏𝑐 is

𝜏𝑐 = min
𝑖,𝑘

{

1
𝜔𝑘

arccos

(

−𝐵1𝐵2 − 𝐴1𝐴2

𝐴2
2 + 𝐵2

2

)

+ 2𝜋
𝜔𝑘

}

,

where index 𝑖 refers to the 𝑖th node, and 𝜔𝑘 represent all the positive
roots of system (15). Also, we have the transversality condition

𝑑𝜆
𝑑𝜏

=
𝜆𝑃2(𝜆)𝑒−𝜆𝜏

𝑃 ′
1(𝜆) + 𝑃 ′

2(𝜆)𝑒
−𝜆𝜏 − 𝜏𝑃2(𝜆)𝑒−𝜆𝜏

= 𝑀
𝑁

,

and

Re
[𝑑𝜆 ] =

𝑀1𝑁1 +𝑀2𝑁2
2 2

,

𝑑𝜏 𝑁1 +𝑁2
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𝛾
r
i
t

i

R

where
𝑀1 = − 𝛽

(

𝐼∗ − 𝑆∗
)

𝜔2𝑞+1 sin(𝜋𝑞) cos(𝜔𝜏)

+ 𝛽
(

𝐼∗ − 𝑆∗
)

𝜔2𝑞+1 cos(𝜋𝑞) sin(𝜔𝜏)

−
[

(𝛾 + 𝜇 + 𝛼) 𝛽𝐼∗ + 𝛽
(

𝐼∗ − 𝑆∗
)

(𝜇 + 𝜈) − 𝜇𝛽𝑆∗

+
(

𝑑1𝛽𝑆∗ − 𝑑2𝛽𝐼∗
)

𝛬𝑖
]

𝜔𝑞+1 sin(1∕2𝜋𝑞) cos(𝜔𝜏)

+
[

(𝛾 + 𝜇 + 𝛼) 𝛽𝐼∗ + 𝛽
(

𝐼∗ − 𝑆∗
)

(𝜇 + 𝜈) − 𝜇𝛽𝑆∗

+
(

𝑑1𝛽𝑆∗ − 𝑑2𝛽𝐼∗
)

𝛬𝑖
]

𝜔𝑞+1 cos(1∕2𝜋𝑞) sin(𝜔𝜏)

+
{

(𝜇 + 𝜈)
(

𝑑1𝛽𝑆∗ − 𝑑2𝛽𝐼∗
)

𝛬𝑖 +
[

(𝛾 + 𝜇 + 𝛼)𝛽𝐼∗ − 𝜇𝛽𝑆∗
]

(𝜇 + 𝜈) − 𝛽𝐼∗𝛾𝜈
}

𝜔 sin(𝜔𝜏),

𝑀2 =𝛽
(

𝐼∗ − 𝑆∗
)

𝜔2𝑞+1 cos(𝜋𝑞) cos(𝜔𝜏) + 𝛽
(

𝐼∗ − 𝑆∗
)

𝜔2𝑞+1 sin(𝜋𝑞) sin(𝜔𝜏)

+
[

(𝛾 + 𝜇 + 𝛼) 𝛽𝐼∗ + 𝛽
(

𝐼∗ − 𝑆∗
)

(𝜇 + 𝜈) − 𝜇𝛽𝑆∗

+
(

𝑑1𝛽𝑆∗ − 𝑑2𝛽𝐼∗
)

𝛬𝑖
]

𝜔𝑞+1 cos(1∕2𝜋𝑞) cos(𝜔𝜏)

+
{

(𝜇 + 𝜈)
(

𝑑1𝛽𝑆∗ − 𝑑2𝛽𝐼∗
)

𝛬𝑖 +
[

(𝛾 + 𝜇 + 𝛼)𝛽𝐼∗ − 𝜇𝛽𝑆∗
]

(𝜇 + 𝜈)

−𝛽𝐼∗𝛾𝜈
}

𝜔 cos(𝜔𝜏)

+
[

(𝛾 + 𝜇 + 𝛼) 𝛽𝐼∗ + 𝛽
(

𝐼∗ − 𝑆∗
)

(𝜇 + 𝜈) + 𝜇𝛽𝑆∗

+
(

𝑑1𝛽𝑆∗ − 𝑑2𝛽𝐼∗
)

𝛬𝑖
]

𝜔𝑞+1 sin(1∕2𝜋𝑞) sin(𝜔𝜏),

𝑁1 =3𝛼𝜔3𝑞−1 sin(3∕2𝜋𝑞) + 2𝛼[(𝛾 + 3𝜇 + 𝛼 + 𝜈)

−
(

𝑑1 + 𝑑2
)

𝛬𝑖]𝜔2𝑞−1 sin(𝜋𝛼)

+ 𝛼{ [(𝛾 + 𝜇 + 𝛼)𝜇 + (𝜇 + 𝜈)(𝛾 + 2𝜇 + 𝛼)]

−
[

𝑑1(𝛾 + 𝜇 + 𝛼) + 𝜇𝑑2 + (𝜇 + 𝜈)
(

𝑑1 + 𝑑2
)]

𝛬𝑖 + 𝑑1𝑑2𝛬
2
𝑖 }

× 𝜔𝑞−1 sin(1∕2𝜋𝑞) + 2𝛼𝛽
(

𝐼∗ − 𝑆∗
)

𝜔2𝑞−1( sin(𝜋𝑞) cos(𝜔𝜏)
− cos(𝜋𝑞) sin(𝜔𝜏))
+ 𝛼

[

(𝛾 + 𝜇 + 𝛼) 𝛽𝐼∗ + 𝛽
(

𝐼∗ − 𝑆∗
)

(𝜇 + 𝜈) − 𝜇𝛽𝑆∗

+
(

𝑑1𝛽𝑆∗ − 𝑑2𝛽𝐼∗
)

𝛬𝑖
]

× 𝜔𝑞−1(sin(1∕2𝜋𝑞) cos(𝜔𝜏) − cos(1∕2𝜋𝑞) sin(𝜔𝜏))

− 𝜏𝛽
(

𝐼∗ − 𝑆∗
)

𝜔2𝑞(cos(𝜋𝑞) cos(𝜔𝜏) + sin(𝜋𝑞) sin(𝜔𝜏))

− 𝜏
[

(𝛾 + 𝜇 + 𝛼) 𝛽𝐼∗ + 𝛽
(

𝐼∗ − 𝑆∗
)

(𝜇 + 𝜈) − 𝜇𝛽𝑆∗

+
(

𝑑1𝛽𝑆∗ − 𝑑2𝛽𝐼∗
)

𝛬𝑖
]

× 𝜔𝑞(cos(1∕2𝜋𝑞) cos(𝜔𝜏) + sin(1∕2𝜋𝑞) sin(𝜔𝜏))

+ {𝜏𝛽𝐼∗𝛾𝜈 − 𝜏(𝜇 + 𝜈)
(

𝑑1𝛽𝑆∗ − 𝑑2𝛽𝐼∗
)

𝛬𝑖

− 𝜏
[

(𝛾 + 𝜇 + 𝛼)𝛽𝐼∗ − 𝜇𝛽𝑆∗
]

(𝜇 + 𝜈)} cos(𝜔𝜏),

𝑁2 = − 3𝛼𝜔3𝑞−1 cos(3∕2𝜋𝑞) − 2𝛼[(𝛾 + 3𝜇 + 𝛼 + 𝜈)

−
(

𝑑1 + 𝑑2
)

𝛬𝑖]𝜔2𝑞−1 cos(𝜋𝑞)

− 𝛼{ [(𝛾 + 𝜇 + 𝛼)𝜇 + (𝜇 + 𝜈)(𝛾 + 2𝜇 + 𝛼)]

−
[

𝑑1(𝛾 + 𝜇 + 𝛼) + 𝜇𝑑2 + (𝜇 + 𝜈)
(

𝑑1 + 𝑑2
)]

𝛬𝑖 + 𝑑1𝑑2𝛬
2
𝑖 }

× 𝜔𝑞−1 cos(1∕2𝜋𝑞) − 2𝛼𝛽
(

𝐼∗ − 𝑆∗
)

𝜔2𝑞−1( cos(𝜋𝑞) cos(𝜔𝜏)
+ sin(𝜋𝑞) sin(𝜔𝜏))
− 𝛼

[

(𝛾 + 𝜇 + 𝛼) 𝛽𝐼∗ + 𝛽
(

𝐼∗ − 𝑆∗
)

(𝜇 + 𝜈) − 𝜇𝛽𝑆∗

+
(

𝑑1𝛽𝑆∗ − 𝑑2𝛽𝐼∗
)

𝛬𝑖
]

× 𝜔𝑞−1(cos(1∕2𝜋𝑞) cos(𝜔𝜏) + sin(1∕2𝜋𝑞) sin(𝜔𝜏))

− 𝜏𝛽
(

𝐼∗ − 𝑆∗
)

𝜔2𝑞(sin(𝜋𝑞) cos(𝜔𝜏) − cos(𝜋𝑞) sin(𝜔𝜏))

− 𝜏
[

(𝛾 + 𝜇 + 𝛼) 𝛽𝐼∗ + 𝛽
(

𝐼∗ − 𝑆∗
)

(𝜇 + 𝜈) − 𝜇𝛽𝑆∗

+
(

𝑑1𝛽𝑆∗ − 𝑑2𝛽𝐼∗
)

𝛬𝑖
]

× 𝜔𝑞(sin(1∕2𝜋𝑞) cos(𝜔𝜏) − cos(1∕2𝜋𝑞) sin(𝜔𝜏))

− {𝜏𝛽𝐼∗𝛾𝜈 − 𝜏(𝜇 + 𝜈)
(

𝑑1𝛽𝑆∗ − 𝑑2𝛽𝐼∗
)

𝛬𝑖

− 𝜏
[

(𝛾 + 𝜇 + 𝛼)𝛽𝐼∗ − 𝜇𝛽𝑆∗
]

(𝜇 + 𝜈)} sin(𝜔𝜏).

Furthermore,

𝑀 (𝜔𝑖)|𝜏=𝜏𝑐 = 𝑀1 + 𝑖𝑀2,

𝑁 (𝜔𝑖)|𝜏=𝜏𝑐 = 𝑁1 + 𝑖𝑁2,

where 𝑀1,𝑀2, 𝑁1, 𝑁2 are the real and imaginary parts of 𝑀(𝜆), 𝑁(𝜆).
5

We suppose 𝜏 is the control parameter and through simple calculations,
Fig. 1. The critical value 𝜏𝑐 decreases as 𝑞 increases when 𝛬 = 5, 𝜇 = 0.035, 𝜈 = 0.05,
= 0.2, 𝛼 = 0.01, 𝛽 = 0.006, 𝑑1 = 0, and 𝑑2 = 0. In this case, the deep sky blue area

epresents the unstable region, while the salmon area represents the stable region. (For
nterpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

t can be concluded that

e
[𝑑𝜆
𝑑𝜏

]

𝜏=𝜏𝑐 ,𝜔=𝜔𝑐
=

𝑀1𝑁1 +𝑀2𝑁2

𝑁2
1 +𝑁2

2

≠ 0,

where 𝜔𝑐 is the corresponding frequency of 𝜏𝑐 . Thus, based on the above
analysis and Hopf bifurcation theory, one has the following results.

Theorem 2. Turing instability induced by delay.

• If Re
[

𝑑𝜆
𝑑𝜏

]

𝜏=𝜏𝑐 ,𝜔=𝜔𝑐
> 0, Turing instability occurs in system (1) when

𝜏 > 𝜏𝑐 .
• If Re

[

𝑑𝜆
𝑑𝜏

]

𝜏=𝜏𝑐 ,𝜔=𝜔𝑐
< 0, Turing instability occurs in system (1) when

𝜏 < 𝜏𝑐 .

4. Numerical analysis

In this section, we aim to design several numerical experiments
to validate the theoretical analysis. First, we calculate the stability
conditions of the endemic equilibrium 𝐸∗ without the diffusion term
(i.e., 𝛽 > 𝜇(𝛾+𝜇+𝛼)

𝛬 ), meaning that we need to ensure the stability of
system (1) without delay, and then investigate the effect of delay on the
system. Consequently, we set the parameter values as 𝛬 = 5, 𝜇 = 0.035,
𝜈 = 0.05, 𝛾 = 0.2, 𝛼 = 0.01, 𝛽 = 0.006, 𝑑1 = 0, 𝑑2 = 0, and 𝑞 = 1. This
ensures the stability of the non-delay and non-diffusion model (1), as
𝛽 > 𝛽𝑐 = 0.0017.

Furthermore, based on this, we find that by suitably increasing
the delay value, the model transitions from stability to instability,
with the critical delay value being 𝜏𝑐 ≈ 23.06 (see Fig. 1). Moreover,
when calculating and examining the induced instability conditions, we
discover that the fractional order and diffusion terms considered by the
model also play a crucial role. Thus, we also provide the corresponding
fractional-order threshold of 𝑞 = 0.95 with non-diffusion and 𝜏𝑐 ≈ 33.32
(see Fig. 1). We observe that a larger delay is required to render the
model (1) unstable as the fractional order decreases (see Fig. 1).

Next, we present three sets of experiments: (1) when 𝑞 = 0.95,
we choose 𝜏1 = 30 and 𝜏2 = 40, satisfying 𝜏1 < 𝜏𝑐 = 33.32 < 𝜏2.
The time series plot and bifurcation diagram with 𝜏 as the bifurcation
parameter are provided (see Fig. 2(a, b)). (2) When 𝑞 = 1, we select
𝜏1 = 20 and 𝜏2 = 30, satisfying 𝜏1 < 𝜏𝑐 = 23.06 = 𝜏2. The time series
plot and bifurcation diagram with 𝜏 as the bifurcation parameter are
provided (see Fig. 2(c, d)). (3) When 𝜏 = 30, we choose 𝑞1 = 0.95

and 𝑞2 = 1, satisfying 𝑞1 < 0.965 < 𝑞2. The time series plot and
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Fig. 2. Time series and bifurcation diagram of the system (1) without network when 𝛬 = 5, 𝜇 = 0.035, 𝜈 = 0.05, 𝛾 = 0.2, 𝛼 = 0.01, 𝛽 = 0.006. (a) 𝐸∗ is stable when 𝜏 = 30 and
periodic when 𝜏 = 40, 𝑞 = 0.95. (b) The Hopf bifurcation occurs about 𝜏 when 𝑞 = 0.95. (c) 𝐸∗ is stable when 𝜏 = 20 and periodic 𝜏 = 30 when 𝑞 = 1. (d) The Hopf bifurcation
occurs about 𝜏 when 𝑞 = 1. (e) 𝐸∗ is stable when 𝑞 = 0.95 and periodic when 𝑞 = 1, 𝜏 = 30. (f) The Hopf bifurcation occurs about 𝑞 when 𝜏 = 30. The red curve represents the
periodic solution, and the blue curve represents the stable endemic disease equilibrium. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
bifurcation diagram with 𝑞 as the bifurcation parameter is provided
(see Fig. 2(e, f)). Similarly, we also demonstrate the corresponding
relationship between the eigenvalue of the Laplace matrix 𝛬𝑖 and the
delay threshold 𝜏𝑐 in the cases of 𝑞 = 0.95 and 𝑞 = 1 for the fractional
order when diffusion is considered (see Fig. 3).

To examine the pattern generation of fractional-order systems on a
network with 𝑁 = 100 nodes and explore the effects of delay, network
topology, and diffusion coefficients on the pattern, we have designed
three additional sets of experiments. We have considered: different
delays, 𝜏 = 20 in Figs. 4(a, b) and 5(a, b), and 𝜏 = 40 in Figs. 4(c,
d, e, f) and 5(c, d, e, f); different average degrees, ⟨𝑘⟩ = 5 in Figs. 4(a,
b, d, e) and 5(a, b, d, e), and ⟨𝑘⟩ = 8 in Figs. 4(c, f) and 5(c, f); and
different diffusion coefficients, 𝑑1 = 0.01, 𝑑2 = 0.02 in Figs. 4(a, c, d)
and 5(a, c, d), and 𝑑1 = 0.01, 𝑑2 = 0.08 in Figs. 4(b, e, f) and 5(b, e, f).

From the results obtained, we observe that spatial patterns emerge
only when 𝜏 = 40, 𝑑 = 0.01, 𝑑 = 0.08, and ⟨𝑘⟩ = 5, with
6

1 2
instability in space, see Figs. 4(e) and 5(e). However, this phenomenon
is irregular and distinct from the traditional Turing instability in space
uniform stability, dividing into two parts (high and low abundance). In
particular, as the delay increases, the system first undergoes a periodic
oscillation state in time, then interacts with non-uniform oscillation
in space due to the diffusion coefficient’s influence at a specific time,
resulting in irregular spatial non-uniform oscillation.

It is worth noting that, when we exclude the interference caused
by delay-induced time-periodic oscillation and study only whether
diffusion will result in pattern emergence, we do not observe pattern
generation, see Figs. 4(a, b) and 5(a, b). We believe this is solely
related to the SIRS model we study. Moreover, by observing Figs. 4(e, f)
and 5(e, f), we also find that spatial non-uniform oscillation gradually
disappears with the increase of the network’s average degree. The
time-period oscillation does not change with the network topology’s
variation, see Figs. 4(c, d) and 5(c, d).
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Fig. 3. The critical value 𝜏𝑐 decreases as 𝛬𝑖 increases when 𝛬 = 5, 𝜇 = 0.035, 𝜈 = 0.05, 𝛾 = 0.2, 𝛼 = 0.01, 𝛽 = 0.006, 𝑑1 = 0.01, and 𝑑2 = 0.08. In this case, the deep sky blue area
epresents the unstable region, while the salmon area represents the stable region. (For interpretation of the references to color in this figure legend, the reader is referred to the
eb version of this article.)
Fig. 4. Density of infected individuals as a function of node index 𝑖 for different values of delay 𝜏, average degree ⟨𝑘⟩, and diffusion coefficients 𝑑1 and 𝑑2. (a)–(f) show the
evolution of infected density with different nodes and times, represented by red, green, and blue dots. The black dotted line represents the value of the endemic disease equilibrium.
The parameter values are as follows: (a) 𝜏 = 20, 𝑑1 = 0.01, 𝑑2 = 0.02, ⟨𝑘⟩ = 5; (b) 𝜏 = 20, 𝑑1 = 0.01, 𝑑2 = 0.08, ⟨𝑘⟩ = 5; (c) 𝜏 = 40, 𝑑1 = 0.01, 𝑑2 = 0.02, ⟨𝑘⟩ = 8; (d) 𝜏 = 40, 𝑑1 = 0.01,
2 = 0.02, ⟨𝑘⟩ = 5; (e) 𝜏 = 40, 𝑑1 = 0.01, 𝑑2 = 0.08, ⟨𝑘⟩ = 5; and (f) 𝜏 = 40, 𝑑1 = 0.01, 𝑑2 = 0.08, ⟨𝑘⟩ = 8. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)
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We have conducted a comparative experiment to investigate the
mpact of fractional order on pattern generation, by designing two
roups of experiments with 𝑞 = 1, see Fig. 6(a, b, c), and 𝑞 = 0.95, see
ig. 6(d, e, f), while keeping other parameters the same. The results
how that, when 𝑞 = 1, the model generates spatiotemporal patterns,
ig. 6(b), but when 𝑞 = 0.95, the spatiotemporal patterns disappeared,
ig. 6(e). The density of infected individuals, 𝐼𝑖, on the ER random
etwork over time and the curves of the maximum, minimum, and
verage values of the infected individual density across all nodes on
he network over time are also shown in Fig. 6(a, c, d, f) to support
ur observation. Note that the forward Euler method was used as the
rimary numerical method, with 𝛥𝑡 = 1, 𝑇 = 20000, ℎ = 0.1, and the 2D
imulation regions (𝑥, 𝑦) ∈ 𝛺 = [0, 4] × [0, 4] under Neumann boundary
onditions. The Laplacian matrix was rewritten as a Laplace operator 𝛥
n continuous media. Finally, Fig. 7(a, b, c) show interesting patterns
hat appear due to the influence of the initial values, confirming that
ystem (1) also has spatiotemporal patterns in continuous media.
7

Finally, to better reflect the visualization of the main conclusions,
e take several factors mainly considered in this paper, such as the
etwork average degree, delay, and fractional order, as independent
ariables. With the help of numerical simulation, the evolution process
f spatiotemporal patterns can be observed, as shown in Figs. 8 and
. Among them, from Fig. 8(a) we can learn that, as the average
egree increases, the spatial distribution of the population gradually
ecomes uniform, which means that the network average degree will
nhibit the generation of spatial patterns. Similarly, when we fix the
alue of other parameters and change the delay parameter, it can
e intuitively deduced that spatial patterns will appear as the delay
ncreases, see Fig. 8(b), which is also in good agreement with the
heoretical analysis results. Considering the particularity of fractional-
rder systems, exciting phenomena occur when we change the order of
ractional order. As the order increases, uniform spatial distribution is
roken, resulting in spatiotemporal patterns. In other words, a decrease
n the fractional order will inhibit the generation of spatiotemporal
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Fig. 5. Spatiotemporal patterns of system (1): (a) uniform spatial distribution when 𝜏 = 20, 𝑑1 = 0.01, 𝑑2 = 0.02, ⟨𝑘⟩ = 5; (b) uniform spatial distribution when 𝜏 = 20, 𝑑1 = 0.01,
𝑑2 = 0.08, ⟨𝑘⟩ = 5; (c) time periodic oscillation when 𝜏 = 40, 𝑑1 = 0.01, 𝑑2 = 0.02, ⟨𝑘⟩ = 8; (d) time periodic oscillation when 𝜏 = 40, 𝑑1 = 0.01, 𝑑2 = 0.02, ⟨𝑘⟩ = 5; (e) irregular
spatiotemporal oscillation when 𝜏 = 40, 𝑑1 = 0.01, 𝑑2 = 0.08, ⟨𝑘⟩ = 5; (f) time periodic oscillation when 𝜏 = 40, 𝑑1 = 0.01, 𝑑2 = 0.08, ⟨𝑘⟩ = 8.
Fig. 6. Spatiotemporal patterns of system (1) with different fractional orders. (a), (b), and (c) show spatiotemporal patterns generated when 𝜏 = 30, 𝑑1 = 0.01, 𝑑2 = 0.05, ⟨𝑘⟩ = 5
and 𝑞 = 1. (d), (e), and (f) show no spatiotemporal patterns generated when 𝜏 = 30, 𝑑1 = 0.01, 𝑑2 = 0.05, ⟨𝑘⟩ = 5 and 𝑞 = 0.95. Red dots represent the relationship between the
density of infected individuals and node index 𝑖, while the black dotted line represents the endemic disease equilibrium. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
patterns. see Fig. 8(c). In addition, we have also tested the evolution of
spatiotemporal patterns with diffusion rate changes under two delays,
𝜏 = 20 for Fig. 9(a), and 𝜏 = 40 for Fig. 9(b). These results show that a
single delay or diffusion rate effect does not lead to the generation of
spatiotemporal patterns.
8

5. Conclusions

Our results provide a new perspective for the research of delay-
induced time-fractional order systems on networks. Among them, net-
work topology, diffusion coefficient, and delay have essential effects
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Fig. 7. Initial value induced spatiotemporal patterns. When 𝑡 = 20000, for (a),
(

𝑆0 , 𝐼0 , 𝑅0
)

=
(

𝑆∗ + 0.01 × rand(0, 1), 𝐼∗ + 0.01 × rand(0, 1), 𝑅∗ + 0.01 × rand(0, 1)
)

. For (b),
(

𝑆0 , 𝐼0 , 𝑅0
)

=
(

𝑆∗ , 𝐼∗ , 𝑅∗
)

+0.01 × (1, 1, 1) if (𝑥−2)2 + (𝑦−2)2 < 2, otherwise
(

𝑆0 , 𝐼0 , 𝑅0
)

=
(

𝑆∗ , 𝐼∗ , 𝑅∗
)

. For (c),
(

𝑆0 , 𝐼0 , 𝑅0
)

=
(

𝑆∗ , 𝐼∗ , 𝑅∗
)

+0.01 × (1, 1, 1) if (𝑥−1)2 + (𝑦−1)2 < 1, (𝑥−1)2 + (𝑦−3)2 < 1,
(𝑥−3)2 + (𝑦−1)2 < 1, or (𝑥−3)2 + (𝑦−3)2 < 1, otherwise

(

𝑆0 , 𝐼0 , 𝑅0
)

=
(

𝑆∗ , 𝐼∗ , 𝑅∗
)

. Other parameter values are 𝑞 = 0.98, 𝜏 = 40, 𝛬 = 5, 𝜇 = 0.035, 𝜈 = 0.05, 𝛾 = 0.2, 𝛼 = 0.01, 𝛽 = 0.006,
𝑑1 = 0.01 and 𝑑2 = 0.08.
Fig. 8. The evolution of spatiotemporal patterns with the average degree ⟨𝑘⟩ for (a), delay 𝜏 for (b), and fractional order 𝑞 for (c), respectively. The values of the parameter are
𝛬 = 5, 𝜇 = 0.035, 𝜈 = 0.05, 𝛾 = 0.2, 𝛼 = 0.01, 𝛽 = 0.006, 𝑑1 = 0.01, ⟨𝑘⟩ = 5, and 𝑑2 = 0.08.
Fig. 9. The evolution of spatiotemporal patterns under the combined effects of diffusion rate and delay, where 𝜏 = 20 for (a), 𝜏 = 40 for (b). The values of the parameter are
𝛬 = 5, 𝜇 = 0.035, 𝜈 = 0.05, 𝛾 = 0.2, 𝛼 = 0.01, 𝛽 = 0.006, ⟨𝑘⟩ = 5, and 𝑑1 = 0.01.
on the excitation of the Turing pattern and the final differentiation
of steady-state nodes. In the case of non-diffusion, the time-periodic
oscillation phenomenon of the system is closely related to fractional
order and delay. The reduction of fractional order promotes the sta-
bility of the system, while delay causes the instability of the system
and leads to periodic oscillations. When we consider the diffusion
term, with appropriate parameter values, the time-periodic oscillation
phenomenon still exists and is not affected by the network topology. In
particular, when the delay, diffusion coefficient, and average degree of
the network are at appropriate values, an interesting phenomenon oc-
curs, namely, irregular spatial non-uniform oscillation. Our explanation
for this phenomenon is that the system first experiences a time-periodic
9

oscillation state with the increase of delay, and then interacts with
the non-uniform oscillation in space due to the effect of the diffusion
coefficient at a particular time, resulting in the generation of irregular
spatial non-uniform oscillation, i.e., spatiotemporal patterns.

It should be noted that the reason why fractional order inhibits
the generation of spatiotemporal patterns is explained by the fact that
fractional order affects temporal periodic oscillations, leading to the
disappearance of the original temporal and spatial interaction, which
does not alter the original uniform spatial distribution. Considering that
the only network type studied in this paper is the Erdős-Rényi, we still
know little about what effect the higher-order structure of the network
has on the Turing pattern of the fractional-order system. Although
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some recent works have studied the pattern formation of networks
with higher-order structures, most of them are based on integer-order
systems [21,43]. Therefore, in future research, we will study the pattern
formation of the framework based on the fractional-order system and
the higher-order structure of the network.
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