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Abstract

Multipartite viruses replicate through a puzzling evolutionary strategy. Their genome is seg-

mented into two or more parts, and encapsidated in separate particles that appear to propa-

gate independently. Completing the replication cycle, however, requires the full genome,

so that a systemic infection of a host requires the concurrent presence of several particles.

This represents an apparent evolutionary drawback of multipartitism, while its advantages

remain unclear. A transition from monopartite to multipartite viral forms has been described

in vitro under conditions of high multiplicity of infection, suggesting that cooperation between

defective mutants is a plausible evolutionary pathway towards multipartitism. However, it is

unknown how the putative advantages that multipartitism might enjoy at the microscopic

level affect its epidemiology, or if an explicit advantange is needed to explain its ecological

persistence. In order to disentangle which mechanisms might contribute to the rise and fixa-

tion of multipartitism, we here investigate the interaction between viral spreading dynamics

and host population structure. We set up a compartmental model of the spread of a virus in

its different forms and explore its epidemiology using both analytical and numerical tech-

niques. We uncover that the impact of host contact structure on spreading dynamics entails

a rich phenomenology of ecological relationships that includes cooperation, competition,

and commensality. Furthermore, we find out that multipartitism might rise to fixation even in

the absence of explicit microscopic advantages. Multipartitism allows the virus to colonize

environments that could not be invaded by the monopartite form, while homogeneous con-

tacts between hosts facilitate its spread. We conjecture that these features might have led

to an increase in the diversity and prevalence of multipartite viral forms concomitantly with

the expansion of agricultural practices.
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Author summary

Viruses typically consist of some genetic material wrapped up in a single particle, the cap-

sid. Multipartite viruses follow another lifestyle. Their genome is made up of several seg-

ments, each packed in independent particles. However, since the completion of the viral

cycle requires the full genome, these particles need to coinfect each host. This imposes

strong constraints on the minimum number of independently transmitted particles, mak-

ing the rise and persistence of multipartitism an evolutionary puzzle. By using analytical

and numerical tools, we study the ecological interaction between monopartite and multi-

partite forms, in terms of their ability to spread on, and take over, a host population. We

reveal that this interaction can take various forms (competition, cooperation, commensal-

ity), depending on the underlying structure of contacts among hosts. We also find that,

in some situations, multipartitism represents an effective adaptive strategy, allowing the

virus to colonize environments in which the monopartite form cannot thrive. Finally, we

uncover that contact structures typical of farmed plants favor multipartitism, suggesting

a correlation between the intensification of agricultural practices and an increase in the

diversity and prevalence of multipartite viral species.

Introduction

Viruses transport their genetic material inside a protein shell, the capsid, surrounded in some

species by a lipid membrane. In most viral species, each viral particle contains all the genetic

material needed to carry out replication inside a host cell, and generate a progeny of viral parti-

cles. A prominent exception to this behavior is found in multipartite viruses. These viruses,

first described in the 1960s [1], have a genome segmented in two or more parts. According to

current evidence, the segments are encapsidated separately and, apparently, propagate inde-

pendently [2, 3]. As of today, there is no mainstream theory able to explain the adaptive advan-

tage of such a strange lifestyle [4]. The main puzzle regarding multipartite viruses is how the

simultaneous presence of multiple segments, which imposes severe constraints on the number

of viral particles that have to reach a susceptible host, is balanced by other adaptive advantages

of multipartitism, whether microscopic or ecological [5, 6].

Despite this apparent paradox, multipartitism is widespread in the Virosphere, as up to

40% of all known viral families are multipartite [7]. A large majority of them infects either

plants or fungi, with only four known examples of species infecting exclusively animals [5].

Evolutionary pathways leading to multipartitism are likely to be multiple, since this strategy is

present in RNA and DNA viruses, and in the latter case an origin to a single ancestral virus

cannot be traced. Beyond its virological interest, multipartitism has a particularly negative

effect on agricultural production, as several multipartite viruses are pathogenic, and routinely

cripple crop yield [8]. Cultivars themselves may have directly played a role in the rise of multi-

partitism, as an evolutionary radiation in the diversity of viral species, many being just centu-

ries old, was likely promoted by an intensification of agricultural practices [9–11]. It has been

put forward that multipartite species might be at an advantage in the face of environmental

changes, since they likely adapt faster due to new combinations of segments promoted by their

genomic architecture [5]. It is known that changes in land cover offer multiple opportunities

for novel interactions between plants and pathogens [12–15]. Studies on the impact of agricul-

ture in viral ecology have uncovered a surprisingly negative association between plant diversity

and family-level diversity of plant-associated viruses, and a higher prevalence of viruses in cul-

tivated areas [16].
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The emergence of defective variants out of the wild-type (wt) form (i.e., the one containing

the full genome [17]) has been both posited and observed in controlled environments, arising

from replication errors and thriving under conditions that ensure high multiplicity of infection

(MOI) [18, 19]. Specifically, it has been shown in vitro that two defective forms spontaneously

generated by foot-and-mouth disease virus (FMDV has an unsegmented genome formed by

ssRNA of positive polarity) can complement each other and quickly substitute the wt form

[20]. This strategy has been formally explored in models of competitive dynamics between the

wt and a number of complementing segments [21], which implemented different advantages

that could compensate for the cost of an increased MOI. The model mimicked the experimen-

tal setting where, in particular, host-cell availability corresponded to that of a well-mixed sys-

tem. Two of the advantages implemented had been theoretically proposed in the past, though,

as of yet, have not received empirical support (a faster replicative ability [22] and a slower

accumulation of deleterious mutations in shorter segments [23, 24]) while, in the case of

FMDV, it was shown that capsids containing shorter genomes enjoyed a larger average lifetime

between infection events [25]. This differential degradation, dependent on genome length, was

sufficient to compensate for co-infection requirements in multipartite forms with two, to up to

four, segments [21], but cannot explain the emergence of multipartite viruses with many seg-

ments, such as nanoviruses or babuviruses [5]. Hence, the evolutionary pathway explored in

that work would be applicable to a subset of all currently described multipartite viral species.

What is missing from this picture is investigating how the interaction between viral dynam-

ics and host ecology shapes the rise and persistence of multipartite viral forms at the host

population level. We also wish to quantify the impact of different host contact structures in

driving the success of multipartitism. We tackle this problem by building a compartmental

model for studying the competition between monopartite and multipartite variants in terms of

their ability to spread and persist on a structured host population.

As the generation of functional defective mutants from the wt occurs at a much longer time

scale than the spread of the virus in the population, we set up a model that already contains

both the wt and a cohort of defective forms, potentially complementary. This allows us to

study the competition dynamics between the different forms causing them to coexist in, or

take over the ecological niche. Using both analytical calculations and numerical tools, we

investigate the outcome of a random emergence of mutants, and derive the conditions that

make multipartitism a fitness-enhancing strategy, allowing the virus to adapt to a wider range

of hosts and environments. Since no apparent structural feature discriminates multipartite

viruses from monopartite ones—they are found exhibiting different capsid structures, genome

sizes and types [26]—we include in the model as few virological features as possible, and inves-

tigate how multipartitism impacts on the spreading potential of the virus. We do, however,

account for key viral mechanisms that can drive the resilience of multipartitism in an ecologi-

cal context. The first one is the already mentioned differential degradation, i.e., the different

average lifetime of defective viral particles with respect to wt’s, or formally equivalent advan-

tages of faster replication or elimination of deleterious mutations through sex. A second bio-

logical mechanism is the mode of transmission of multipartite viruses between hosts. Most

known multipartite viruses are spread by vectors (mainly insects), which typically pick up very

few viral particles from an infected plant [27]. The transmission process between hosts typi-

cally acts as a population bottleneck for the virus, entailing a loss of genetic diversity and, if

severe enough, the systematic purge of deleterious forms [28, 29]. Thanks to our parsimonious

modeling setup, any of the aforementioned mechanisms can be seen as effectively impacting

the chances of the wt or defective particles to reach the target hosts, leading to a difference in

transmissibility. A single model parameter, therefore, by tuning this relative transmissibility,

embraces a number of different biological processes. In this sense, the results of our model can
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be extended to other systems as long as the specific mechanisms involved in their spreading fit-

ness can be cast in the form of changes in transmissibility. Remarkably, we find out that even

in the absence of an explicit microscopic advantage, ecological dynamics might cause the fixa-

tion of the multipartite form due to the stochastic extinction (analogous to random drift) of

the monopartite virus.

Alongside the biological properties of the virus, the model implements the structure of con-

tacts among susceptible hosts through which the viruses can spread. Often, in our context, this

means the contact network induced by vector movements among plants. Its topology may be

diverse, depending on plant distribution and vector behavior, with two limit cases being the

distribution of plant species in the wild (see, e.g. [30] and references therein) and huge modern

agriculturally homogeneous regions [31]. These different architectures are implemented by

tuning the distribution of contact rates among hosts, with limiting cases being fixed contact

rate, and power law-distributed contact rate. This feature is the key tool to uncover how the

structure of contacts among hosts shapes the endemicity and prevalence of the different viral

forms.

We remark that compartmental models of interacting diseases have been studied in the

past [32–38]. Those models, however, assume that the disease agents involved are fully-fledged

pathogens that can spread on their own, and cannot describe asymmetric viral associations

[39], of which multipartitism is an example. Thanks to that, a completely new phenomenology

emerges, driven by a complex evolutionary dynamics, and involving a wide range of ecological

interactions: competition, symbiosis, commensality.

Results

The model

We consider a large population of N hosts susceptible to a virus that may circulate in its wild-
type (wt) form together with v defective variants that are potentially complementing, i.e., when

simultaneously present in the host, they are able to complete the virus infective cycle even in

the absence of the wt. As previously done [21], we take advantage of the timescale separation

between the random emergence of defective mutants due to errors during replication of the

complete genome, and the competition between forms driven by their spread in the host popu-

lation. This allows us to effectively model the random emergence of mutants as an initial small,

yet nonzero, prevalence in the host population.

As customary in compartmental models, we consider that hosts are either free of the virus,

and thus susceptible (S), or infected by a certain combination of the viral forms, translating

into various infectious compartments (Fig 1). The main assumption is that a host can be

infected only by a combination that guarantees the presence of the full genome. Without it,

there is no completion of the viral cycle, and thus no systemic infection is possible. Moreover,

we assume that host cells replicate all, and only, the viral forms they are infected by (Fig 1A).

These assumptions determine the set of existing compartments.

Two infectious compartments are present regardless of the value of v. They are ⌜wt⌟ and

⌜all⌟, and correspond to plants infected by the wt only, and by the wt together with all the v
variants, respectively. If v = 1, no other compartments exist. If v> 1, ⌜seg⌟ identifies plants

infected by all the v defective and complementing variants, without the wt. In addition, there

are 2v − 1 other compartments containing wt plus a combination of some (not all) of the defec-

tive variants. We name them according to which of the latter they are infected by. For instance,

⌜1⌟ contains wt plus variant 1, and ⌜3,5⌟ contains wt plus variants 3 and 5. If defective vari-

ants are not present, ⌜wt⌟ behaves like a standard Susceptible–Infected–Susceptible (SIS)

model, with probability of transmission upon contact equal to λ.
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We implement enhanced transmissibility of defective variants by assuming they spread

with a probability ρλ. ρ = 1 thus means that wt and segments are epidemiologically equivalent,

while any value larger than 1 causes the defective variants to transmit more easily than the wt.
For a graphic representation of the spreading routes and differential transmissibility see Fig

1D. In the general case, an agent in a given compartment may transmit some (or all) of the

viral species it hosts to the one it is in contact with, with a probability depending on the initial

compartments of the two agents, and on the final compartment. For instance, a host in com-

partment ⌜1⌟, upon contact with a susceptible one, may transmit both wt and 1, turning the

susceptible into a ⌜1⌟. It may instead transmit wt alone, turning the susceptible into a ⌜wt⌟.

The defective variant, however, cannot be transmitted alone, as it requires wt, as previously

Fig 1. Schematic illustration of viral dynamics and modelling framework in the case of a bipartite virus. A) describes the different viral species

circulating, and their replication dynamics inside a host cell. In each line, the viral particles infecting the same host cell are shown on the left, and the

product of replication on the right. B) describes the different infectious compartments of the model at population level, in terms of the viral species they

are infected by. In C) we outline the compartmental model of a bipartite virus. An arrow going from one compartment to another means that a host in

the former state can move to the latter by coming into contact with one of the compartments marked as dots on the arrow itself. Here, we show neither

the recovery rate (μ) at which infectious compartments turn susceptible, nor the transmission rates corresponding to each interaction. D) illustrates the

vector-mediated viral transmission from host to host. The vector picks up some viral particles of different variants (represented in the figure below the

vector itself). During the time it takes for it to reach another plant, these particles degrade. One hypothesis behind differential transmissibility is

differential degradation, here depicted. Lower degradation rates due of the defective variants lead to a chance of transmission higher than wt.

https://doi.org/10.1371/journal.pcbi.1006876.g001
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stated. A schematic representation of the compartmental model for a bipartite virus (v = 2) is

depicted in Fig 1C.

Our assumption of constant host population (of size N) holds for strictly constant size, as

well as populations that are at equilibrium, i.e., the number of births equals the number of

deaths, or at least any growth pattern occurs at time scales much larger than the spread of the

virus. This assumption is connected to the spreading model, as the recovery process of the Sus-

ceptible-Infectious-Susceptible model can be regarded in two ways. It can be seen as proper

recovery, with the host clearing the virus but acquiring no immunity to reinfection. It can also

be interpreted as the virus killing the host, and a new (susceptible) host filling its ecological

space.

In the absence of specific evidence [40], we make the simplest assumption for transmission:

the different types of viral particles are transmitted independently, so that the probability of

concurrent transmission of two variants (and wt) is simply the product of the probabilities of

the single events. We also assume that co-infection by wt and variants does not alter the infec-

tious period, allowing us to model recovery at a rate μ for all infected hosts. In Methods and S1

Text we expand our analysis to account for nonindependent transmission, heterogeneous

recovery rates, and the case when different variants compete for a limited carrying capacity

within the host, due, for instance, to a limited number of viral particles a host cell can make

per unit time. We show that all these additional features do not impact the qualitative behavior

of our model, in agreement with what was previously found in [21].

When the virus is introduced into a susceptible population, it can either die out quickly and

leave the system disease-free (disease-free state, dfs), or reach endemicity. There are four possi-

ble endemic states, depending of which variants circulate. We equivalently use the term equi-
libria, as they are the stable equilibrium points of the spreading dynamics. The first one is wt,

in which only the wt is prevalent, and the defective variants have died out. This case maps into

an effective SIS model for the compartment ⌜wt⌟. In the second one, hj, any defective segment

can circulate alongside the wt because, roughly speaking, the transmissibility of the latter is so

high that any defective variant can hijack it, with no need to complement the genome with

other variants. In this case, we will likely see the circulation of a number of variants lower than

v, as segments can go extinct without hampering the circulation of the remaining ones. The

third endemic state, seg, witnesses the presence of all the v segmented variants without wt,
and in this case complementation is essential. This state is an SIS model for the compartment

⌜seg⌟. Finally, the state all exhibits circulation of the wt plus all the variants v. Borrowing

some terminology from physics, we can then define different epidemic phases. Phases are

regions of the space of model parameters. Inside each phase, the macroscopic behavior of viral

spread is qualitatively the same. Specifically, we can define a phase in terms of which endemic

states it allows. The parameter surfaces separating different phases are called phase transitions,

the most important in epidemiology being the epidemic threshold. Below the epidemic thresh-

old, only the dfs exists. Above it, the pathogen can circulate. There, we identify five other

phases: wt-phase allows only wt; contingent-phase allows wt, hj and all; mix-phase allows wt,

seg and all; seg-phase allows only seg; finally all-phase admits all the possible endemic states.

Table 1 provides a schematic representation of the relationship between phases and

endemic states.

In the following, we analytically derive the critical surfaces that separate the different phases

in the space of the parameters. This means that, given specific values of the parameters, the

possible outcome of the spread can be predicted, thus characterizing the conditions leading to

the persistence of multipartitism, and its nature. Then, using numerical simulations, we study

the equilibrium prevalences of the endemic states, and their probability of occurring, for a rep-

resentative set of parameter values.
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Firstly, however, we need to set up the theoretical modeling framework in terms of reac-

tion-diffusion equations. For a generic v, we order the compartments by increasing number of

viral species they contain, starting from ⌜wt⌟, and ending with ⌜seg⌟, ⌜all⌟. For instance, for

v = 3, this would be ⌜wt⌟, ⌜1⌟, ⌜2⌟, ⌜3⌟, ⌜12⌟, ⌜13⌟, ⌜23⌟, ⌜seg⌟, ⌜all⌟. Within the frame-

work of heterogeneous mean field [41–43], we divide hosts in classes according to their contact

potential (degree in the language of networks), so that if two hosts have degree k, h, respec-

tively, their contact rate will be the product kh (in the absence of degree-degree correlations).

We assume hosts with the same degree are equivalent, and consider the prevalence per degree

class. To this end, we define the variable xk
n

as the prevalence of compartment with index ν and

degree class k, i.e., the fraction of the host population which has that degree, and finds itself in

that compartment. In terms of xk
n
, the equations describing the evolution of the disease are

_xk
n
¼ � mxk

n
þ

k
hki

X

b

�

Gnb

�

1 �
X

s

xk
s

�

þ
X

s

Lnbsxk
s

��
X

h

hpgðhÞx
h
b

�

;

ð1Þ

where pγ(k) is the probability of a host having degree equal to k. We consider the homogeneous
case, where all hosts have the same degree, so that pγ(k) = δk,1 (with no loss of generality we set

it to 1), and a highly heterogeneous case, where pγ(k) = Cγ k−γ is a power-law with exponent γ,

and normalization constant Cγ. We denote hkmi as the m-th moment of the degree distribu-

tion, computed as hkmi = ∑k pγ(k)km, as usual. The term hki appearing in Eq 1 is then the

expected degree. The Greek indices β, ν, σ, run on all the infectious compartments defined

before. The susceptible compartment is not included, as the number of susceptible hosts is

completely determined by the other compartments, thanks to the assumption of constant pop-

ulation size. Γνβ is the rate of the transition ⌜β⌟⌜S⌟! β⌜ν⌟, i.e., a transition affecting the

prevalence of compartment ⌜ν⌟ through a contact between a host in compartment ⌜β⌟ and a

Susceptible. Λνβσ encodes transmission rates among infected individuals, and specifically a

transmission from ⌜β⌟ to⌜σ⌟, that leads to the change of the prevalence of ⌜ν⌟. The entries of

Γνβ, Λνβσ are functions of λ, ρ and v. Eq (1) thus links the change in the number of hosts with a

given degree, and in a compartment ( _xk
n
), to one reaction and two diffusion processes. The first

term, mxk
n
, represents the decrease due to hosts recovering back to the susceptible state. The

second one, with coupling constant Γ, contains the probability of a host, with degree k, being

susceptible (1 �
P

s
xk
s
), and being infected by a host in compartment β, and degree h. The

last term, with coupling constant Λ, has the same structure, but the target compartment is a

generic infectious compartment σ, instead of the susceptible one. Both infection terms contain

Table 1. Connection between phases and endemic states. Connection between the possible phases of the epidemic

and the endemic states they allow. A tick mark connecting a phase and an endemic state means that the latter is a stable

equilibrium in that phase, and can occur.

Phases Equilibria (endemic states)

wt hj seg all

wt ✓

seg ✓

contingent ✓ ✓ ✓

mix ✓ ✓ ✓

all ✓ ✓ ✓ ✓

https://doi.org/10.1371/journal.pcbi.1006876.t001
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the term khpγ(h)/hki, which is the probability a host of degree k establishes a contact with a

host of degree h, given a network with no degree-degree correlations [44].

The analytical approach to computing the critical surfaces consists in studying the linear

stability of the different equilibria of Eq (1). Instead, in order to compute the prevalence values

and occurrence probability of these equilibria, we have to resort to stochastic spreading simu-

lations. The extensive calculations are reported in Methods and S1 Text, as well as the explana-

tion of the numerical simulations.

Critical behavior

The five phases are completely determined by three surfaces with tractable analytical expres-

sions. They are T1, above which the wt can spread on its own (epidemic threshold for the com-

partment ⌜wt⌟ while alone); T2, above which segments circulate by hijacking the wt, and Ts,

which is the epidemic threshold for the compartment ⌜seg⌟ circulating alone. The expressions

we find are

T1 ¼ fl ¼ m̂g; ð2Þ

T2 ¼ l ¼
1þ r

r

m̂

1þ m̂

� �

; ð3Þ

Ts ¼ l ¼
m̂1=v

r

� �

: ð4Þ

m̂ is an effective recovery-rate embodying both the actual recovery rate, and the topology

of the contacts: m̂ ¼ mhki=hk2i. This entails an important scaling: recovery rate and topology

never impact the critical points on their own, but always jointly as m̂. This fact was well-

known in the case of the epidemic threshold, Eq (2) [41]. Here, we rigorously prove that

it extends also to all other critical points. Given that homogeneous contact networks have

hki � hk2i, the heterogeneous (power-law-like) network recovers the homogeneous case

when γ!1. Hence, the smaller the exponent γ, the more heterogeneous the contact net-

work is, i.e., hosts with a large number of connections become more likely. These hosts can

reach a significant part of the population, and when infectious, they act as superspreades.

They are responsible for causing m̂ to go to zero (m̂ ! 0) in the limit of large population

size (N!1), when the exponent of the degree distribution respects 2 < γ< 3. This implies

not only that T1 goes to zero, as it is well-known [41], but that T2 and Ts do it as well. How-

ever, while T2/T1 remains finite as m̂ goes to 0 (T1 and T2 go to zero at the same speed), we

find that Ts/T1!1. This entails that Ts goes to zero more slowly, and increasingly so for

higher v.

The study of Eqs (2)–(4) reveals four regimes. For low or zero differential transmissibility

ðr < m̂ � ðv� 1Þ=v � ð1 � m̂1=vÞÞ, as λ increases, one crosses the wt-phase, then the contingent-
phase and finally the all-phase (see Fig 2A). For intermediate values of differential transmissi-

bility ðm̂ � ðv� 1Þ=v � ð1 � m̂1=vÞ < r < m̂ � ðv� 1Þ=vÞ, the mix-phase substitutes the contingent-phase.

This can be seen in Fig 2B and 2C. Then, when m̂ � ðv� 1Þ=v < r < m̂ � 1, increasing λ causes the

system to be in the seg-phase, followed by the mix-phase and later by the all-phase (see Fig 2B,

2C and 2D). Finally, for very high differential transmissibility r > m̂ � 1, the wt no longer

spreads and the only possible phase is the seg-phase (see Fig 2B and 2C).
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Fig 2. Parameter exploration and endemic phases. Of the four parameters that influence the critical points

(m̂;l; r; v), two are in turn kept fixed and the remaining two explored in a two-dimensional plot highlighting the

different phases. The value of the fixed parameters is reported on the top left of each plot. In A)—D) we keep ρ, v fixed,

and explore m̂; l. In E)—H) we keep m̂; v fixed, and explore ρ, λ. The y-axis of each plot is always the transmissibility of

wt (λ). The critical surfaces are T1, T2, Ts (solid, dashed, dotted lines), and the phases are colored as in the legend. The

gray areas indicate forbidden parameter values (probabilities higher than 1). For a numerical validation of E) see S1

Text. The inset in C) is a magnification of a subregion of the C) plot. In E) the points displayed have the following

values: P1 = (1, 0.3), P2 = (1, 0.48), P3 = (1, 0.6), P4 = (2, 0.28), P5 = (2, 0.4), P6 = (2.4, 0.248).

https://doi.org/10.1371/journal.pcbi.1006876.g002
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Endemic prevalences

For any possible value of the parameters, Eqs (2)–(4) tell us which endemic states are possible,

i.e., which prevalences are higher than zero. They provide, however, no information about

the values of such prevalences, which are, in principle, the solutions of the algebraic system

obtained by setting _xn ¼ 0 in Eq (1). A closed-form solution of this system does not exist for

heterogeneous networks. In the homogeneous case, while a complete analytical derivation of

the endemic states is not possible, we can obtain two important results. Firstly, we notice that

the total prevalence of the wt, i.e., the fraction of hosts infected by it (z = ∑ν 6¼ ⌜seg⌟ xν), obeys

an SIS dynamics (see S1 Text) with transmissibility λ, and can thus be computed as zwt = 1 − μ/

λ. Secondly, when the whole set of segments circulates without wt (as compartment ⌜seg⌟),

again the virus spreads as an SIS, this time with transmissibility (ρλ)v, and its endemic value

can be predicted in the same fashion: zseg ¼ 1 � r

ðrlÞv
. Interestingly, for high ρ, and a transmissi-

bility λ> ρ−v/(v − 1), it turns out that zseg> zwt: the prevalence of the multipartite form is higher

than that of the wt.
In order to fully characterize the endemic states, we resort now to stochastic spreading sim-

ulations (see Methods), focusing on the bipartite case (v = 2). A higher number of variants

(v> 2) would not change the qualitatively picture; it would simply increase the possible values

for the prevalence of hj by increasing the number of possible segments that survive through

hijacking. We choose six points in the parameter space that lie in different phases (see Fig 2E),

and for those values we carry out the simulations.

We firstly focus on homogeneous host population structures. The results are shown in Fig

3A. We characterize the endemic states in terms of their type (see Table 1), and plot their

total prevalence, and the prevalence of the defective variants. In the points lying on the x-axis

(labeled by wt) the defective variants have gone extinct, and the wt behaves like an SIS (states

wt). The points lying on the diagonal have witnessed the extinction of the wt, and the defective

variants are circulating together in the ⌜seg⌟ compartment (states seg). Their values match

the theoretical prediction (dashed vertical lines). The solid vertical lines in Fig 3A are the theo-

retical predictions of wt prevalence. They match all equilibria of type both wt and hj, as in

those cases the total prevalence coincides with the prevalence of the wt. The states all, whose

total prevalence cannot be predicted analytically, have the highest prevalence. This picture

further confirms the relationship between the theoretically predicted phases and the allowed

endemic states (Fig 2D).

Previously we have stated that the critical surfaces are not sensitive to recovery rate and

topology separately, but only to the parameter m̂ encoding both at the same time. Specifically,

two populations with different recovery rate and contact heterogeneity, but with the same m̂,

are indistinguishable from the point of view of their critical behavior. The endemic preva-

lences, however, break this symmetry, as one can see from Fig 3B, where we focus on P3 (Fig

2D) and get to m̂ ¼ 0:25 both with one homogeneous (as in Fig 3B), and two heterogeneous

population structures (with exponents γ = 3.5 and γ = 3.2). All the three configurations show

all the equilibria, as expected by the critical behavior, but in the heterogeneous case the preva-

lence is consistently lower for each equilibrium.

Likelihood of different endemic states

Up to now, we have identified the phases (allowed endemic states) and computed the preva-

lence of such states. We now focus on the probability of occurrence of each state. For each of

the usual points in Fig 2E, we show the probability of reaching each equilibrium in Fig 3C.

This is achieved by counting the number of stochastic realizations that, starting from similar

initial conditions, lead to that specific equilibrium (branching ratio of that equilibrium).
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Clearly, points P1 and P6 have only one endemic state, which then has a probability equal to

one of being reached. For the other points, which have more than one possible endemic sce-

nario, these probabilities are more informative, as they tell us the chances of the different viral

forms taking over the population. We remark, however, that while both the critical behavior

and the prevalence of the endemic states are inherent properties of the system that do not

depend on the specific initial conditions chosen, this is not true for the probabilities of occur-

rence, which are clearly influenced by the initial infection status of the population. Given that,

however, we computed them by seeding only one host in the ⌜all⌟ compartment to a suscepti-

ble population, we can say that our predictions are—at least qualitatively—reliable in an inva-

sion scenario, in which the viral form is introduced by just one (or few) individuals.

Discussion

Rise of multipartitism

Using the analytical characterization of the endemic phases and the numerical study of the

equilibria, we now can investigate under which conditions the interplay between spreading

dynamics and topology of contacts leads to the rise and persistence of multipartitism. We can

also determine the nature of such emergence, in terms of a commensal relationship with the

wt, or a true competitive advantage at the ecological level. For the sake of simplicity, we start

by considering no differential transmissibility (ρ = 1): wt and segments have the same trans-

mission probability. The relevant figures are Fig 2A and 2B, points P1, P2 and P3 in Figs 2E

and 3. In this scenario, three phases are possible, and one crosses them all by increasing the

transmissibility λ. The first one (λ just above T1) is the wt-phase, in which only the wt can

circulate, and whenever a defective segment is produced, it quickly goes extinct. By increasing

λ, we then encounter the contingent-phase. This phase predates the appearance of true

Fig 3. Endemic states. Plots A) and B) show the results of the simulations for the endemic states of configurations corresponding to the points in Fig

2E, for a bipartite virus (v = 2). In both A) and B), x-axis is the total prevalence of the disease, i.e., the fraction of hosts infected by any configuration of

the virus, at equilibrium, and the y-axis is the prevalence of the defective variants, i.e., the fraction of hosts infected by at least one defective segment.

The points are numerically recovered endemic states, their type being indicated by the labels. In A) the underlying contact network is homogeneous, so

that m̂ ¼ m ¼ 0:25. The solid vertical lines mark the analytical prediction of the total prevalence when wt is present either alone or together with just

one variant. The dashed vertical lines mark the analytical prediction of the prevalence when the segments circulate without wt. The crosses mark the

prevalence values of the equilibrium points averaged over the runs not leading to extinction, among the 5000 executed per point. B) focuses on P3 (in

Fig 2E): the fixed value m̂ ¼ 0:25 is obtained either as m ¼ m̂ (homogeneous network, as in (B)), or with two heterogeneous networks with exponent γ =

3.5, μ = 0.45 and γ = 3.2, μ� 0.81 (and thus hki/hk2i � 0.56 and hki/hk2i � 0.31, respectively). For each of the points and the equilibria examined, C)

reports the branching ratio, defined as the probability of reaching that particular equilibrium. They are computed by starting all the simulations with all

susceptible but one in ⌜all⌟ (infected by wt and all the variants), and counting the fraction of the runs that reach that equilibrium, among the ones that

do not go to extinction.

https://doi.org/10.1371/journal.pcbi.1006876.g003
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multipartitism, as defective segments can hijack the wt to circulate. These segments cannot

persist on their own, but the highly prevalent wt allows them to complete the replication cycle.

At this stage, any defective segment is a commensal of wt, as the persistence of the former

depends on the latter, while wt’s fitness remains unchanged. The emergence of multipartitism

in this context is a contingent process: segments circulate simply because they are allowed to,

causing no change to the overall fitness of the virus. Furthermore, there is no selective pressure

towards complementation, as a combination of segments reconstructing the full genome with-

out the presence of the wt (compartment ⌜seg⌟) would not be able to persist. This is con-

firmed by the functional form of T2 in Eq (4), which features no dependence on the number of

complementing variants v: the survival of each mutant is independent of the presence of oth-

ers, as effective replication and diffusion is wt-mediated. In other words, complementation

would not make the variants fitter to the environment.

A further increase in λ takes us to the all-phase. Here, in addition to the commensal rela-

tionship between wt and segments, complementing variants are able to circulate on their own,

without wt: the equilibrium seg emerges. Selection then imposes a bias on those segments that

together reconstruct the genome, as they represent a new effective spreading configuration,

and increase the overall viral fitness. They are thus advantaged with respect to purely commen-

sal segments. This fitness-enhancing effect is quite straightforward: let us suppose that, due to

viral or host population bottlenecks, or another stochastic event, wt prevalence goes down

drastically, to the point where it is cleared from the system. In the contingent-phase this would

lead to complete viral extinction, as all the segments would die out, too, as their persistence is

linked to wt’s. In the all-phase, on the other hand, the virus is more resilient, as it can still cir-

culate thanks to complementation. This time selective pressure toward complementation is

well visible in the expression of Ts in Eq (4), which depends exponentially on the number of

variants v. This fact is in qualitative agreement with results in [21], where it was shown that the

larger the number of segments, the harder to reach the persistence of the segmented variants

within a host. Even if the multipartite genome does not enjoy any microscopic advantage, it

can rise to fixation if the monopartite virus undergoes stochastic extinction. Though fluctua-

tions would also affect the multipartite form, and stochastic extinction of the monopartite

form is not very likely, similar scenarios are relevant in virus evolution [45, 46] and cannot be

discarded a priori.

The contingent-phase: A stepping stone towards multipartitism

The analysis of the prevalences (Fig 3A) confirms the evolutionary drivers behind the differ-

ent phases, and adds information regarding crossed effects between viral types. Moreover, it

allows us to uncover an evolutionary potential for multipartitism even in the absence of an

explicit microscopic advantage. Let us focus on the contingent-phase (point P2 in Fig 3A),

and the all state. The total prevalence of the latter state is higher than wt’s and hj’s in the

same phase, implying that some hosts are infected by complementing segments without wt
(compartment ⌜seg⌟), that is by a bona fide multipartite virus. Given that the multipartite

form is not endemic in this phase—the contingent-phase relies on the wt for viral persistence

—, this excess prevalence of the all state is a by-product of overall viral prevalence, rather

than its driver: an extinction of the wt would quickly drive segmented variants to extinction.

It is, however, an important one, as while it may not increase fitness in that specific environ-

ment, it permits the independent replication of the set of complementing variants; these are

then able to invade other environments in which the wt could not persist, as we will see in

the following.
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Contact heterogeneity impairs multipartitism

Let us examine the effect of a heterogeneous contact network on the phases and equilibria

above. As we have explained, in the phase space, topology is encoded in the parameter m̂. A

low epidemic threshold is a well known feature of heterogeneous networks [41, 42, 44]. Spe-

cifically, power-law networks with γ< 3 exhibit a vanishing threshold as they grow larger, as

the emergence of highly connected hubs ensures the persistence of the disease at any value of

transmissibility, that is hki/hk2i ! 0 (and as a result, m̂ ! 0) as the number of potential hosts

grows, N!1. In our case this translates into T1, which is the epidemic threshold, going to

zero for m̂ ! 0. Also T2, Ts! 0. Further information is obtained when comparing their limit

behaviors. As m̂ becomes smaller, T2/T1 increases but remains finite, while Ts/T1!1. This

implies that, the higher the heterogeneity of the network is, the more difficult it becomes

for multipartitism to persist. Specifically, reaching the all-phase from the wt-phase would

require an infinite relative increase (in the limit m̂ ! 0) in transmissibility. Even when het-

erogeneity is not severe enough so as to cause the threshold to vanish, i.e., when γ> 3, het-

erogeneity makes it harder to sustain multipartitism, as both T2/T1 and Ts/T1 are decreasing

functions of m̂.

Heterogeneity also modifies endemic prevalences and the branching ratios of equilibria.

Let us examine point P3 (all-phase in Fig 2E): when the network is homogeneous, the highest

branching ratio corresponds to all, and the equilibria containing segments together (hj) hap-

pens 20% of the time. When the network is heterogeneous, this fraction decreases, and wt

quickly overtakes all in being the most probable outcome.

Summarizing, homogeneous contact patterns favor the emergence and persistence of multi-

partitism, while heterogeneous contacts hamper it. Qualitatively, this is the result of the com-

plex interaction between the bottlenecks induced by between-host transmission and the

presence of superspreaders, i.e., hosts that can potentially infect a large fraction of the popula-

tion thanks to their high number of contacts. Combining this mechanism with a low MOI—

and hence low λ—predicts an evolutionary radiation of multipartite viral forms linked to the

rise and intensification of agricultural practices. In crops and cultivars, contacts among hosts

are much more homogeneous (and often closer) than in wild settings, tremendously alleviating

the requirements imposed by co-infection. Multipartite viruses adapted to the patchy distribu-

tion of wild hosts could have found it easy to propagate in regular, monospecific host popula-

tions which in all cases have closely related wild forms from which they departed through

artificial selection [47].

Emergence of new multipartite phases through increased transmissibility

of the segmented form

Up to this point, we have assumed that all viral forms have the same transmissibility and, still,

fixation of the multipartite form cannot be fully discarded. Any additional advantage, however

minor, of multipartitism will contribute to its ecological success, as we now discuss. We now

set out to study the impact of enhanced transmissibility of defective variants, encoded in the

parameter ρ being larger than one (ρ> 1). As ρ increases, the endemic state seg becomes more

prevalent and more likely with respect to wt (see Fig 3C and 3D). Specifically, the value of the

transmissibility for which zseg> zwt decreases as ρ increases, facilitating the predominance of

the multipartite form (in Fig 3A point P3 has zwt< zseg, while P4 and P5 have zseg> zwt). Most

importantly, ρ> 1 causes two new phases to emerge (Fig 3B, 3C and 3D), and both facilitate

the rise of multipartitism by eliminating hj from their possible equilibria. One is the mix-

phase, in which the virus circulates either as wt or as a multipartite. The mix-phase also pres-

ents an all endemic state that results from the interaction between the two former equilibria.
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Unlike in the all-phase, however, here the all equilibrium no longer indicates commensal rela-

tion. The second emerging phase is the seg-phase, in which only the complemented multipar-

tite virus is able to circulate, while the monopartite version quickly goes extinct (yellow, and

point P6 in Figs 2 and 3). This phase is of paramount importance because it lies in a parameter

region where, without developing multipartitism, the virus would not be endemic. In addition,

by prescribing the exclusive presence of the multipartite form, it allows to explain the phenom-

enology observed in nature, as the simultaneous presence of monopartite and defective-com-

plementing forms of the same virus has been observed only in vitro [20, 48–50]. In vivo, viral

species circulate as either pure monopartite (endemic state wt), or pure multipartite (seg). Fur-

thermore, although in vitro several defective viral forms are generated and detected, and prop-

agate along the wt (which would correspond to an in vitro hj), this equilibrium is rarely found

in wild plants. There is, however, an association between fully-fledged viruses and defective

viral forms formally equivalent to the hj equilibrium: virus and viral satellites [51]. Often, in

addition, satellites modify the aetiology of viral infections [52], such that the transmissibility

and the recovery rate might be affected by its presence in no particular direction, a phenome-

non we do not consider in our model. There are other classes of hyperparasites that depend on

a functional virus for replication (e.g. virophages [53] or viroid-like satellites [54]) whose eco-

logical dynamics could, with appropriate modifications, be described in the framework dis-

cussed here. Interestingly, it has been proposed that virus-satellite associations, a typically

unrelated tandem from a phylogenetic viewpoint, might evolve towards full co-dependence,

and therefore be a possible, alternative evolutionary pathway to multipartitism [5].

Though our knowledge of existing viral forms is still incomplete and likely biased [16, 55],

our results indicate that endemic states mixing monopartite and multipartite cognate forms

(hj, all) need values of transmissibility difficult to sustain: endemicity could be achieved with

lower values of transmissibility if the virus propagated only as a wild-type, while high values

entail a cost that is usually compensated by decreasing infectivity [56]. Albeit rare, however,

these endemic states might act also as a stepping stone towards multipartitism even if they are

only transiently present, as in the following example.

Consider a purely monopartite virus endemic in a plant population, in a specific environ-

ment, with parameters m̂A, λA as in point A in the inset of Fig 2C. m̂A is a combination of the

recovery rate of the disease (characteristic of the host-virus interaction), and the between-plant

contact network, driven by plant distribution and vector movements. A second population,

occupying an adjacent geographic area, may have a different parameter (m̂B > m̂A), due to a

different contact topology. As the inset of Fig 2C shows, the virus is able to colonize the second

population only through an evolutionary process that increases its transmissibility up to at

least λB0, so that point B0 is above the epidemic threshold (green path in the figure). It is reason-

able to assume that the larger the increase in transmissibility required, the less likely this pro-

cess is, given that the required mutation(s) are less likely and possibly more costly to maintain.

The emergence of multipartitism decreases the evolutionary distance between the two states,

increasing adaptability (magenta path in the figure). Random mutations, in fact, need to

increase transmissibility from λA (wt-phase) to λB< λB0 (all-phase), where a complementing,

multipartite version of the virus can emerge. Invasion of the second population is now possi-

ble, because the new viral forms effectively lowers the epidemic threshold in m̂B, thanks to the

emergence of the seg-phase (point B). This simplistic example not only shows that multipartit-

ism can emerge as a fitness-enhancing feature, but also that coexistence of monopartite and

multipartite forms is a key stage in the evolutionary process, albeit possibly transient and

short-lived. In addition to outlining the adaptive potential of multipartitism, this example

elucidates the hampering effect of network heterogeneity. By increasing the distance between

the wt-phase and the all-phase, network heterogeneity reduces the ratio λB0/λB, making
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multipartitism less advantageous. In conclusion, while making viral persistence overall easier,

network heterogeneity curbs the potential of multipartitism as an effective adaptation strategy.

Conclusion

Multipartitism represents an example of a complex and as-of-today puzzling viral strategy. We

have developed a framework that, starting from few key biological features, models the interac-

tion between monopartite and multipartite forms, driven by the spreading dynamics on a host

population. Despite assuming that multipartitism emerged from complementation between

defective viral forms generated by the wt virus, as it has been observed in vitro, our results

can be extended to other situations with relative ease. Most importantly, in addition, we have

described how the structure of contacts among hosts drives the rise and persistence of the dif-

ferent viral forms. We have analytically characterized the parameter regions leading to viral

persistence, in the form of wt only, of wt and defective segments, or segments only. We have

also defined the different types of relationships between wt and segments, and specifically the

presence or absence of selective pressure towards complementation, i.e., to witnessing the cir-

culation of defective variants that may cooperatively reconstruct the whole genome. We have

corroborated these findings through stochastic numerical simulations aimed at computing the

prevalence of the different endemic states, and their probability of occurrence. As a result, we

have been able to identify under which ecological conditions would multipartitism be a suc-

cessful adaptive strategy, in the presence or absence of microscopic advantages, to new external

conditions and environments characterized by variations in the topology of contacts between

hosts. Defective particles generated through replication errors would start circulating by

hijacking the wt. Subsequently, a complementing set of variants might form. Once that situa-

tion is achieved, even a small advantage in transmissibility (ρ> 1) would give an advantage to

the multipartite form, which could anyway replace the monopartite form if chance causes the

stochastic extinction of the latter. This sequence of events represents a plausible, parsimonious

evolutionary pathway to the rise and persistence of multipartite viruses, and clarifies in which

manner multipartitism might be an effective adaptive strategy at the ecological level.

We have also uncovered that while heterogeneous contact patterns among hosts favor viral

persistence in general, they give a higher advantage to monopartite forms, by limiting the evo-

lutionary and adaptative potential of multipartitism. Our model clearly lacks specific biological

features that characterize different viruses, but that is a strength rather than a weakness, as it

can be applied to a wide variety of settings with appropriate minimal modifications. We none-

theless explore additional realistic features in S1 Text, as nonhomogeneous recovery rates and

nonindependent viral transmission.

Finally, it is worth discussing the effect of the interaction between the microscopic advan-

tage and stochastic effects on multipartite fixation. The effect of the microscopic advantage, as

quantified by our parameter ρ, becomes apparent in our current results, in terms of a much

larger region of parameter space compatible with the fixation of the multipartite form (com-

pare, for instance Fig 2B and 2C). Assuming a microscopic advantage therefore leads to a com-

petitive advantage of multipartitism. A quantitative estimate of this competitive advantage,

however, would require accounting for stochastic effects, an endeavor that goes beyond the

current approach.

Despite not being able to formulate quantitative predictions, we are convinced that our

framework provides an interesting qualitative picture of coexistence or substitution of differ-

ent genomic architectures in a wide range of ecological environments. In this sense, we have

uncovered evidence that the topology of contacts along which viruses spread may contribute

to explaining why multipartite viruses preferentially infect plants. Our results lead us to
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conjecture that multipartite diversity and prevalence should have significantly increased

together with the expansion of agriculture.

Materials and methods

Our goal is to derive the critical surfaces of Eqs (2)–(4) from the equation driving the dynamics

of the system, namely Eq (1). We do that by starting from a simpler scenario, and incremen-

tally adding features, up to the full model. Specifically, the first step consists in solving the

model with no differential degradation (ρ = 1), no contact heterogeneity, and with only one

segmented variant (v = 1). In the second step we generalize the result to a generic v, and in the

third one we allow for heterogeneous contacts. In the last step we add differential degradation.

A numerical validation of the critical surfaces is carried out in S1 Text.

⌜wt⌟ and ⌜all⌟ are the only infectious compartments, with prevalence x1 and x2, respec-

tively. With neither differential degradation nor contact heterogeneity, Eq (1) reduces to

_x1 ¼ lð1 � x1 � x2Þx1 þ lð1 � lÞð1 � x1 � x2Þx2

� lx1x2 � mx1

_x2 ¼ l
2
ð1 � x1 � x2Þx2 þ lx1x2 � mx2:

8
>>><

>>>:

By summing these equations, we find that the equation for the total prevalence

(z¼def x1 þ x2) is _z ¼ lð1 � zÞz � mz. This also follows from noticing that for v = 1 the total

prevalence is also the total wt prevalence (see S1 Text). This means that the total prevalence

behaves as a standard SIS, for which we know the epidemic threshold T1 = {λ = μ}, and the

equilibrium above it. In addition, we know that just above T1 we are in the wt-phase. Hence,

we have (zwt = 1 − μ/λ, x2,eq = 0). Studying the stability of this equilibrium gives us T2. Since

the equation for z decouples from x1 and x2, it is convenient to study the system in (z, x2).

Studying the sign of the eigenvalues of the Jacobian matrix reduces to studying @ _x2=@x2 < 0

calculated in the equilibrium. This gives T2 = {λ = 2μ/(1 + μ)}. The details of the calculation are

reported in the S1 Text.

We now generalize the previous result to an arbitrary v, while still assuming that all hosts

have the same contact rate, that we can set to one with no loss of generality. Eq (1) simplifies to

_xn ¼
X

bs

Lnbsxbxs þ
X

b

Gnbxb 1 �
X

s

xs

 !

� mxn; ð5Þ

whose Jacobian matrix is

Jnb ¼
@ _xn
@xb
¼

X

s

ðLnðbsÞ � GnsÞxs

þGnb 1 �
X

s

xs

 !

� mdnb ;

ð6Þ

where Λν(βσ) = Λνβσ + Λνσβ. Firstly, we note that for v> 1 the total prevalence, now defined as

z = ∑ν xν, no longer behaves like an SIS, due to the presence of the compartment ⌜seg⌟. Indeed,

one can show that, when summing over ν in Eq (1), the terms with Λ cancel out, as they per-

tain to interaction exclusively among infectious compartments, which by definition cannot

change the total prevalence, and so all the contributions must cancel out. This is not the case

however for the terms with Γ, so that the final equation is _z ¼ ð1 � zÞ
P

b
ðGxÞ

b
� mz, which

does not decouple from xν. Interestingly, despite this breaking of the SIS symmetry, which was
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crucial to solve the v = 1 model, we can still prove that the values of T1, T2 found for v = 1 gen-

eralize to an arbitrary number of variants. We start from the first critical surface (T1). We com-

pute the Jacobian matrix of Eq (6) in the dfs, i.e., xβ = 08β. We get J(dfs) = Γ − μ. We now argue

that Γ, and therefore the Jacobian matrix, is upper triangular, thanks to the specific ordering

of the compartments that we introduced. Γνβ is the rate at which a susceptible becomes a ⌜ν⌟,

upon contact with a ⌜β⌟. For this to happen (Γνβ> 0), ⌜β⌟must contain at least all the viral

species ⌜ν⌟ contains. Hence, either β = ν (diagonal term), or β> ν. By the same reasoning, the

diagonal terms are Γββ = λφ(β), where φ(β) is the number of viral species in ⌜β⌟, e.g. φ(⌜wt⌟) =

1, φ(⌜all⌟) = v+ 1. From these considerations, the spectrum of J(dfs) is {λφ(β)−μ;8β}. Keeping in

mind that λ< 1, we recover the first critical point: T1 = {λ = μ}.

Just above T1, ⌜wt⌟ is the only compartment with prevalence different from zero, hence it

behaves like a standard SIS. Thanks to that we can compute Eq (6) in the wt-phase, and its

spectrum. From that we find that the second critical surface is the same as for v = 1. The details

of the calculation are in S1 Text.

We now build on the previous results, by adding heterogeneous contact rates. We work in

the widely-used degree-block approximation [41–44, 57], assuming the contacts among agents

are represented by an annealed network in which we assign each node a degree sampled from

a power-law distribution with exponent γ: pγ(k) = Cγ k−γ, where Cγ is the normalization factor.

As customary, we assume γ> 2, so that the average degree is defined in arbitrary large popula-

tions. In the framework of annealed networks it makes sense to interpret k as a discrete num-

ber; one could also interpret it as a (continuous) coupling potential (either choice does not

change the result found). We now directly compute the Jacobian of Eq (1), reported in

Eq. (S.16) of S1 Text. The Jacobian is a matrix acting on a space which is the tensor product of

the space of compartments, spanned by the Greek indices, and the space of degrees, spanned

by the Latin indices. We can study its spectral properties on each space separately, using the

previous results for the space of compartments. The full derivation is reported in the S1 Text.

Differential degradation ρ> 1 changes the matrices Γ, Λ, as reported in the S1 Text. The

derivation is then similar to the case with ρ = 1.

Our model assumes that the transmission probability of one variant does not depend on

the coinfecting variants. In reality, however, the number of viral particles a cell can produce

in time is limited, and they are known to often spread in superinfection units. In S1 Text we

investigate these aspects using a simple assumptions. We show that despite altering the specific

values of the critical surfaces, they do not impact the qualitative behavior of the model.

Data in Fig 3 are produced through stochastic spreading simulations. Starting with a popu-

lation of N = 6000, we infected the hosts with wt and both segments (⌜all⌟ for v = 2), and let

the virus spread. We used an adaptation of the Gillespie algorithm [58, 59], to model both con-

tacts among hosts, and contagion and recovery events. For each parameter configuration, we

carried out 5000 simulations and kept only those reaching an endemic state other than the

disease-free state, in order to discard instances of stochastic extinction, and focus only on the

metastable equilibria which represent the attractors of the equations. We then used those sim-

ulations to compute prevalences and occurrence probabilities.

Supporting information

S1 Text. Detailed explanation of calculations and simulations. We provide a thorough

explanation of the analytical findings. We start from only one segmented variant (v = 1) in

Section 1, then generic v (Section 2), and subsequently incorporate contact heterogeneity (Sec-

tion 3). In Section 4 we include differential transmissibility of segmented variants. In Section 5

we analytically derive the total prevalence of the wild-type form. In Section 6, we provide a
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numerical validation of the critical surfaces in the phase space. In Section 7, we derive the criti-

cal surfaces when accounting for limited viral production by host cells. Finally, in Section 8

we consider simple corrections to our model accounting for nonhomogeneous recovery rates,

and nonindependent transmission probabilities.
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Sergio Gómez1, and Alex Arenas1
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The notation used here is the same as the one introduced in the main text. Equations
and figures of the main text are referenced with their number there, e.g., Fig. 1 and
Eq. (2). Equations and figures on this Supporting Information have a “S.” before their
number, e.g., Fig. S.1 and Eq. (S.2).

We report here the equation describing the spread of the disease, corresponding to
Eq. (1) of the main text:

ẋkν = −µxkν +
k

〈k〉
∑
β

(∑
h

hpγ(h)xhβ

)[
Γνβ

(
1−

∑
γ

xkγ

)
+
∑
γ

Λνβγx
k
γ

]
. (S.1)

The terms in this equation are described in the main text. We remind that the Latin
indices run on the degree, and Greek indices run over the 2v + 1 compartments, that
are ordered by increasing number of viral species they contain. Let us define as φ the
function that counts such number, so that φ(pwty) = 1 (just wt), φ(p1y) = 2 (wt plus
one variant), φ(psegy) = v (all the variants), φ(pally) = v + 1, and so on. The ordering
is such that α > β ⇒ φ(pαy) ≥ φ(pβy).

S.1 Model v = 1

Here we consider v = 1, homogeneous contacts, and no differential degradation. Let
x1, x2 be the prevalence of pwty , pally, respectively. Equation (S.1) reduces to{

ẋ1 = −µx1 + λ(1− x1 − x2)x1 + λ(1− λ)(1− x1 − x2)x2 − λx1x2;
ẋ2 = −µx2 + λ2(1− x1 − x2)x2 + λx1x2.

(S.2)

As explained in the main text, the equation of the total prevalence z = x1 + x2
decouples (see also Sect. S.5). It is thus convenient to consider the system in (z, x2):{

ż = λ(1− z)z − µz
ẋ2 = λ2(1− z)x2 + λ(z − x2)x2 − µx2.

(S.3)



As the equation for z decouples from x2, the Jacobian is lower triangular:

J =

(
−µ+ λ (1− 2z) 0
λ(1− λ)x2 λ2(1− z) + λ(z − 2x2)− µ

)
. (S.4)

The spectrum of J is thus given by its diagonal elements. In order to get T1, i.e., the
epidemic threshold, we need to study the spectrum of J computed in the disease-free
state (z = x2 = 0):

J (dfs) =

(
−µ+ λ 0

0 λ2 − µ

)
. (S.5)

From this we see that if λ > µ the dfs is no longer stable. Hence T1 = {λ = µ}. One
could guess this without calculations from the equation in z, which tells us that the total
prevalence behaves like an SIS. In order to find T2 we now study the stability of the
equilibrium where only wt is circulating (hosts in pwty, but not in pally, are present).
This is the equilibrium wt defined in the main text, and it is a pure SIS model for the
compartment pwty. The value of the prevalence is (z = 1 − µ/λ, x2 = 0), as the SIS
prescribes. The Jacobian in this equilibrium point is

J (wt) =

(
µ− λ 0

0 λ(1 + µ)− 2µ

)
. (S.6)

The first eigenvalue is always negative, as we are above T1. The second one is negative
iff (1 + µ)λ < 2µ. As a result, we get that T2 = {λ = 2µ/(1 + µ)}.

S.2 Generic number of variants v

Assuming a generic number of variants, and homogeneous contacts, Eq. (S.1), and its
Jacobian, are

ẋν =
∑
βσ

Λνβσxβxσ +
∑
β

Γνβxβ

(
1−

∑
σ

xσ

)
− µxν ; (S.7)

Jνβ =
∂ẋν
∂xβ

=
∑
σ

[
Λν(βσ) − Γνσ

]
xσ + Γνβ

(
1−

∑
σ

xσ

)
− µδνβ, (S.8)

with Λν(βσ) = Λνβσ + Λνσβ. They correspond to Eqs. (5) and (6) of the main text,
respectively.

As in the case v = 1, we use the Jacobian, Eq. (S.8), to study the stability of two
equilibria. The first one is the dfs (xν = 0), whose analysis gives T1. The second one
is wt: x1 = 1 − µ/λ, xν = 0 for ν > 1, and will give T2. We remind that, given the
ordering we use, the index ν = 1 refers to the compartment pwty, which is indeed the
only one with non-zero prevalence in the wt-phase equilibrium. We study the stability of
the former directly in the main text, so here we directly proceed to the latter.

The Jacobian computed in wt is

J
(wt)
νβ =

(
1− µ

λ

) (
Λν(β1) − Γν1

)
+
µ

λ
Γνβ − µδνβ. (S.9)
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We can write it in matrix form by defining the following matrices: (Λ)νβ = Λν(β1),(
Γ̃
)
νβ

= Γν1. The result is

J (wt) = Γ− µ+
(

1− µ

λ

)(
Λ− Γ− Γ̃

)
. (S.10)

Γ̃ has all the entries equal to Γ11 = λ in the first row, and all others zero. This is
because Γν1 encodes the interactions that change the prevalence of the ν-th compartment
by acting with pwty on the susceptible state. Hence ν itself can refer only to pwty, and
only wt is transmitted, thus the value λ. We now wish to show that Λ is block-upper-
triangular. One diagonal block, Λ1, encompasses the indices β = 1, . . . , 2v − 1, while the
other, Λ2, the remaining β = 2v, 2v + 1:

Λ =

(
Λ1 [2v − 1× 2v − 1] · · ·

0 Λ2 [2× 2]

)
. (S.11)

The lower left block is clearly zero, because the transitions that change the prevalence
of psegy , pally by acting on pwty with a compartment other than psegy , pally, or vice
versa, are not possible. The block Λ1 is upper diagonal, and we can show this with a
reasoning similar to the one for Γ in the main text. First of all, Λ1,11 = 0 as no term
x21 exists in the equations. We then consider the transitions pαy pwty → pαy pβy, with
1 < α, β ≤ 2v − 1. It must be that φ(α) ≥ φ(β), implying α ≥ β. Furthermore,
the diagonal elements are Λ1,αα = λφ(α)−1, as one needs to transmit all the segmented
variants pαy contains, but not wt. Finally, the transitions pwty pαy → pwty pβy are
not possible, as all the compartments considered already contain the wt. This proves the
upper diagonal shape. The block Λ2 does not change in dimension with v, and so it can
be computed explicitly by analyzing the four possible reactions between psegy , pally.
Summing up, the matrices involved have the following form:

Γ =



λ � · · · � · · · � � �
0 λ2 · · · � · · · � � �
...

... · · · ... · · · ...
...

...
0 0 · · · λn · · · � � �
...

... · · · ... · · · ...
...

...
0 0 · · · 0 · · · λv � �
0 0 · · · 0 · · · 0 λv λv(1− λ)
0 0 · · · 0 · · · 0 0 λv+1


, (S.12)

Λ =



0 � · · · � · · · � � �
0 λ · · · � · · · � � �
...

... · · · ... · · · ...
...

...
0 0 · · · λn−1 · · · � � �
...

... · · · ... · · · ...
...

...
0 0 · · · 0 · · · λv−1 � �
0 0 · · · 0 · · · 0 −λ 0
0 0 · · · 0 · · · 0 λ(1 + λv−1) λv


, (S.13)
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Γ̃ =



λ λ · · · λ · · · λ λ λ
0 0 · · · 0 · · · 0 0 0
...

... · · · ... · · · ...
...

...
0 0 · · · 0 · · · 0 0 0
...

... · · · ... · · · ...
...

...
0 0 · · · 0 · · · 0 0 0
0 0 · · · 0 · · · 0 0 0
0 0 · · · 0 · · · 0 0 0


, (S.14)

where 2 ≤ n ≤ v, and the symbol “�” marks values that are not necessary to our com-
putation. By putting Eqs. (S.12), (S.13) and (S.14) into Eq. (S.10) we realize that J (wt)

has the same block structure, and can compute its eigenvalues. The stability condition
then translates into the following system:

µ− λ < 0

λn − µ+ λn−1
(
1− µ

λ

)
(1− λ) < 0

λv − µ < 0

λ (µλv−1 − 1) < 0

. (S.15)

The first equation is always true, as we are above T1. The second one, for n = 2, is true
when λ < 2µ/(1 + µ). Then, if this holds, one can show that all the following hold. As a
result, we get to T2 = {λ = 2µ/(1 + µ)}.

S.3 Heterogeneous contacts

We now address the fully general equation driving the system, Eq (S.1). We assume here
k to be discrete-valued. One can prove that the whole derivation holds in the continuous
case, too. The general form of the Jacobian Eq. (S.1) becomes

Jkmνα =
∂ẋkν
∂xmα

=
k

〈k〉
mpγ(m)

[
Γνα

(
1−

∑
γ

xkγ

)
+ γΛναγx

k
γ

]
+

+ δkm

[
−µδνα +

k

〈k〉
∑
β,h

hpγ(h)xhβ (Λνβα − Γνβ)

]
. (S.16)

This matrix acts on the space G ⊗ H, where G is the usual (2v + 1)-dimensional space
spanned by the compartments, and H is an ∞-dimensional separable Euclidean space
spanned by the discrete degrees (or contact rates). For this reason, we can study the
spectrum of J on the compartment sector, and the degree sector, one at the time.

Critical surface T1

On the dfs, the Jacobian reads

Jkmνα
∣∣(wt)

= Cγ
km1−γ

〈k〉
Γνα − µδkmδνα. (S.17)
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In Sect. S.2 we already have examined both Γ and Λ thoroughly. Hence, we can say that
the principal eigenvalue of Γ is λ−µ, corresponding to some eigenvector v. If one defines
the vector κ on H as simply the sequence of positive natural numbers κ = (1 2 3 · · · ),
then one can show that κ ⊗ v is the principal eigenvector of J |(wt), with eigenvalue
〈k2〉λ/ 〈k〉 − µ. From this we find T1 = {λ = µ̂}.

Critical surface T2

Let us call zk
def
= xk1. The wt equilibrium will be some zk > 0, and xkν = 0 ∀ν > 1. This

leads to (dropping the superscript wt from now on)

Jkmνα =
mpγ(m)

〈k〉
k
[
Γνα(1− zk) + Λνα1z

k
]

+ (S.18)

+ δkm
[
−µδνα + k 〈z〉γ−1 (Λν1α − Γν1)

]
, (S.19)

where 〈z〉σ is the average of zk computed with pσ(k): 〈z〉σ
def
= Cσ

∑
k z

kk−σ. By using the
findings in Sect. S.2, we know that, in the compartment sector, the relevant (dominant)
eigenvalue is the entry ν = α = 2. Hence, we can directly compute the Jacobian for these
values, and deal with the degree sector:

Jkm = −µδkm +
mpγ(m)

〈k〉
k
[
λ2(1− zk) + λzk

]
. (S.20)

We now define two vectors (in H): Ωk
def
= kpγ(k)/ 〈k〉, and Ψk

def
= k

(
λ2 + λ(1− λ)zk

)
.

With them we can rewrite Jkm:

J = −µ+ ΨΩT . (S.21)

The principal eigenvector of J is Ψ, and the corresponding eigenvalue is −µ+ ΩTΨ. By
computing it, and setting it to zero, we recover the equation for the critical point:

λ+ (1− λ) 〈z〉γ−2 =
〈k〉
〈k2〉

µ

λ
. (S.22)

The last piece of the puzzle is computing the term 〈z〉γ−2. We define the following
function:

g(a, x)
def
=

∞∑
k=1

k−a

1 + xk
. (S.23)

For this function, one can prove the following recursion relation:

xg(a− 1, x) = ζ(a)− g(a, x) (S.24)

(derivation not shown here), where ζ is the Riemann zeta function. Now, from [1] we
know that the prevalence zk of a SIS model obeys the following equation:

zk =
λ 〈z〉γ−1

µ+ λ 〈z〉γ−1
. (S.25)

5



We apply Cγ−1
∑

k k
1−γ to both sides of this equations, and get

g

(
γ − 2,

λ

µ
〈z〉γ−1

)
=

µ

λCγ−1
. (S.26)

We then apply Cγ−2
∑

k k
2−γ, and get

〈z〉γ−2 = 〈z〉γ−1
λ

µ
g

(
γ − 3,

λ

µ
〈z〉γ−1

)
. (S.27)

Moreover, we notice that the moments of the degree distribution can be expressed in
terms of the normalization constants as follows:

〈kn〉 =
Cγ
Cγ−n

. (S.28)

By combining Eqs. (S.23), (S.26), (S.27) and (S.28), we can get to a closed-form solution
for 〈z〉γ−2:

〈z〉γ−2 = 1− 〈k〉
〈k2〉

µ

λ
. (S.29)

Finally, by putting this inside Eq. (S.22), we get to T2 = {λ = 2µ̂/ (1 + µ̂)}.

S.4 Enhanced segment transmissibility

Segmented variants now transmit with a probability ρλ, with ρ ≥ 1, where λ is the
transmissibility of wt. Let us examine how the interaction matrices change according to
this. Matrix Γ̃ in Eq. (S.14) does not change, while matrix Γ in Eq. (S.12), and Λ in
Eq. (S.13), change as follows:

Γ =



λ � · · · � · · · � � �
0 ρλ2 · · · � · · · � � �
...

... · · · ... · · · ...
...

...
0 0 · · · ρn−1λn · · · � � �
...

... · · · ... · · · ...
...

...
0 0 · · · 0 · · · ρv−1λv � �
0 0 · · · 0 · · · 0 (ρλ)v (ρλ)v (1− λ)
0 0 · · · 0 · · · 0 0 ρvλv+1


, (S.30)

Λ =



0 � · · · � · · · � � �
0 ρλ · · · � · · · � � �
...

... · · · ... · · · ...
...

...

0 0 · · · (ρλ)n−1 · · · � � �
...

... · · · ... · · · ...
...

...

0 0 · · · 0 · · · (ρλ)v−1 � �
0 0 · · · 0 · · · 0 −λ 0
0 0 · · · 0 · · · 0 λ+ (ρλ)v (ρλ)v


, (S.31)
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The spectrum of Jdfs = Γ − µ then gives the first critical point. We find two regimes.
For ρ < µ−

v−1
v , we find the usual T1 = {λ = µ}. For ρ > µ−

v−1
v a different critical point

emerges: Ts =
{
λ = (µ)1/v /ρ

}
. This means that if transmissibility is enhanced enough,

the compartment psegy spreads alone as an SIS, and Ts is its epidemic threshold.

In the regime ρ < µ−
v−1
v we can find the new T2 =

{
λ = 1+ρ

ρ
µ

1+µ

}
, with the same

derivation as in Sect. S.2. Analogously we can add heterogeneous contact rates, solving
the degree sector as in Sect. S.3, finding the correction µ̂ as before.

S.5 Total prevalence of the wild-type virus

Total prevalence of the wt can be computed analytically in the homogeneous case. In
order to prove that, we consider Eq. S.7. For convenience, we define z =

∑
α xα − xseg,

which is the total prevalence of the wt. Primed summation symbols (
∑′

ν) mean ν runs
over all the compartments but psegy. We apply

∑′
ν to both sides of Eq. S.7, getting

ż = −µz +
∑
αβ

xαxβ

(∑
ν

′
Λναβ

)
+ (1− z − xseg)

∑
α

xα

(∑
ν

′
Γνα

)
. (S.32)

The term containing Λναβ can be computed using that
∑

ν Λναβ = 0. This is due to the
fact that the number of hosts is conserved, and Λναβ encodes interactions only between
infected compartments. As a result,

∑′
ν Λναβ = −Λseg,αβ. Moreover, one can show that

Λseg,αβ = −λδβ,seg(1 − δα,seg). The term
∑′

ν Γνα is the probability of α generating a
ν 6= seg by infecting a susceptible. This is just the probability of transmitting the wt,
because all the other probabilities cancel out. Hence,

∑′
ν Γνα = λ(1−δα,seg). By inserting

these two terms in Eq. (S.32), one gets

ż = −µz + λ(1− z)z, (S.33)

which decouples from the other variables, and represents a pure SIS. As a result, the
endemic total prevalence of the wt in case of homogeneous networks is always z = 1−µ/λ.

S.6 Numerical validation of the critical surfaces

In order to validate our theoretical prediction of the phase space, we simulate the spread
of a multipartite virus on a plant population. The estimate of the critical surfaces requires
computing the endemic states, corresponding to the different phases. To do that, we used
the quasistationary state method [2, 3]. In its original formulation for an SIS model, the
quasistationary state method relies on forcing the system out of the disease-free state.
Every time the simulation produces a fully susceptible population, one inputs an active
configuration previously visited by the system. With multipartite viruses, however, there
is an additional challenge, represented by the fact that the disease-free state is not the
only absorbing state. Every time the system becomes free of a specific variant (or wt)
disappears from the system, it will be free of it forever. Hence, we force the system
out of any state that does not contain all the v variants and the wt. The result of the
simulations is shown in Fig. S.1.

7



a) b)

Figure S.1: Numerical validation of Fig. 3(E). Prevalence of the wt (A) and the seg-
mented variants (B) are computed through stochastic simulations. The solid, dashed and
dotted lines represent T1, T2 and Ts, respectively.

S.7 Limited carrying capacity

Our model assumes that the transmission probability of one variant does not depend on
the coinfecting variants. In reality, however a limited carrying capacity should be taken
into account, as the number of viral particles a cell can produce in time is limited. Here
we investigate this aspect using a simple assumption: coinfecting variants share equally
a fixed transmissibility. Hence, for instance, while compartment pwty transmits the wt
with probability λ, p1y transmits it with probability λ/2, due to the concurrent infection
by a defective variant. We show that while this impacts the specific values of the critical
surfaces in Eq. (2,3,4) of the main text, it does not change the quantitative behavior.

Having previously demonstrated the generalizability to arbitrary number of variants
(v) and arbitrary heterogeneous topology, we set ourselves in the (computationally) sim-
plest scenario of homogeneous network and v = 2. Equation (S.3) thus becomes{

ż = λ(1− z)z − µz − λ
2
(1− z)y

ẋ2 =
(
λ
2

)2
(1− z)x2 + λ

2
(z − x2)x2 − µx2.

. (S.34)

From this, and from the SIS-like dynamic of psegy spreading alone, we can compute
the new critical surfaces. We consider, for simplicity, ρ = 1 and homogeneous topology:

T1 = {λ = µ} ; (S.35)

T2 =

{
λ =

3µ

1 + µ/2

}
; (S.36)

Ts =
{
λ = vµ1/v

}
. (S.37)

By comparing them to Eq. (2,3,4) of the main text, we see that limited carrying capacity
does not change the epidemic threshold (T1). It increases, however, both T2 and Ts,

8



making multipartitism overall less likely. It however does not change the qualitative
behavior of the model.

S.8 Nonhomogeneous recovery rates, nonindependent

transmission

Our model assumes recovery rate is the same for all compartment. One might instead
assume that it either decreases or increases with the number of coinfecting variants. Here
we investigate a different recovery rate for the pure multipartite compartment (psegy):
compartment containing wt recover at a rate µ, psegy at a rate σµ.

Analogously, one might assume that variants in the pure multipartite compartment
do not spread independently. To that end, we introduce another correction factor λv −→
αλv. It is straightforward to show that both corrections impact T2 (Eq. (4)) in the same
way, with the identification α = 1/σ. The new critical surface containing both factor is

Ts =

{
λ =

1

ρ

(
σµ̂

α

)1/v
}
. (S.38)

From this we see that both these assumptions add an additional scaling to the effective
recovery rate µ̂ −→ σµ̂/α, while leaving the overall behavior of the model unchanged.
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