
PHYSICAL REVIEW E 95, 012301 (2017)

Influence of trust in the spreading of information

Hongrun Wu,1,2 Alex Arenas,2 and Sergio Gómez2
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The understanding and prediction of information diffusion processes on networks is a major challenge in
network theory with many implications in social sciences. Many theoretical advances occurred due to stochastic
spreading models. Nevertheless, these stochastic models overlooked the influence of rational decisions on the
outcome of the process. For instance, different levels of trust in acquaintances do play a role in information
spreading, and actors may change their spreading decisions during the information diffusion process accordingly.
Here, we study an information-spreading model in which the decision to transmit or not is based on trust. We
explore the interplay between the propagation of information and the trust dynamics happening on a two-layer
multiplex network. Actors’ trustable or untrustable states are defined as accumulated cooperation or defection
behaviors, respectively, in a Prisoner’s Dilemma setup, and they are controlled by a memory span. The propagation
of information is abstracted as a threshold model on the information-spreading layer, where the threshold depends
on the trustability of agents. The analysis of the model is performed using a tree approximation and validated
on homogeneous and heterogeneous networks. The results show that the memory of previous actions has a
significant effect on the spreading of information. For example, the less memory that is considered, the higher is
the diffusion. Information is highly promoted by the emergence of trustable acquaintances. These results provide
insight into the effect of plausible biases on spreading dynamics in a multilevel networked system.
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I. INTRODUCTION

Epidemics, innovation, rumors, gossip, and opinions spread
on social networks [1–19]. With the availability of large-scale
data on social networks, the study of modeling information,
rumor and gossip diffusion has recently attracted a great deal
of attention [14–18,20–23].

A fundamental step toward understanding information
diffusion was the adoption of threshold and cascade mod-
els [24–26] applied to spreading in social networks. In this last
context, an actor’s diffusion behavior depends on the number
of other individuals already engaged in the process [5,27,28].
These works have recently been generalized to multilevel
networks [29–32]. The diffusion of information has also
been modeled using game theory, giving players a positive
payoff if they spread the information [8,23,33,34]. Moreover,
the topological factors that may affect the spreading have
been investigated in detail in [27,35,36]. Other applications
related to information diffusion, such as finding the influential
spreaders [37], maximizing or restraining the information
propagation [38,39], predicting the information diffusion on
real-world social networks [10,40–42], and revealing general
patterns of the diffusion of the temporal information [43], have
also been studied extensively.

Nevertheless, most of the existing works on information
diffusion focus mainly on network structure, while the decision
on whether or not to transmit the information in a conscious
manner is ignored. However, certainly a person’s decision on
whether or not to transmit a given piece of information relies
on many factors, one of them being trust in the sources [44].
In a network context, where spreading takes place using the
topological structure, this trust is conceived at the level of in-
dividual nodes. In our approach, we consider that the decision
whether to transmit a certain piece of information depends on
the number of trustable and untrustable acquaintances involved

in the process. For example, a person who receives a piece of
information from a few untrustable neighbors may decide not
to forward it because of the lack of reliable evidence, but
the behavior changes if these neighbors are trustable. Within
this scenario, an untrustable individual is one that you do
not know if you can trust; other meanings could be assigned
to untrustability, but this one is the more appropriate in our
framework.

The interactions of being trustable or untrustable can
be modeled using game theory. In this paper, we consider
an evolutionary game on graphs [45–48] to model the
trustable and untrustable interactions, and the propagation
of the information is abstracted as a modified version of
the threshold model [26,27] in which trustable neighbors
are given more credit in the decision of activation. Similar
to [12,49], each dynamic takes place in a different layer of a
multiplex network, thus taking into account the possibility of
having different connections between individuals in the trust
and information-spreading layers, respectively. Note that the
interaction between both layers is limited to the following:
each actor has a game dynamics that specifies the state of
being trustable or not. This state is visible for the actors in the
spreading phase that takes place on the second layer. In this
sense, the trust in one layer influences the spreading on the
other.

The paper is structured as follows. In Sec. II, we describe the
proposed model and how the information propagation and trust
dynamics work. Section III describes a tree approximation
theory to predict the fraction of active individuals in the
population (spreaders) of the proposed model. Section IV
introduces the validation of the tree approximation theory
and the numerical results of the proposed model on random
and scale-free multiplex networks. Section V contains some
concluding remarks.
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II. TRUST-DRIVEN INFORMATION-SPREADING MODEL

We are interested in the introduction of a model of informa-
tion spreading in which one’s individual decision to become
an active spreader is influenced by trust in one’s neighbors.
A common model of choice for information spreading is
the threshold model [26,27], in which an Inactive individual
becomes Active whenever the fraction of its active neighbors is
above a certain threshold θ . Thus, in order to take into account
the trust in the neighbors, we have modified the threshold rule
incorporating into it the number of trustable (T) and untrustable
(U) neighbors, either active or inactive. For the trust evolution,
we have chosen a Prisoner’s Dilemma [48,50,51] evolutionary
game dynamics, in which we assimilate persistent cooperators
(defectors) as trustable (untrustable) individuals. We show a
schematic representation of the system in Fig. 1, where G

and H represent the game (trust) and information-spreading
layers, respectively. The connectivity between individuals is
encoded in the corresponding adjacency matrices Gij and Hij ,
which take the value 1 if nodes i and j are connected, and 0
otherwise.

This Trust-Driven Information-Spreading (TDIS) model
works as an iterative two-stage process on the two-layer
multiplex network: one step of the Prisoner’s Dilemma game
to update the trustable and untrustable states of nodes in
layer G, followed by one step of the information spreading
in which some of the inactive nodes (nonspreaders) in layer
H become active (spreaders). Note that, according to the
semantics of our model, the interaction between layers is
one-directional, from the trust to the information-spreading
layer, but not in the opposite direction. Other extensions
are possible, e.g., bidirectional dependencies, which could
produce a coordination between layers [52], but they are
beyond the scope of the present work.

Trust Layer

Spreading Layer

G

H

FIG. 1. Schematic representation of the Trust-Driven
Information-Spreading (TDIS) model. Each individual is present in
both layers of the multiplex (dashed lines connect the representation
of the same actor in each layer), and connections with other nodes
(solid lines) are different in each layer. Layer G is the trust (game)
layer, with nodes in states Trustable (blue) or Untrustable (red), and
links represent the acquaintances used in the game, while layer H

is the information spreading layer, with nodes in Active (green) or
Inactive (purple) states, and links refer to the possible contacts to
whom the information is spread. Every node at the spreading layer
uses the information of the states in the trust layer.

We next introduce the details of the rules governing our
TDIS model.

A. Trust dynamics

Each individual may adopt, in the trust layer, one of two
possible strategies, regardless of its state in the information
dynamics layer: cooperation (C), which will be used to define a
trustable individual, or defection (D) for untrustable ones. The
benefit of an actor i playing a weak Prisoner’s Dilemma game
with one of its neighbors depends on their game strategies, as
dictated by a general payoff matrix [45,48]:

( C D
C 1 0
D b 0

)
, (1)

where b � 1 is the temptation to defect, i.e., the payoff
obtained by a defector when playing with a cooperator.

In every round of the game, each player interacts with all
its neighbors on the trust layer and collects its corresponding
accumulated payoff, �i , as the sum of the payoffs of all its
game interactions. For the next round, the strategy is updated
according to the replicator rule [53]: player i imitates the
strategy of player j with probability

Pi→j = �j − �i

b max(ki,kj )
, (2)

where ki is the degree (number of neighbors) of node i. After
all players have had the opportunity to update their strategies,
the players’ payoffs are reset to zero and a new round of the
game starts.

Since trust is usually a long-term opinion on people, we
do not directly describe trustable individuals as cooperators
(and untrustable as defectors), but rather as the most common
behavior in a certain time span �t � 1. More precisely, an
individual is considered Trustable (T) if, in the last �t time
steps, it has been acting as a cooperator more than 50% of the
times, and Untrustable (U) otherwise. Only when �t = 1 do
the concepts of cooperation and trust coincide. The choice
of 50% is rather flexible, and changing this value simply
unbalances the system toward more cooperation or defection,
nevertheless we think this choice is a plausible bound.

B. Information-spreading dynamics

Once the trustability of all nodes has been established
in the previous stage of the TDIS model, one step of the
information-spreading dynamics takes place. Each Inactive
individual becomes Active whenever the influence I (m,k; α)
from its neighbors is larger than a threshold θ (0 � θ � 1),
where

I (m,k; α) ≡ (1 + α)mT + (1 − α)mU

(1 + α)kT + (1 − α)kU

. (3)

Here, kT (kU ) is the number of trustable (untrustable)
neighbors, and mT (mU ) is the number of active trustable
(untrustable) neighbors, satisfying mT � kT and mU � kU .
For convenience, we have defined the activity and degree vec-
tors, m = (mT ,mU ) and k = (kT ,kU ), respectively. Influence
parameter α (0 � α � 1) controls the level of influence of
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trustable neighbors versus untrustable ones, i.e., the larger α

is, the more importance we give to our trustable neighbors in
the decision between becoming active or remaining inactive.
There are two important particular cases:

(i) When α = 0, the standard threshold model is recov-
ered [27],

I (m,k; α = 0) = mT + mU

kT + kU

= m

k
, (4)

where k = kT + kU is the total degree of the node, and m =
mT + mU is the number of active neighbors. In this case, the
trust layer decouples from the information-spreading layer,
thus having two independent dynamics.

(ii) When α = 1, only trustable neighbors are taken into
account,

I (m,k; α = 1) = mT

kT

. (5)

For intermediate values of the influence parameter, both
trustable and untrustable neighbors, with different levels of in-
fluence, contribute to the activation condition I (m,k; α) > θ .
Note that the spreading process is still deterministic, but it is
influenced via threshold by the trustability state of nodes. In
this sense, the spreader mimics the decision-making process
to spread according to a certain threshold based on trustability.

III. ANALYSIS OF THE INFORMATION SPREADING

The information-spreading process in our model belongs
to the class of binary-state dynamics, the transmitting rate of
which can be described as depending on the number of nearest
neighbors in the two possible active or inactive states. In this
section, we make use of the tree approximation theory [54–56]
to predict the extension of the information spreading when
trust in the neighbors is taken into account. We first analyze
the case in which the distribution of trustable and untrustable
nodes does not change, i.e., when there is no trust dynamics.

In the tree approximation approach, the network is supposed
to have a locally treelike structure with low clustering. A
random node is selected as the root of the tree, using the
degree distribution of the network p(k), and the rest of the
tree is built by following edges satisfying the joint degree
distribution P (k,k′), i.e., the probability that a randomly
chosen edge connects two nodes of degrees k and k′. The
cascade of information is started by an initial fraction ρ0 of
active nodes, distributed by degree as ρ

(k)
0 , thus satisfying

ρ0 = ∑
k ρ

(k)
0 . The analysis starts in the leaves of the tree (level

n = 0) and goes up toward the root, which is reached at level
n → ∞. Alternatively and equivalently, we could consider
n as a time step in a synchronous update of the spreading
dynamics through the tree; here we prefer to use the tree-level
interpretation to avoid confusion with the time in the TDIS
dynamics.

The expected fraction of active nodes ρ at the steady state
can be obtained by considering the root

ρ =
∑

k

p(k)ρ(k), (6)

where

ρ(k) = ρ
(k)
0 + (

1 − ρ
(k)
0

) kT∑
mT =0

kU∑
mU =0

F (m,k)B∞(m,k). (7)

This equation expresses that the root with degree k is active
either if it was initially active (with probability ρ

(k)
0 ) or if

it was initially inactive (with probability 1 − ρ
(k)
0 ) but was

activated by its children. The probability of activation from
the children has two terms: the probability B∞(m,k) of having
m active neighbors among the total k children (i.e., mT active
trustable neighbors and mU active untrustable neighbors,
among the total kT trustable and kU untrustable children),
and the probability F (m,k) that these m children activate the
parent. For our information-spreading dynamics, the response
function F (m,k) is just

F (m,k) =
{

1 if I (m,k; α) > θ,

0 otherwise,
(8)

and the distribution of active children can be written as
the product of two independent binomial distributions, one
for the trustable children and the other for the untrustable
ones:

B∞(m,k) =
(

kT

mT

) (
r (k,T )
∞

)mT
(
1 − r (k,T )

∞
)kT −mT

×
(

kU

mU

) (
r (k,U )
∞

)mU
(
1 − r (k,U )

∞
)kU −mU

. (9)

Variable r (k,T )
n (r (k,U )

n ) represents the probability that a trustable
(untrustable) child of an inactive level n node of degree k is
active. We can put them in terms of the probabilities q(k,T )

n

(q(k,U )
n ) that a level n trustable (untrustable) node of degree

k is active conditional on its parent being inactive, leading
to

r (k,T )
n =

∑
k′ P (k,k′) q(k

′
,T )

n∑
k′ P (k,k′)

, (10)

r (k,U )
n =

∑
k′ P (k,k′) q(k

′
,U )

n∑
k′ P (k,k′)

. (11)

Probabilities q
(k,T )
n+1 and q

(k,U )
n+1 of a node on level n + 1

satisfy expressions similar to Eq. (7):

q
(k,T )
n+1 = ρ

(k)
0 + (

1 − ρ
(k)
0

)

×
⎡
⎣kT p(k,T )

z(T )

kT −1∑
mT =0

kU∑
mU =0

F (m,k)B(T )
n (m,k)

+ kU p(k,T )

z(T )

kT∑
mT =0

kU −1∑
mU =0

F (m,k)B(U )
n (m,k)

⎤
⎦,

(12)
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q
(k,U )
n+1 = ρ

(k)
0 + (

1 − ρ
(k)
0

)

×
⎡
⎣kT p(k,U )

z(U )

kT −1∑
mT =0

kU∑
mU =0

F (m,k)B(T )
n (m,k)

+ kU p(k,U )

z(U )

kT∑
mT =0

kU −1∑
mU =0

F (m,k)B(U )
n (m,k)

⎤
⎦, (13)

where z(T ) = ∑
k k p(k,T ) and z(U ) = ∑

k k p(k,U ) are the
average degrees of trustable and untrustable nodes, respec-
tively, and

B(T )
n (m,k) =

(
kT − 1

mT

) (
r (k,T )
n

)mT
(
1 − r (k,T )

n

)kT −mT −1

×
(

kU

mU

) (
r (k,U )
n

)mU
(
1 − r (k,U )

n

)kU −mU
, (14)

B(U )
n (m,k) =

(
kT

mT

) (
r (k,T )
n

)mT
(
1 − r (k,T )

n

)kT −mT

×
(

kU − 1
mU

) (
r (k,U )
n

)mU
(
1 − r (k,U )

n

)kU −mU −1
.

(15)

The idea is that, for a node at level n + 1 with degree k, we
have to subtract the parent from the list of inactive neighbors,
due to the definitions of q

(k,T )
n+1 and q

(k,U )
n+1 . Additionally, the

degree distribution in the tree is, by construction, equivalent
to the degree distribution of the nearest neighbors in the
original network, and it also depends on whether the node
is either trustable or untrustable. For instance, the probability
of having a trustable node in the tree with degree k is equal to
k p(k,T )/zT , which reduces to kT p(k,T )/zT when you add
the condition that the parent is trustable, and kU p(k,T )/zT for
an untrustable parent.

The solution of these equations is obtained by just starting
with an initial condition for q

(k,T )
0 and q

(k,U )
0 , and iterating

them (n = 1,2,3, . . .) until a stationary value is reached. If
we suppose the fraction of trustable nodes s(T ) is fixed and
uncorrelated with the initial fraction of active nodes ρ

(k)
0 , then

we can set q
(k,T )
0 = ρ

(k)
0 s(T ) and q

(k,U )
0 = ρ

(k)
0 (1 − s(T )). Note

that the two main conditions for the applicability of the tree
approximation approach are satisfied, namely the permanently
active property (i.e., active nodes cannot become inactive) and
the nondecreasing character of the response function F (m,k)
for increasing values of m (maintaining k fixed); see [36,54].

In our full TDIS model, the trust dynamics is independent of
the information spreading, but the opposite does not hold, i.e.,
the number and distribution of trustable nodes may affect the
size of the information cascade. Moreover, the trust dynamics
makes the distribution of trustable individuals change in time,
thus interfering with the information spreading. However,
since we suppose the trust is a long-term effect of the game
dynamics, governed by the memory span �t , we may use
an adiabatic approximation in which, for each time step t

of the trust dynamics, we calculate the extension ρ(t) of the
information spreading as if it were instantaneous (using as
input to the equations the current distribution of trustable and

untrustable nodes). The final outcome is then ρ = maxt ρ(t),
meaning that, during the trust evolution, there is a moment at
which the information spreading extends the largest, and the
rest of the TDIS dynamics is not able to increase it anymore.
Unfortunately, we do not know in advance when this peak
of spreading is going to happen, and simulations show that
in many occasions it appears in the transitory of the trust
evolution, thus forcing us to follow the whole trust dynamics
to perform the prediction of the information spreading.

IV. RESULTS

We first validate the accuracy of the tree approximation
theory in Sec. IV A, then we show the results for the TDIS
model in Sec. IV B, and finally we explore the effect of the
distribution of trustable and untrustable nodes on the infor-
mation spreading in Sec. IV C. Throughout the simulations,
we make use of two reference multiplex networks, both with
N = 1000 nodes and average degree z = 6 in each layer. In
the first multiplex the layers are random Erdős-Rényi networks
(ER), and in the second they are scale-free networks built using
the Barabási-Albert model (BA); in both cases, the trust and
information-spreading layers are uncorrelated between them.
We also set the threshold value to θ = 0.3, the initial fraction of
spreaders in the information layer to 1% (ρ0 = 0.01), and we
make 150 repetitions of the Monte Carlo simulations, each one
consisting of 20 000 time steps. Note that a classical threshold
dynamics for these networks and with the selected threshold
has no global cascades; see [27].

A. Validation of the tree approximation

In Fig. 2 we compare the fraction of active nodes ρ

predicted using the tree approximation in Sec. III with respect
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FIG. 2. Comparison of the fraction of active nodes ρ (in color
code) obtained with Monte Carlo simulations (first row) and with
theoretical predictions using the tree approximation (second row)
for a fixed and randomly distributed fraction s(T ) of trustable nodes
and varying values of the influence parameter α. The left column
corresponds to a random ER network, and the right corresponds to a
scale-free BA network. The third row shows the absolute difference
between theory and Monte Carlo results, which amounts to a global
relative error of 6.4% (ER) and 8.3% (BA), respectively.
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to Monte Carlo simulations. A fraction s(T ) of trustable
nodes is randomly assigned for varying values of s(T ) and
of the influence parameter α in the range [0,1]. The state
of the nodes, trustable or untrustable, remains fixed during
the information-spreading dynamics. The results show a good
agreement between the tree approximation predictions and the
Monte Carlo simulations.

Note that, for the current setup, if the influence of trustable
and untrustable nodes is the same (i.e., α = 0, which recovers
the standard threshold model), the information spreading is
very low, almost negligible. However, as α increases, the trust
in the neighbors allows larger spreading, with maximums of ρ

at about 0.7 (ER) and 0.2 (BA), respectively, for certain values
of the influence parameter and of the fraction of trustable
nodes. The differences between the ER and BA networks are
just a higher level of diffusion for the ER network. Therefore,
we may state that the trust in the neighbors enhances the
information spreading, provided the fraction of trustable nodes
is neither too large nor too small. The same behavior is also
observed in the next section, when the full TDIS is taken into
account.

B. Results for the Trust-Driven Information-Spreading model

As explained in Sec. II, the TDIS model has a trust dynamics
based on a weak Prisoner’s Dilemma, which depends on the
temptation parameter b and the memory time span �t . In Fig. 3
we show as a reference the average fraction of trustable nodes
in the stationary state for the two considered networks, with a
memory span �t = 1 and an initial fraction of cooperators at
50%. It shows that, tuning the temptation, we are able to scan

FIG. 3. Fraction of trustable nodes as a function of the temp-
tation for the two considered networks with average degree z = 6:
(a) random ER network; (b) scale-free BA network. The parameters
of the Monte Carlo simulations are as follows: memory span �t = 1,
50% of initial randomly distributed trustable nodes, and average of
the fraction of trustable nodes over all the repetitions and for the last
1000 time steps.

from full trustability s(T ) = 1 to full untrustability s(T ) = 0.
For larger values of �t , the fraction of trustable nodes does
not change in a significant way. Note that we have selected b ∈
[1,2] for the ER network and b ∈ [1,3] for the BA network.

Figure 4 shows a comparison between the Monte Carlo and
theoretical predictions of the fraction of active nodes for the
two considered multiplex networks (ER and BA), for different
values of the temptation b, the influence α, and the memory
span �t parameters. The theoretical prediction is performed
using the scheme specified at the end of Sec. III. The agreement
between them is remarkable, with global relative errors ranging
from 1.6% in the best case (ER, �t = 1) to 9.3% in the worst
one (BA, �t = 1000).

We first observe in Fig. 4 that, for the current threshold
θ = 0.3, the activity does not spread when there is no
distinction between trustable and untrustable nodes (α = 0).
However, when we start increasing the influence of trustable
neighbors, the fraction of active nodes quickly rises, easily
covering the whole population. This effect is more important
for intermediate values of the temptation b and shorter memory
time spans. Taking into account the results in Figs. 2 and 3,
it becomes evident that the information spreading is not just a
consequence of the fraction of trustable nodes in the stationary
state of the trust dynamics, but it must also depend on its
transitory states. For example, when b is close to 1, all nodes
are trustable in the steady state (s(T ) = 1), which corresponds
to a region in Fig. 2 where the activity cannot propagate,
but it does. Therefore, the only possibility is that, during the
transitory of the trust dynamics, the number of trustable nodes
changes continuously from the initial fraction 50% to a final
value (not necessarily in a monotonic way), and it is in these
intermediate states when the information spreading achieves
its maximum level. Moreover, the fact that the influence α

can be small for full spreading, unlike in Fig. 2, points to
the importance of the whole trust dynamics to explain the
spreading, which cannot be understood by just accounting for
the fraction of trustable individuals.

The reduction of information spreading as memory grows
can also be explained through its effect on the transitory of
the trust dynamics: from the point of view of the information-
spreading dynamics, when �t grows, the fluctuations of the
transitory are smoothed, and consequently nodes remain in
the same state (trustable or untrustable) for longer times. Thus,
the fraction of trustable nodes approaches a constant value that,
in the limit �t → ∞, is equal to the stationary value in Fig. 3.
In this situation, we expect to have a level of spreading similar
to those in Fig. 2, hence explaining the important reduction in
information spreading as memory rises.

The results are equivalent for both the ER and BA multiplex
networks, except for a larger and smoother transition region (in
the parameters space) between no spreading and full diffusion
for the BA multiplex, whereas the ER presents a much abrupt
boundary between them.

In summary, we have seen that, in simple terms, trust
in the neighbors helps in the spreading of information,
while long-term memory in the assignment of trust re-
strains it. Moreover, major spreading is accomplished at
intermediate values of the temptation, for which the pop-
ulation of trustable and untrustable individuals is more
balanced.
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FIG. 4. Fraction of active nodes ρ (in color code) as a function of the temptation b and the influence α for the full TDIS model running on
top of the two considered multiplex networks: (a) random ER multiplex; (b) scale-free BA multiplex. In each panel, the first row corresponds to
Monte Carlo simulations, the second row to the theoretical predictions using the tree approximation, and the last one to the absolute difference
between them. The columns correspond to four different values of the memory span �t , with respective global relative errors between theory
and Monte Carlo of 1.6%, 1.8%, 2.4%, and 5.1% for the ER multiplex, and 3.3%, 3.3%, 4.2%, and 9.3% for the BA multiplex. Same Monte
Carlo parameters as in Fig. 3, and the fraction of active nodes is the average of their values in the last time step over all the repetitions.

C. The effect of the distribution of trustable individuals

Although the fraction of trustable individuals is very
important for the spreading of information, as established in
the previous Secs. IV A and IV B, it remains to be seen if their
distribution across the network produced by the trust dynamics
is also relevant or not. To this end, we compare Monte Carlo
simulations of the full TDIS model (first rows in Fig. 5) to new
simulations with randomized assignments of the trust states
(second rows in Fig. 5). More precisely, for every TDIS Monte
Carlo simulation, we build a randomized instance in which,

for each time step, the fraction of trustable nodes is preserved
but their distribution is randomly reshuffled.

The results in Fig. 5 show a general enlargement of the
regions with maximum information spreading, thus confirming
the importance of the distribution of the trustable nodes. Since
the fraction of trustable nodes is not enough to account for the
final spreading of the information, we cannot avoid the tracking
of the trust dynamics to obtain good predictions, using the
procedure in Sec. III. Again, both the ER and BA multiplex
networks show a qualitatively similar behavior.
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FIG. 5. Dependence of the fraction of active nodes ρ (in color code) on the distribution of trustable individuals for the two considered
multiplex networks: (a) a random ER multiplex; (b) a scale-free BA multiplex. In each panel, the first row corresponds to Monte Carlo
simulations of the TDIS model, the second row corresponds to Monte Carlo simulations in which the assignment of trustable nodes is
randomized, and the last one corresponds to the absolute difference between them. The columns correspond to four different values of the
memory span �t .

V. CONCLUSION

In this work, we have introduced a model of information
spreading, based on the standard threshold model, which takes
into account trust in the neighbors in the decision on whether
or not to spread the information. Three factors affecting
this personal behavior are taken into account: the degree of
influence of trustable acquaintances versus untrustable ones,
the memory span to consider trustable individuals as such,
and the temptation to not cooperate in the next action. The
result is a Trust-Driven Information-Spreading model, on

top of a two-layer multiplex network, in which individuals
participate in two processes, a trust dynamics in one layer
and an information spreading in the other. The influence
and distribution of trustable actors affect the diffusion of
information, while there is no interaction in the opposite
direction, from the spreading to the trust layer. For the diffusion
of the information, individuals become spreaders when the
influence of their neighbors exceeds a certain threshold. We
have shown that this model allows an analytical treatment of
the information diffusion, based on a tree approximation, in
good agreement with Monte Carlo simulations.
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The results show how an increasing influence of trustable
neighbors promotes information diffusion, which is easily
diffused to all the population. However, the information is
restrained when a long-term memory of previous behaviors
is used to assign the trustable or untrustable character of
individuals. Additionally, intermediate values of the tempta-
tion enhance the spreading thanks to the fact that they yield
balanced populations of trustable and untrustable individuals,
which is the most favorable configuration to satisfy the
threshold condition and become a spreader. We have also
shown that not only the fraction but also the distribution
and evolution of trustable nodes are important to predict
the final outcome of the spreading process, and that all the
previous results apply both for random ER and heterogeneous

scale-free BA multiplex networks. These results provide clues
to understand and quantify the effects of a rational individual’s
decision making in the propagation of all kinds of information.
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[22] L. Lü, D.-B. Chen, and T. Zhou, The small world yields the
most effective information spreading, New J. Phys. 13, 123005
(2011).

[23] D. Zinoviev and V. Duong, A game theoretical approach to
broadcast information diffusion in social networks, in Pro-
ceedings of the 44th Annual Simulation Symposium, Boston,
MA, 2011 (Society for Computer Simulation International, San
Diego, CA, 2011), pp. 47–52.

[24] N. Braun, Individual thresholds and social diffusion, Ration.
Soc. 7, 167 (1995).

[25] M. Granovetter and R. Soong, Threshold models of interpersonal
effects in consumer demand, J. Econ. Behav. Organ. 7, 83 (1986).

[26] M. Granovetter, Threshold models of collective behavior, Am.
J. Sociol. 83, 1420 (1987).

[27] D. J. Watts, A simple model of global cascades on random
networks, Proc. Natl. Acad. Sci. USA 99, 5766 (2002).

[28] P. Singh, S. Sreenivasan, B. K. Szymanski, and G. Korniss,
Threshold-limited spreading in social networks with multiple
initiators, Sci. Rep. 3, 2330 (2013).

[29] C. D. Brummitt, K.-M. Lee, and K.-I. Goh, Multiplexity-
facilitated cascades in networks, Phys. Rev. E 85, 045102
(2012).

012301-8

https://doi.org/10.1038/2041118a0
https://doi.org/10.1038/2041118a0
https://doi.org/10.1038/2041118a0
https://doi.org/10.1038/2041118a0
https://doi.org/10.1038/204225a0
https://doi.org/10.1038/204225a0
https://doi.org/10.1038/204225a0
https://doi.org/10.1038/204225a0
https://doi.org/10.1023/A:1011122126881
https://doi.org/10.1023/A:1011122126881
https://doi.org/10.1023/A:1011122126881
https://doi.org/10.1023/A:1011122126881
https://doi.org/10.1145/1232722.1232727
https://doi.org/10.1145/1232722.1232727
https://doi.org/10.1145/1232722.1232727
https://doi.org/10.1145/1232722.1232727
https://doi.org/10.1086/518527
https://doi.org/10.1086/518527
https://doi.org/10.1086/518527
https://doi.org/10.1086/518527
https://doi.org/10.1056/NEJMsa066082
https://doi.org/10.1056/NEJMsa066082
https://doi.org/10.1056/NEJMsa066082
https://doi.org/10.1056/NEJMsa066082
https://doi.org/10.1073/pnas.1004098107
https://doi.org/10.1073/pnas.1004098107
https://doi.org/10.1073/pnas.1004098107
https://doi.org/10.1073/pnas.1004098107
https://doi.org/10.1509/jmr.10.0353
https://doi.org/10.1509/jmr.10.0353
https://doi.org/10.1509/jmr.10.0353
https://doi.org/10.1509/jmr.10.0353
https://doi.org/10.1073/pnas.1400842111
https://doi.org/10.1073/pnas.1400842111
https://doi.org/10.1073/pnas.1400842111
https://doi.org/10.1073/pnas.1400842111
https://doi.org/10.1103/PhysRevLett.111.128701
https://doi.org/10.1103/PhysRevLett.111.128701
https://doi.org/10.1103/PhysRevLett.111.128701
https://doi.org/10.1103/PhysRevLett.111.128701
https://doi.org/10.1038/srep10650
https://doi.org/10.1038/srep10650
https://doi.org/10.1038/srep10650
https://doi.org/10.1038/srep10650
https://doi.org/10.1103/PhysRevE.69.066130
https://doi.org/10.1103/PhysRevE.69.066130
https://doi.org/10.1103/PhysRevE.69.066130
https://doi.org/10.1103/PhysRevE.69.066130
https://doi.org/10.1016/j.procs.2010.04.262
https://doi.org/10.1016/j.procs.2010.04.262
https://doi.org/10.1016/j.procs.2010.04.262
https://doi.org/10.1016/j.procs.2010.04.262
https://doi.org/10.1038/srep09519
https://doi.org/10.1038/srep09519
https://doi.org/10.1038/srep09519
https://doi.org/10.1038/srep09519
https://doi.org/10.1103/PhysRevE.76.036117
https://doi.org/10.1103/PhysRevE.76.036117
https://doi.org/10.1103/PhysRevE.76.036117
https://doi.org/10.1103/PhysRevE.76.036117
https://doi.org/10.1103/PhysRevE.81.056102
https://doi.org/10.1103/PhysRevE.81.056102
https://doi.org/10.1103/PhysRevE.81.056102
https://doi.org/10.1103/PhysRevE.81.056102
https://doi.org/10.1088/1367-2630/13/12/123005
https://doi.org/10.1088/1367-2630/13/12/123005
https://doi.org/10.1088/1367-2630/13/12/123005
https://doi.org/10.1088/1367-2630/13/12/123005
https://doi.org/10.1177/1043463195007002005
https://doi.org/10.1177/1043463195007002005
https://doi.org/10.1177/1043463195007002005
https://doi.org/10.1177/1043463195007002005
https://doi.org/10.1016/0167-2681(86)90023-5
https://doi.org/10.1016/0167-2681(86)90023-5
https://doi.org/10.1016/0167-2681(86)90023-5
https://doi.org/10.1016/0167-2681(86)90023-5
https://doi.org/10.1086/226707
https://doi.org/10.1086/226707
https://doi.org/10.1086/226707
https://doi.org/10.1086/226707
https://doi.org/10.1073/pnas.082090499
https://doi.org/10.1073/pnas.082090499
https://doi.org/10.1073/pnas.082090499
https://doi.org/10.1073/pnas.082090499
https://doi.org/10.1038/srep02330
https://doi.org/10.1038/srep02330
https://doi.org/10.1038/srep02330
https://doi.org/10.1038/srep02330
https://doi.org/10.1103/PhysRevE.85.045102
https://doi.org/10.1103/PhysRevE.85.045102
https://doi.org/10.1103/PhysRevE.85.045102
https://doi.org/10.1103/PhysRevE.85.045102


INFLUENCE OF TRUST IN THE SPREADING OF . . . PHYSICAL REVIEW E 95, 012301 (2017)

[30] K.-M. Lee, C. D. Brummitt, and K.-I. Goh, Threshold cascades
with response heterogeneity in multiplex networks, Phys. Rev.
E 90, 062816 (2014).

[31] C. D. Brummitt and T. Kobayashi, Cascades in multiplex
financial networks with debts of different seniority, Phys. Rev.
E 91, 062813 (2015).

[32] R. Burkholz, M. V. Leduc, A. Garas, and F. Schweitzer,
Systemic risk in multiplex networks with asymmetric coupling
and threshold feedback, Physica D 323–324, 64 (2016).

[33] M. O. Jackson and L. Yariv, Diffusion of behavior and
equilibrium properties in network games, Am. Econ. Rev. 97,
92 (2007).

[34] D. Zinoviev and V. Duong, A game theoretical approach to
modeling full-duplex information dissemination, in Proceedings
of the 2010 Summer Computer Simulation Conference, Ottawa,
2010 (Society for Computer Simulation International, San
Diego, CA, 2010), pp. 358–363.

[35] R. Pastor-Satorras and A. Vespignani, Epidemic Spreading in
Scale-Free Networks, Phys. Rev. Lett. 86, 3200 (2001).

[36] J. P. Gleeson and D. J. Cahalane, Seed size strongly affects
cascades on random networks, Phys. Rev. E 75, 056103 (2007).

[37] S. Jamali and H. Rangwala, Digging Digg: Comment mining,
popularity prediction, and social network analysis, in Web Infor-
mation Systems and Mining, Shanghai, 2009 (IEEE, Piscataway,
NJ, 2009), pp. 32–38.

[38] M. Kimura, K. Saito, and H. Motoda, Blocking links to minimize
contamination spread in a social network, ACM Trans. Knowl.
Discov. Data 3, 9 (2009).

[39] D. Kempe, J. Kleinberg, and É. Tardos, Maximizing the spread of
influence through a social network, in Proceedings of the Ninth
ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, Washington, DC, 2003 (Association for
Computing Machinery, New York, NY, 2003), pp. 137–146.

[40] G. Szabo and B. A. Huberman, Predicting the popularity of
online content, Commun. ACM 53, 80 (2010).

[41] L. Weng, F. Menczer, and Y.-Y. Ahn, Virality prediction and
community structure in social networks, Sci. Rep. 3, 2522
(2013).

[42] J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and J.
Leskovec, Can cascades be predicted? in Proceedings of the
23rd International Conference on World Wide Web, Seoul, 2014

(Association for Computing Machinery, New York, NY, 2014),
pp. 925–936.

[43] J. Yang and J. Leskovec, Patterns of temporal variation in
online media, in Proceedings of the Fourth ACM International
Conference on Web Search and Data Mining, Hong Kong, 2011
(Association for Computing Machinery, New York, NY, 2011),
pp. 177–186.

[44] W. Sherchan, S. Nepal, and C. Paris, A survey of trust in social
networks, ACM Comput. Surv. 45, 47 (2013).

[45] M. A. Nowak and R. M. May, Evolutionary games and spatial
chaos, Nature (London) 359, 826 (1992).

[46] F. C. Santos and J. M. Pacheco, Scale-Free Networks Provide a
Unifying Framework for the Emergence of Cooperation, Phys.
Rev. Lett. 95, 098104 (2005).

[47] F. C. Santos, J. M. Pacheco, and T. Lenaerts, Evolutionary
dynamics of social dilemmas in structured heterogeneous
populations, Proc. Natl. Acad. Sci. USA 103, 3490 (2006).
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