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The notation used here is the same as the one introduced in the main text. Equations
and figures of the main text are referenced with their number there, e.g., Fig. 1 and
Eq. (2). Equations and figures on this Supporting Information have a “S.” before their
number, e.g., Fig. S.1 and Eq. (S.2).

We report here the equation describing the spread of the disease, corresponding to
Eq. (1) of the main text:

ẋkν = −µxkν +
k

〈k〉
∑
β

(∑
h

hpγ(h)xhβ

)[
Γνβ

(
1−

∑
γ

xkγ

)
+
∑
γ

Λνβγx
k
γ

]
. (S.1)

The terms in this equation are described in the main text. We remind that the Latin
indices run on the degree, and Greek indices run over the 2v + 1 compartments, that
are ordered by increasing number of viral species they contain. Let us define as φ the
function that counts such number, so that φ(pwty) = 1 (just wt), φ(p1y) = 2 (wt plus
one variant), φ(psegy) = v (all the variants), φ(pally) = v + 1, and so on. The ordering
is such that α > β ⇒ φ(pαy) ≥ φ(pβy).

S.1 Model v = 1

Here we consider v = 1, homogeneous contacts, and no differential degradation. Let
x1, x2 be the prevalence of pwty , pally, respectively. Equation (S.1) reduces to{

ẋ1 = −µx1 + λ(1− x1 − x2)x1 + λ(1− λ)(1− x1 − x2)x2 − λx1x2;
ẋ2 = −µx2 + λ2(1− x1 − x2)x2 + λx1x2.

(S.2)

As explained in the main text, the equation of the total prevalence z = x1 + x2
decouples (see also Sect. S.5). It is thus convenient to consider the system in (z, x2):{

ż = λ(1− z)z − µz
ẋ2 = λ2(1− z)x2 + λ(z − x2)x2 − µx2.

(S.3)



As the equation for z decouples from x2, the Jacobian is lower triangular:

J =

(
−µ+ λ (1− 2z) 0
λ(1− λ)x2 λ2(1− z) + λ(z − 2x2)− µ

)
. (S.4)

The spectrum of J is thus given by its diagonal elements. In order to get T1, i.e., the
epidemic threshold, we need to study the spectrum of J computed in the disease-free
state (z = x2 = 0):

J (dfs) =

(
−µ+ λ 0

0 λ2 − µ

)
. (S.5)

From this we see that if λ > µ the dfs is no longer stable. Hence T1 = {λ = µ}. One
could guess this without calculations from the equation in z, which tells us that the total
prevalence behaves like an SIS. In order to find T2 we now study the stability of the
equilibrium where only wt is circulating (hosts in pwty, but not in pally, are present).
This is the equilibrium wt defined in the main text, and it is a pure SIS model for the
compartment pwty. The value of the prevalence is (z = 1 − µ/λ, x2 = 0), as the SIS
prescribes. The Jacobian in this equilibrium point is

J (wt) =

(
µ− λ 0

0 λ(1 + µ)− 2µ

)
. (S.6)

The first eigenvalue is always negative, as we are above T1. The second one is negative
iff (1 + µ)λ < 2µ. As a result, we get that T2 = {λ = 2µ/(1 + µ)}.

S.2 Generic number of variants v

Assuming a generic number of variants, and homogeneous contacts, Eq. (S.1), and its
Jacobian, are

ẋν =
∑
βσ

Λνβσxβxσ +
∑
β

Γνβxβ

(
1−

∑
σ

xσ

)
− µxν ; (S.7)

Jνβ =
∂ẋν
∂xβ

=
∑
σ

[
Λν(βσ) − Γνσ

]
xσ + Γνβ

(
1−

∑
σ

xσ

)
− µδνβ, (S.8)

with Λν(βσ) = Λνβσ + Λνσβ. They correspond to Eqs. (5) and (6) of the main text,
respectively.

As in the case v = 1, we use the Jacobian, Eq. (S.8), to study the stability of two
equilibria. The first one is the dfs (xν = 0), whose analysis gives T1. The second one
is wt: x1 = 1 − µ/λ, xν = 0 for ν > 1, and will give T2. We remind that, given the
ordering we use, the index ν = 1 refers to the compartment pwty, which is indeed the
only one with non-zero prevalence in the wt-phase equilibrium. We study the stability of
the former directly in the main text, so here we directly proceed to the latter.

The Jacobian computed in wt is

J
(wt)
νβ =

(
1− µ

λ

) (
Λν(β1) − Γν1

)
+
µ

λ
Γνβ − µδνβ. (S.9)
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We can write it in matrix form by defining the following matrices: (Λ)νβ = Λν(β1),(
Γ̃
)
νβ

= Γν1. The result is

J (wt) = Γ− µ+
(

1− µ

λ

)(
Λ− Γ− Γ̃

)
. (S.10)

Γ̃ has all the entries equal to Γ11 = λ in the first row, and all others zero. This is
because Γν1 encodes the interactions that change the prevalence of the ν-th compartment
by acting with pwty on the susceptible state. Hence ν itself can refer only to pwty, and
only wt is transmitted, thus the value λ. We now wish to show that Λ is block-upper-
triangular. One diagonal block, Λ1, encompasses the indices β = 1, . . . , 2v − 1, while the
other, Λ2, the remaining β = 2v, 2v + 1:

Λ =

(
Λ1 [2v − 1× 2v − 1] · · ·

0 Λ2 [2× 2]

)
. (S.11)

The lower left block is clearly zero, because the transitions that change the prevalence
of psegy , pally by acting on pwty with a compartment other than psegy , pally, or vice
versa, are not possible. The block Λ1 is upper diagonal, and we can show this with a
reasoning similar to the one for Γ in the main text. First of all, Λ1,11 = 0 as no term
x21 exists in the equations. We then consider the transitions pαy pwty → pαy pβy, with
1 < α, β ≤ 2v − 1. It must be that φ(α) ≥ φ(β), implying α ≥ β. Furthermore,
the diagonal elements are Λ1,αα = λφ(α)−1, as one needs to transmit all the segmented
variants pαy contains, but not wt. Finally, the transitions pwty pαy → pwty pβy are
not possible, as all the compartments considered already contain the wt. This proves the
upper diagonal shape. The block Λ2 does not change in dimension with v, and so it can
be computed explicitly by analyzing the four possible reactions between psegy , pally.
Summing up, the matrices involved have the following form:

Γ =



λ � · · · � · · · � � �
0 λ2 · · · � · · · � � �
...

... · · · ... · · · ...
...

...
0 0 · · · λn · · · � � �
...

... · · · ... · · · ...
...

...
0 0 · · · 0 · · · λv � �
0 0 · · · 0 · · · 0 λv λv(1− λ)
0 0 · · · 0 · · · 0 0 λv+1


, (S.12)

Λ =



0 � · · · � · · · � � �
0 λ · · · � · · · � � �
...

... · · · ... · · · ...
...

...
0 0 · · · λn−1 · · · � � �
...

... · · · ... · · · ...
...

...
0 0 · · · 0 · · · λv−1 � �
0 0 · · · 0 · · · 0 −λ 0
0 0 · · · 0 · · · 0 λ(1 + λv−1) λv


, (S.13)
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Γ̃ =



λ λ · · · λ · · · λ λ λ
0 0 · · · 0 · · · 0 0 0
...

... · · · ... · · · ...
...

...
0 0 · · · 0 · · · 0 0 0
...

... · · · ... · · · ...
...

...
0 0 · · · 0 · · · 0 0 0
0 0 · · · 0 · · · 0 0 0
0 0 · · · 0 · · · 0 0 0


, (S.14)

where 2 ≤ n ≤ v, and the symbol “�” marks values that are not necessary to our com-
putation. By putting Eqs. (S.12), (S.13) and (S.14) into Eq. (S.10) we realize that J (wt)

has the same block structure, and can compute its eigenvalues. The stability condition
then translates into the following system:

µ− λ < 0

λn − µ+ λn−1
(
1− µ

λ

)
(1− λ) < 0

λv − µ < 0

λ (µλv−1 − 1) < 0

. (S.15)

The first equation is always true, as we are above T1. The second one, for n = 2, is true
when λ < 2µ/(1 + µ). Then, if this holds, one can show that all the following hold. As a
result, we get to T2 = {λ = 2µ/(1 + µ)}.

S.3 Heterogeneous contacts

We now address the fully general equation driving the system, Eq (S.1). We assume here
k to be discrete-valued. One can prove that the whole derivation holds in the continuous
case, too. The general form of the Jacobian Eq. (S.1) becomes

Jkmνα =
∂ẋkν
∂xmα

=
k

〈k〉
mpγ(m)

[
Γνα

(
1−

∑
γ

xkγ

)
+ γΛναγx

k
γ

]
+

+ δkm

[
−µδνα +

k

〈k〉
∑
β,h

hpγ(h)xhβ (Λνβα − Γνβ)

]
. (S.16)

This matrix acts on the space G ⊗ H, where G is the usual (2v + 1)-dimensional space
spanned by the compartments, and H is an ∞-dimensional separable Euclidean space
spanned by the discrete degrees (or contact rates). For this reason, we can study the
spectrum of J on the compartment sector, and the degree sector, one at the time.

Critical surface T1

On the dfs, the Jacobian reads

Jkmνα
∣∣(wt)

= Cγ
km1−γ

〈k〉
Γνα − µδkmδνα. (S.17)
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In Sect. S.2 we already have examined both Γ and Λ thoroughly. Hence, we can say that
the principal eigenvalue of Γ is λ−µ, corresponding to some eigenvector v. If one defines
the vector κ on H as simply the sequence of positive natural numbers κ = (1 2 3 · · · ),
then one can show that κ ⊗ v is the principal eigenvector of J |(wt), with eigenvalue
〈k2〉λ/ 〈k〉 − µ. From this we find T1 = {λ = µ̂}.

Critical surface T2

Let us call zk
def
= xk1. The wt equilibrium will be some zk > 0, and xkν = 0 ∀ν > 1. This

leads to (dropping the superscript wt from now on)

Jkmνα =
mpγ(m)

〈k〉
k
[
Γνα(1− zk) + Λνα1z

k
]

+ (S.18)

+ δkm
[
−µδνα + k 〈z〉γ−1 (Λν1α − Γν1)

]
, (S.19)

where 〈z〉σ is the average of zk computed with pσ(k): 〈z〉σ
def
= Cσ

∑
k z

kk−σ. By using the
findings in Sect. S.2, we know that, in the compartment sector, the relevant (dominant)
eigenvalue is the entry ν = α = 2. Hence, we can directly compute the Jacobian for these
values, and deal with the degree sector:

Jkm = −µδkm +
mpγ(m)

〈k〉
k
[
λ2(1− zk) + λzk

]
. (S.20)

We now define two vectors (in H): Ωk
def
= kpγ(k)/ 〈k〉, and Ψk

def
= k

(
λ2 + λ(1− λ)zk

)
.

With them we can rewrite Jkm:

J = −µ+ ΨΩT . (S.21)

The principal eigenvector of J is Ψ, and the corresponding eigenvalue is −µ+ ΩTΨ. By
computing it, and setting it to zero, we recover the equation for the critical point:

λ+ (1− λ) 〈z〉γ−2 =
〈k〉
〈k2〉

µ

λ
. (S.22)

The last piece of the puzzle is computing the term 〈z〉γ−2. We define the following
function:

g(a, x)
def
=

∞∑
k=1

k−a

1 + xk
. (S.23)

For this function, one can prove the following recursion relation:

xg(a− 1, x) = ζ(a)− g(a, x) (S.24)

(derivation not shown here), where ζ is the Riemann zeta function. Now, from [1] we
know that the prevalence zk of a SIS model obeys the following equation:

zk =
λ 〈z〉γ−1

µ+ λ 〈z〉γ−1
. (S.25)
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We apply Cγ−1
∑

k k
1−γ to both sides of this equations, and get

g

(
γ − 2,

λ

µ
〈z〉γ−1

)
=

µ

λCγ−1
. (S.26)

We then apply Cγ−2
∑

k k
2−γ, and get

〈z〉γ−2 = 〈z〉γ−1
λ

µ
g

(
γ − 3,

λ

µ
〈z〉γ−1

)
. (S.27)

Moreover, we notice that the moments of the degree distribution can be expressed in
terms of the normalization constants as follows:

〈kn〉 =
Cγ
Cγ−n

. (S.28)

By combining Eqs. (S.23), (S.26), (S.27) and (S.28), we can get to a closed-form solution
for 〈z〉γ−2:

〈z〉γ−2 = 1− 〈k〉
〈k2〉

µ

λ
. (S.29)

Finally, by putting this inside Eq. (S.22), we get to T2 = {λ = 2µ̂/ (1 + µ̂)}.

S.4 Enhanced segment transmissibility

Segmented variants now transmit with a probability ρλ, with ρ ≥ 1, where λ is the
transmissibility of wt. Let us examine how the interaction matrices change according to
this. Matrix Γ̃ in Eq. (S.14) does not change, while matrix Γ in Eq. (S.12), and Λ in
Eq. (S.13), change as follows:

Γ =



λ � · · · � · · · � � �
0 ρλ2 · · · � · · · � � �
...

... · · · ... · · · ...
...

...
0 0 · · · ρn−1λn · · · � � �
...

... · · · ... · · · ...
...

...
0 0 · · · 0 · · · ρv−1λv � �
0 0 · · · 0 · · · 0 (ρλ)v (ρλ)v (1− λ)
0 0 · · · 0 · · · 0 0 ρvλv+1


, (S.30)

Λ =



0 � · · · � · · · � � �
0 ρλ · · · � · · · � � �
...

... · · · ... · · · ...
...

...

0 0 · · · (ρλ)n−1 · · · � � �
...

... · · · ... · · · ...
...

...

0 0 · · · 0 · · · (ρλ)v−1 � �
0 0 · · · 0 · · · 0 −λ 0
0 0 · · · 0 · · · 0 λ+ (ρλ)v (ρλ)v


, (S.31)
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The spectrum of Jdfs = Γ − µ then gives the first critical point. We find two regimes.
For ρ < µ−

v−1
v , we find the usual T1 = {λ = µ}. For ρ > µ−

v−1
v a different critical point

emerges: Ts =
{
λ = (µ)1/v /ρ

}
. This means that if transmissibility is enhanced enough,

the compartment psegy spreads alone as an SIS, and Ts is its epidemic threshold.

In the regime ρ < µ−
v−1
v we can find the new T2 =

{
λ = 1+ρ

ρ
µ

1+µ

}
, with the same

derivation as in Sect. S.2. Analogously we can add heterogeneous contact rates, solving
the degree sector as in Sect. S.3, finding the correction µ̂ as before.

S.5 Total prevalence of the wild-type virus

Total prevalence of the wt can be computed analytically in the homogeneous case. In
order to prove that, we consider Eq. S.7. For convenience, we define z =

∑
α xα − xseg,

which is the total prevalence of the wt. Primed summation symbols (
∑′

ν) mean ν runs
over all the compartments but psegy. We apply

∑′
ν to both sides of Eq. S.7, getting

ż = −µz +
∑
αβ

xαxβ

(∑
ν

′
Λναβ

)
+ (1− z − xseg)

∑
α

xα

(∑
ν

′
Γνα

)
. (S.32)

The term containing Λναβ can be computed using that
∑

ν Λναβ = 0. This is due to the
fact that the number of hosts is conserved, and Λναβ encodes interactions only between
infected compartments. As a result,

∑′
ν Λναβ = −Λseg,αβ. Moreover, one can show that

Λseg,αβ = −λδβ,seg(1 − δα,seg). The term
∑′

ν Γνα is the probability of α generating a
ν 6= seg by infecting a susceptible. This is just the probability of transmitting the wt,
because all the other probabilities cancel out. Hence,

∑′
ν Γνα = λ(1−δα,seg). By inserting

these two terms in Eq. (S.32), one gets

ż = −µz + λ(1− z)z, (S.33)

which decouples from the other variables, and represents a pure SIS. As a result, the
endemic total prevalence of the wt in case of homogeneous networks is always z = 1−µ/λ.

S.6 Numerical validation of the critical surfaces

In order to validate our theoretical prediction of the phase space, we simulate the spread
of a multipartite virus on a plant population. The estimate of the critical surfaces requires
computing the endemic states, corresponding to the different phases. To do that, we used
the quasistationary state method [2, 3]. In its original formulation for an SIS model, the
quasistationary state method relies on forcing the system out of the disease-free state.
Every time the simulation produces a fully susceptible population, one inputs an active
configuration previously visited by the system. With multipartite viruses, however, there
is an additional challenge, represented by the fact that the disease-free state is not the
only absorbing state. Every time the system becomes free of a specific variant (or wt)
disappears from the system, it will be free of it forever. Hence, we force the system
out of any state that does not contain all the v variants and the wt. The result of the
simulations is shown in Fig. S.1.
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a) b)

Figure S.1: Numerical validation of Fig. 3(E). Prevalence of the wt (A) and the seg-
mented variants (B) are computed through stochastic simulations. The solid, dashed and
dotted lines represent T1, T2 and Ts, respectively.

S.7 Limited carrying capacity

Our model assumes that the transmission probability of one variant does not depend on
the coinfecting variants. In reality, however a limited carrying capacity should be taken
into account, as the number of viral particles a cell can produce in time is limited. Here
we investigate this aspect using a simple assumption: coinfecting variants share equally
a fixed transmissibility. Hence, for instance, while compartment pwty transmits the wt
with probability λ, p1y transmits it with probability λ/2, due to the concurrent infection
by a defective variant. We show that while this impacts the specific values of the critical
surfaces in Eq. (2,3,4) of the main text, it does not change the quantitative behavior.

Having previously demonstrated the generalizability to arbitrary number of variants
(v) and arbitrary heterogeneous topology, we set ourselves in the (computationally) sim-
plest scenario of homogeneous network and v = 2. Equation (S.3) thus becomes{

ż = λ(1− z)z − µz − λ
2
(1− z)y

ẋ2 =
(
λ
2

)2
(1− z)x2 + λ

2
(z − x2)x2 − µx2.

. (S.34)

From this, and from the SIS-like dynamic of psegy spreading alone, we can compute
the new critical surfaces. We consider, for simplicity, ρ = 1 and homogeneous topology:

T1 = {λ = µ} ; (S.35)

T2 =

{
λ =

3µ

1 + µ/2

}
; (S.36)

Ts =
{
λ = vµ1/v

}
. (S.37)

By comparing them to Eq. (2,3,4) of the main text, we see that limited carrying capacity
does not change the epidemic threshold (T1). It increases, however, both T2 and Ts,
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making multipartitism overall less likely. It however does not change the qualitative
behavior of the model.

S.8 Nonhomogeneous recovery rates, nonindependent

transmission

Our model assumes recovery rate is the same for all compartment. One might instead
assume that it either decreases or increases with the number of coinfecting variants. Here
we investigate a different recovery rate for the pure multipartite compartment (psegy):
compartment containing wt recover at a rate µ, psegy at a rate σµ.

Analogously, one might assume that variants in the pure multipartite compartment
do not spread independently. To that end, we introduce another correction factor λv −→
αλv. It is straightforward to show that both corrections impact T2 (Eq. (4)) in the same
way, with the identification α = 1/σ. The new critical surface containing both factor is

Ts =

{
λ =

1

ρ

(
σµ̂

α

)1/v
}
. (S.38)

From this we see that both these assumptions add an additional scaling to the effective
recovery rate µ̂ −→ σµ̂/α, while leaving the overall behavior of the model unchanged.
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