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A B S T R A C T

Diffusion dynamics in multiplex networks can model a diverse number of real-world processes. In some specific
configurations of these systems, the super-diffusion phenomenon arises, in which the diffusion is faster in
the multiplex network than in any of its layers. Many studies attempt to characterize this phenomenon by
examining its dependency on structural properties of the network, such as overlap, average degree, network
dissimilarity, and others. While certain properties show a correlation with super-diffusion in specific networks,
a broader characterization is still missing. Here, we introduce a structural parameter based on the minimum
node strength that effectively predicts the occurrence of super-diffusion in multiplex networks. Additionally,
we propose a novel framework for deriving analytical bounds for several multiplex networks structures.
Finally, we analyze and justify why certain arrangements of the inter-layer connections induce super-diffusion.
These findings provide novel insights into the super-diffusion phenomenon and the interplay between network
structure and dynamics.
1. Introduction

Diffusion dynamics in complex networks has garnered significant re-
search interest due to its ability to model numerous behaviors in social
and transportation networks [1,2], epidemiology [3], and biological
systems [4], among others [5–7]. In this context, a diffusion process
involves the propagation of an entity across connected nodes within
a network and is characterized by the diffusion time; the smaller its
value, the faster its convergence to the equilibrium state. The structure
of the network plays a major role in the dynamics of these systems,
so one of the key challenges for predicting their possible outcomes is
understanding this complex interplay.

In practice, many real-world networks tend to be more complex
than single-layer network structures. For example, the transportation
network of a city can consist of interactions between different trans-
portation systems, such as bus and subway networks. In these scenarios,
the system is better described by multilayer networks [8], whose re-
search interest arose mainly due to its new emerging properties [9–11].
A particular type of multilayer network with great research interest is
the multiplex network [12], in which each node is present in all the
layers and the inter-layer links only connect instances of the same node
in different layers.

In [10], an interesting behavior was shown for diffusive processes
in multiplex networks: in some specific cases, the multiplex network
diffusion time can be smaller than in any of its (isolated) layers. This
phenomenon is known as super-diffusion. Since then, many attempts
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have been made to understand and characterize it. Early works sug-
gested that network dissimilarity can enhance the occurrence of super-
diffusion [13], while others have found that similar intra-layer diffusion
coefficients and low overlap also play an important role [14]. Recent
articles have also focused on the importance of the average degree of
the layers and how certain arrangements of the inter-layer connections
between nodes can impact the phenomenon [15]. In particular, they
observed that in some duplex networks (i.e., two-layer multiplex net-
works), Negatively Correlated inter-layer connections (NC) are more
beneficial to the occurrence of super-diffusion than Positively Corre-
lated (PC) ones. A NC (PC) duplex network is built by establishing
the inter-layer links in a maximally disassortative (assortative) way,
namely: sorting the nodes of the first layer by increasing strength, sort-
ing the nodes of the second layer by decreasing (increasing) strength,
and then connecting the first nodes in both layers, next the second
nodes, and so on until each node is connected to its equally ranked
counterpart. Despite the efforts, a more general characterization is still
lacking.

In this work, we propose a general structural parameter based on
the minimum node strength to predict the occurrence of super-diffusion
in multiplex networks. This parameter can also justify the previous
observations that a NC configuration potentiates the appearance of
super-diffusion. Furthermore, we introduce a novel approach to de-
rive analytical bounds for some multiplex networks structures, with
potential generalization to other network configurations. Finally, we
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Fig. 1. Three multiplex networks formed by the same two layers, each with 6 nodes, and with Randomly Assigned (RA), Positively Correlated (PC), and Negatively Correlated
(NC) inter-layer connections, respectively. Additionally, we display a table with the corresponding node degree associations for the considered inter-layer connections. Note that
the degrees are increasing for L1 and L2-PC, and decreasing for L2-NC.
hypothesize and analyze that, in general, a NC configuration of the
inter-layer connections is the best way to induce super-diffusion in
multiplex networks.

The outline of this work is as follows. In Section 2 we present
the theoretical framework of diffusion in multiplex networks. We then
introduce the structural parameter and test its accuracy in Section 3.
Next, in Section 4, we derive theoretical bounds for super-diffusion for
three specific configurations. In Section 5 we justify our hypothesis that
a NC configuration is the best super-diffusion enhancement strategy,
and finally, in Section 6, we summarize the main contributions and
discuss some extra remarks and implications.

2. Diffusion and super-diffusion in multiplex networks

Following [10], assume we have a multiplex network composed
with 𝑀 layers and 𝑁 nodes per layer. In each layer 𝛼 = 1,… ,𝑀 , we
assign a label 𝑖 = 1,… , 𝑁 to each node, and nodes with the same label
across different layers are interconnected, see Fig. 1.

The diffusion dynamics in each layer 𝛼 is governed by a diffusion
constant 𝐷𝛼 , and the diffusion between different layers 𝛼 and 𝛽 by a
parameter 𝐷𝛼𝛽 . The dynamical evolution equation of state 𝑥[𝛼]𝑖 of node 𝑖
in layer 𝛼 is

𝑑𝑥[𝛼]𝑖
𝑑𝑡

= 𝐷𝛼

𝑁
∑

𝑗=1
𝑤[𝛼]

𝑖𝑗 (𝑥[𝛼]𝑗 − 𝑥[𝛼]𝑖 ) +
𝑀
∑

𝛽=1
𝐷𝛼𝛽 (𝑥

[𝛽]
𝑖 − 𝑥[𝛼]𝑖 ) , (1)

where 𝑤[𝛼]
𝑖𝑗 ⩾ 0 denotes the elements of the weight matrix at layer 𝛼,

which are zero if there is no link between nodes 𝑖 and 𝑗 in layer 𝛼. The
set of Eqs. (1) can be written in matrix form as

�̇� = −𝒙 , (2)

where 𝒙 ∈ R𝑁𝑀 is the state vector of all nodes in all layers, and 

is the supra-Laplacian matrix of the multiplex network, which for the
duplex case 𝑀 = 2 takes the form

 =
(

𝐷1𝐿1 +𝐷12𝐼 −𝐷12𝐼
)

, (3)
2

−𝐷21𝐼 𝐷2𝐿2 +𝐷21𝐼
where 𝐿1 and 𝐿2 are the Laplacian matrices of each layer, and 𝐼
is the 𝑁 × 𝑁 identity matrix. The Laplacian matrix of each layer 𝛼
is 𝐿𝛼 = 𝑆𝛼 − 𝑊𝛼 , where 𝑊𝛼 is the weights matrix and 𝑆𝛼 is the
diagonal matrix containing the strength of each node 𝑖 at layer 𝛼,
i.e., 𝑠[𝛼]𝑖 ≡ 𝑠[𝛼]𝑖𝑖 =

∑

𝑗 𝑤
[𝛼]
𝑖𝑗 .

The general solution to Eq. (2) is

𝒙(𝑡) =
∑

𝑘
𝐶𝑘𝑒

−𝜆𝑘 𝑡𝒗𝑘 , (4)

where {𝜆𝑘 } and {𝒗𝑘} are the eigenvalues and eigenvectors of the
supra-Laplacian matrix, respectively, and {𝐶𝑘} are constants that could
be determined from the initial condition. Supposing that the layers
are connected undirected networks, that 𝐷𝛼𝛽 = 𝐷𝛽𝛼 for all pairs of
different layers, and making use of the property that in this case the
Laplacians are positive semi-definite, we may sort the eigenvalues as
0 = 𝜆1 < 𝜆2 ⩽ 𝜆3 ⩽ ⋯ ⩽ 𝜆𝑁𝑀 . The convergence of Eq. (4) to the
equilibrium is governed by the smallest non-zero eigenvalue 𝜆2 , which
determines the diffusion time 𝜏 = 1∕𝜆2 . Therefore, the larger 𝜆2 , the
faster the convergence to the equilibrium state. From now on, without
loss of generality, we assume 𝐷𝛼𝛽 = 𝐷𝑥 ∀𝛼, 𝛽 (𝛼 ≠ 𝛽) and 𝐷𝛼 = 1 ∀𝛼.

A multiplex network is said to be super-diffusive if the diffusion time
in the multiplex network is smaller than the diffusion time in all layers:

𝜏 < min
𝛼
(𝜏[𝛼]) , (5)

or equivalently,

𝜆2 > max
𝛼

(𝜆[𝛼]2 ) , (6)

In the limit 𝐷𝑥 → ∞, the value of 𝜆2 is equal to the second smallest
eigenvalue of the average Laplacian 𝐿 = 1

𝑀
∑

𝛼 𝐿𝛼 , i.e., 𝜆2 = 𝜆2 ,
see [16]. Note that 𝐿 is the Laplacian of the average superposition
network (ASN), 𝑊  = 1

𝑀
∑

𝛼 𝑊𝛼 ; for duplex networks, it corresponds
to the semi-sum of the layers, 𝑊  = 1

2 (𝑊1 + 𝑊2) [10]. Since 𝜆2
monotonically increases with 𝐷𝑥, a multiplex network cannot be super-
diffusive unless it is super-diffusive at 𝐷𝑥 → ∞. Therefore, we just need
to compare the second smallest eigenvalue of the Laplacian of the ASN
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with that of the individual layers to know if a multiplex network is
super-diffusive (for large enough values of 𝐷𝑥). In the rest of this paper,
we assume we are in the limit 𝐷𝑥 → ∞.

A simple indicator of the super-diffusion intensity was proposed
n [14]:

=
𝜆2 − max𝛼(𝜆

[𝛼]
2 )

max𝛼(𝜆
[𝛼]
2 )

. (7)

hen 𝜉 > 0, the multiplex network is super-diffusive. An important
emark of the super-diffusion intensity is that, if 𝜉1 > 𝜉2 for two
tructurally distinct systems, it does not imply that diffusion is faster
n the system with a higher intensity value, or that the occurrence of
uper-diffusion is more likely in randomly generated systems under the
ame structural parameters, but rather that the multiplex structure is
ore beneficial to the diffusion dynamics.

. Characterizing super-diffusion with minimum node strength

The second smallest eigenvalue of networks, also named the alge-
raic connectivity or Fiddler value, has been largely studied both in
raph theory [17–20] and network science [16,21–23], but it is still
nclear how, in general, the structure of the network determines its
alue. There exists a well-known upper bound [18]:

2 ⩽
𝑁

𝑁 − 1
𝑠min , (8)

where 𝑠min is the minimum node strength value in the network. Other
studies [19,23] suggest that 𝑠min, or equivalently the minimum node
degree 𝑘min in unweighted networks, plays a pivotal role in determining
the value of 𝜆2. In addition, one can easily demonstrate that the
inequality in Eq. (8) becomes an equality for Fully Connected (FC)
networks with links of the same weight in which nodes possess equal
strength 𝑠:

𝜆FC2 = 𝑁
𝑁 − 1

𝑠 . (9)

Our goal is to understand what are the structural conditions that
lead to super-diffusion in multiplex networks. This apparent correlation
with the minimum node strength has potential to aid our efforts. Fur-
thermore, it can offer insights into why, as observed in many multiplex
network systems, certain correlations between degrees of nodes in the
inter-layer connections induce certain dynamical properties [15,24].

If we assume that there exists some unknown but almost direct rela-
tionship 𝜆2 ∼ 𝑓 (𝑠min), we can define the following structural parameter
or multiplex super-diffusion, inspired by Eq. (7):

=
𝑠min − max𝛼(𝑠

[𝛼]
min)

max𝛼(𝑠
[𝛼]
min)

, (10)

where 𝑠min and 𝑠[𝛼]min are the minimum node strengths of the ASN and
of the layer 𝛼, respectively. When 𝜂 > 0, the minimum node strength
of the ASN is larger than that of any of the (isolated) layers, and in
this case, we predict super-diffusion; otherwise, if 𝜂 < 0, we predict
the absence of super-diffusion. In the case of 𝜂 = 0, we will also predict
super-diffusion because, as we will see in Section 5, the ASN distributes
the strength across more links and, in general, this is beneficial to
increase 𝜆2 . This matches very well with the observation that a NC
configuration enhances super-diffusion, because what it is actually
doing is maximizing the value of 𝑠min, and thus, if our assumption is
correct, increasing 𝜆2 .

To analyze and test the capacity of parameter 𝜂 in predicting super-
diffusion, we first consider duplex networks formed by two unweighted
Erdős–Rényi (ER) layers, for a large range of values of the average
degrees ⟨𝑘[𝛼]⟩ of the two layers, and for three different arrangements
of the inter-layer connections: Randomly Assigned (RA), Positively Cor-
related (PC), and Negatively Correlated (NC). We generate 50 duplex

[𝛼]
3

networks for each pair of the connection probabilities 𝑝 of the ER F
Table 1
Ratio of explored space with super-diffusion, and global accuracy of the super-diffusion
predictions, for duplex networks with 𝑁 = 500, ⟨𝑘[1]⟩, ⟨𝑘[2]⟩ ∈ [5, 100], for the three
ossible combinations of ER and SF layers, and with the three different types of
nter-layer connections.
L1 L2 Inter-layer connections Super-diffusion ratio (%) 𝛥 (%)

RA 26.7 98.0
ER ER PC 5.1 96.4

NC 49.5 87.0

RA 36.3 99.0
SF SF PC 3.4 99.0

NC 85.0 93.1

RA 26.2 97.7
ER SF PC 3.6 97.9

NC 59.8 88.1

layers, and calculate the accuracy of the prediction (𝛥) as the ratio
of correctly predicted presence or absence of super-diffusion, and the
super-diffusion probability (𝑞) as the fraction of super-diffusive duplex
networks, for the given structural parameters of the layers.

In Fig. 2 we show, in three separate rows, the super-diffusion
probability 𝑞, the prediction accuracy 𝛥, and the average structural
parameter ⟨𝜂⟩ for each pair of average degrees ⟨𝑘[1]⟩ and ⟨𝑘[2]⟩ of ER–
R duplex networks. The columns correspond to the three considered
ypes of inter-layer connections. We notice that PC inter-layer con-
ections decrease the occurrence of super-diffusion as compared to
A, whereas NC inter-layer connections lead to a higher occurrence of
uper-diffusion.

If we now consider other duplex structures, for example,
nweighted scale-free (SF) layers with exponent 𝛾 = 3 built using
he configuration model, we can check whether this approach gen-
ralizes to other structures. In order to quantify the general perfor-
ance, we calculate the global accuracy (𝛥) for each duplex layout,
hich indicates the average accuracy over all considered structural
arameters.

In Table 1 we can see that, overall, the global accuracy of the
rediction is really good, and even though they are not perfect, this
ethod gives a clear and fast way to evaluate whether a multiplex
etwork can potentially exhibit super-diffusion. See Figs. S1, S2 and
3 from the Supplementary Material for the corresponding equivalent
f Fig. 2 for the duplex network configurations in Table 1.

Overall, our predictions with parameter 𝜂 perform well, except in
he regions in which 𝜂 is close to zero. The difference in the predictions
an be explained in terms of the minimum strength as follows. First,
ote that the strength of any node of the ASN is the semi-sum of the
trengths (degrees if the layers are unweighted) of the same node in
he layers, 𝑠𝑖 = (𝑠[1]𝑖 + 𝑠[2]𝑖 )∕2. In PC configurations, the node with
inimum strength of the ASN is the same as the node with minimum

trength in both layers (e.g., node 1 in Fig. 1), thus its strength is

min = (𝑠[1]min + 𝑠[2]min)∕2. Since this is an intermediate value between the
inimum strengths of the layers, then 𝜂 < 0, except when 𝑠[1]min = 𝑠[2]min,

or which 𝜂 = 0. This means that, in a PC configuration, 𝜂 cannot be
ositive, thus restricting the appearance of super-diffusion to the cases
n which the minimum strengths of the layers are equal, or very close
due to the fluctuations in the second smallest eigenvalue). For ER–ER
uplex networks this happens when ⟨𝑘[1]⟩ ≈ ⟨𝑘[2]⟩, i.e., close to the
iagonal, as seen in Fig. 2.

The other extreme case corresponds to NC configurations, for which
he minimum strength in one layer is coupled with the maximum
trength in the other, e.g., the first and the last nodes in Fig. 1. If
[1]
min > 𝑠[2]max or 𝑠[2]min > 𝑠[1]max, we have that 𝜂 < 0, and the multiplex net-
ork can only exhibit super-diffusion if the difference between the min-

mum strengths of the layers is small enough. This condition correctly
dentifies the region where the super-diffusion is restricted; however,
ts confining precision depends greatly on the strength distribution, see

ig. S4 from the Supplementary Material.
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Fig. 2. Super-diffusion probability 𝑞 (top row), prediction accuracy 𝛥 (middle row), and average structural parameter ⟨𝜂⟩ (bottom row) as a function of the average degrees of the
layers, for duplex networks composed by two unweighted ER layers and with 𝑁 = 500. Each column corresponds to one of the three different models of inter-layer connection: RA,
PC, and NC. We compute 50 different duplex networks for each combination of 𝑝[1] and 𝑝[2], with these connection probabilities ranging from 5∕(𝑁 − 1) to 1 in steps of 1∕(𝑁 − 1),
and ensuring that the layers are connected networks.
Although this method looks quite naive, it performs pretty well in
the scenarios often used as a benchmark to explain the super-diffusion
phenomenon [14,15], especially when the strength distribution across
the nodes has high variation. It not only has the advantage of being
independent of the layer structures but also provides a justification
for why NC configurations increment and PC configurations decrease
the dynamic performance of multiplex networks observed in previous
literature [15,24].

4. Analytical bounds

The previous approach works best when the strength distribution
of the nodes across the network is heterogeneous, but we also want
to know what happens for more homogeneous strength distributions,
e.g., when the layers of the multiplex network are random regular (RR)
networks, for which all nodes have the same strength.

Ideally, solving the super-diffusion problem for any multiplex net-
work would involve expressing 𝜆2 as a function of some structural
parameters, 𝑁 , ⟨𝑘⟩, 𝑠min, or others, and the corresponding strength
distribution for each layer and the multiplex network. Then, we could
compute analytically the structural conditions for super-diffusion.

While this sounds unrealistic for any given multiplex network struc-
ture, some results exist for 𝜆2 in some specific networks. In particular,
for large (𝑁 ≫ 1) unweighted RR networks of degree 𝑘 [20],

𝜆RR(𝑘) ≈ 𝑘 − 2
√

𝑘 − 1 . (11)
4

2

And for large unweighted ER networks [19],

𝜆ER
2 (𝑁, 𝑝) ≈ 𝑝(𝑁 − 1) −

√

2𝑝(1 − 𝑝)(𝑁 − 1) log𝑁

+

√

(𝑁 − 1)𝑝(1 − 𝑝)
2 log𝑁

log

√

2𝜋 log
(

𝑁2

2𝜋

)

−

√

(𝑁 − 1)𝑝(1 − 𝑝)
2 log𝑁

𝛾 ,

(12)

where 𝑝 is the connection probability of the nodes and 𝛾 is the Euler–
Mascheroni constant.

With these expressions, we have the RR and ER layers covered;
however, the expression for the multiplex network is still missing.
Suppose a duplex network formed by two unweighted RR layers with
degree 𝑘[𝛼] and RA inter-layer connections. The probability of having a
link overlap in the ASN, i.e., having a weight 𝑤

𝑖𝑗 = 1, is given by

𝑝(𝑤
𝑖𝑗 = 1) = 𝑝(𝑤[1]

𝑖𝑗 = 1) 𝑝(𝑤[2]
𝑖𝑗 = 1) =

(𝑘[1])2

2𝑀 [1] − 1
(𝑘[2])2

2𝑀 [2] − 1
, (13)

where 𝑘[𝛼] are the node degrees of each layer, and 𝑀 [𝛼] the number of
links of each layer. Since 𝑀 [𝛼] = 𝑁𝑘[𝛼]∕2,

𝑝(𝑤
𝑖𝑗 = 1) ≈ 𝑘[1]𝑘[2]

𝑁2
. (14)

For sparse networks this probability of overlap goes to zero. The ASN
Laplacian

𝐿 = 𝑆 − 1 (𝑊 +𝑊 ) = 1𝐿 , (15)

2 1 2 2
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Fig. 3. Super-diffusion probability of RA duplex networks with (a) ER–ER and (b) RR–RR layers, all with 𝑁 = 1000. Black dashed lines represent the proposed theoretical bounds.
Average second smallest eigenvalue (and bands spanning one standard deviation) for (c) ER–ER (RA) networks with 𝑝[1] = 40∕(𝑁 −1), and (d) RR–RR (RA) networks with 𝑘[1] = 40.
Solid lines correspond to numerical results, and dashed lines to the theoretical curves. Color green used for layer 1, blue for layer 2, and red for the duplex network. We compute
50 different duplex networks for each combination of the structural parameters and ensure that the layers are connected networks. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
where 𝐿 = 2𝑆−(𝑊1+𝑊2), can be interpreted as the Laplacian matrix
of an unweighted RR network with parameter 𝑘 = (𝑘[1] + 𝑘[2]) = 2𝑠,
being 𝑠 the strength of each node in the ASN. This stems from the fact
that, when there is no overlap between the layers, the ASN includes all
the links in both layers, but with half the weight. Therefore, for the
duplex network we have that

𝜆2 (𝑠
) ≈ 1

2
𝜆RR
2 (2𝑠), (16)

which can be generalized to the multiplex case by

𝜆2 (𝑠
,𝑀) ≈ 1

𝑀
𝜆RR
2 (𝑀𝑠). (17)

This argument is also valid for the case of a multiplex network formed
by unweighted ER layers with link probability 𝑝[𝛼] and RA inter-layer
connections:

𝜆2 (𝑁, 𝑝,𝑀) ≈ 1
𝑀

𝜆ER
2 (𝑁,𝑀𝑝). (18)

where 𝑝 = 1
𝑀

∑

𝛼 𝑝
[𝛼].

With this, we can now bound the super-diffusion region by finding
the values of the parameters that, according to Eqs. (11) and (17) for
RR layers, or Eqs. (12) and (18) for ER layers, make 𝜉 = 0.

In Figs. 3(a) and 3(b), we represent the super-diffusion probability
of duplex networks for the cases of two unweighted ER layers and
two unweighted RR layers, respectively, together with the proposed
theoretical bounds for each case. These bounds are found by solving
𝜉 = 0, with the corresponding theoretical approximations of the second
smallest eigenvalues, using the Newton–Raphson method. We observe
5

a perfect agreement between the numerical results and the proposed
bounds, validating the approach and providing for the first time an
analytical justification for the super-diffusion occurrence. Moreover, we
can see in Fig. 3(c) that, since the variability of 𝜆2 for ER networks is
relatively wide, there is a gradual transition between the super-diffusive
and the non-super-diffusive regimes around the theoretical bounds,
unlike for RR networks, for which the transitions are sharp and very
close to the theoretical bounds, see Fig. 3(d). This phenomenon further
justifies the results previously shown in Fig. 2.

As we have seen, for bounding the super-diffusion region, it is not
only important the structure of the layers but also the resulting ASN.
Thus, we can bound the duplex network formed by unweighted ER
layers with NC inter-layer connections because, when interconnecting
the nodes in this fashion, we compensate the upper deviations from the
mean value ⟨𝑘[1]⟩ with the lower deviations of ⟨𝑘[2]⟩, and vice versa. As
a result, in the duplex network, all the nodes will end up with a value
of 𝑠𝑖 close to (⟨𝑘[1]⟩ + ⟨𝑘[2]⟩)∕2, i.e., a RR network with this strength
value.

In Fig. 4 we verify the effectiveness of this argument by solving
𝜉 = 0 using the 𝜆2 of the corresponding RR superposition instead of
the ER approximation. We see an almost perfect bounding of the super-
diffusion region in Fig. 4(a), and that the numerical results align with
the corresponding theoretical curves in Fig. 4(b).

5. Maximizing multiplex diffusion

At this point, all the results indicate that the minimum node strength
of the network plays an important role in determining the value of
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Fig. 4. (a) Super-diffusion probability of NC duplex networks with ER–ER layers, all with 𝑁 = 1000. Black dashed lines represent the proposed theoretical bounds based on
approximating the ASN with a RR network. (b) Average second smallest eigenvalue (and bands spanning one standard deviation) for ER–ER (NC) networks with 𝑝[1] = 40∕(𝑁 − 1).
Solid lines correspond to numerical results, and dashed lines to the theoretical curves. Color green used for layer 1, blue for layer 2, and red for the duplex network. We compute
50 different duplex networks for each combination of the structural parameters and ensure that the layers are connected networks. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Second smallest eigenvalue as a function of the SA steps for a duplex network formed by two ER layers with 𝑁 = 500, 𝑘[1] = 25, and 𝑘[2] = 50, chosen to be close to the
super-diffusion boundary.
𝜆2. This relationship allows us to justify the results in previous lit-
erature, which have identified the NC configuration as an effective
strategy for increasing the occurrence of super-diffusion [15]. With this
high correlation between the node strengths, the inter-layer connection
arrangement, and the dynamics, we hypothesize that the NC config-
uration is actually the best strategy in multiplex networks to induce
super-diffusion.

To test this hypothesis, we have explored the space of possible
inter-layer connections in a similar way as in [13]. Our aim is to
maximize the value of 𝜆2 by changing the inter-layer connections, or
equivalently, by permuting the nodes of one layer and keeping the
nodes of the other layer fixed. For that, we use simulated annealing
(SA) [25], with an acceptance probability min(1, exp(𝛥𝜆2 ∕𝑇𝑓 )), where
𝛥𝜆2 is the variation of the second smallest eigenvalue of the ASN after
an inter-layer connection change, and 𝑇𝑓 is the temperature, which is
linearly annealed. The two key aspects of the optimization problem are
the starting point and the proposed changes at each step. In general,
a NC configuration has different possible arrangements when multiple
nodes share the same strength, a possibility previously overlooked.
Since we observed that a random NC configuration is already a good
starting point, we will consider two procedures: restricted SA, in which
we maximize 𝜆2 starting with a random NC configuration and propos-
ing changes of inter-layer connections only with nodes of the same
strength, and free SA, in which we start with a random NC configuration
and all changes of inter-layer connections are allowed.

In Fig. 5, we observe various realizations of the optimization process
for a duplex network formed by two ER layers, highlighting the best one
6

for each case. We can see that restricted SA is consistently better than
free SA, indicating that preserving the NC configuration is important to
maximize duplex diffusion. Moreover, we can observe that a random
NC configuration without optimization always outperforms the results
from [13] and from any free SA optimization starting from a RA inter-
layer connection, suggesting that maximizing 𝑠min is far more important
than maximizing layer dissimilarity. This is supported by the observa-
tions that in a free SA, starting from a RA inter-layer connection, the
major increments of 𝜆2 are always from changes that increment the
value of 𝑠min, as shown in Fig. 6.

Finally, we have performed a more exhaustive optimization by
considering all the duplex networks in Fig. 4(a) with restricted SA, to
see whether we could make the super-diffusion region wider than a
NC configuration with random connections over nodes with the same
strength. We have only been able to induce super-diffusion in less than
1% of the duplex networks, all situated in the region where 𝜉 is close
to zero (i.e., those close to the boundaries), supporting our hypothesis
that a NC configuration is the best way to induce super-diffusion, and
that minor improvements can be made by optimization within the NC
configurations. Additionally, we repeated the analysis for the duplex
networks in Fig. 3(b), and the same was obtained; only the duplex
networks that fall within the boundaries have a slight potential of
inducing super-diffusion when rearranging inter-layer connections. See
Figs. S5 and S6 from the Supplementary Material to visualize the region
where we could induce super-diffusion in both cases.

All the above results have further implications for the modification

and design of network systems for better dynamical properties. The
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Fig. 6. Evolution of the second smallest eigenvalue (continuous lines) and minimum node strength (dashed lines) of duplex networks in a free SA optimization, starting from RA
inter-layer connections. One duplex is formed by two ER layers (green lines), and the other is formed by SF layers (purple lines), both with 𝑁 = 500, 𝑘[1] = 25, and 𝑘[2] = 50. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Theoretical second-smallest eigenvalue of multiplex networks formed by un-
weighted RR layers as a function of 𝑠 for different values of 𝑀 . The black dashed
ine corresponds to Eq. (9).

ost immediate one is that, to enhance diffusion, it is better to have
trength regularity across the network, not only in the sense of a more
omogeneous strength distribution across the nodes but also within a
ode with fixed strength; having more links with less weight is better
han having fewer links with a higher weight. This last observation is
upported by Fig. 7, which shows that Eq. (17) monotonically increases
ith the number of layers 𝑀 , and as the ASN tends to a fully connected
etwork, the 𝜆2 approaches the upper bound outlined in Eq. (8).

. Conclusions

In this work, we extend our current knowledge of the interplay
etween the structure and dynamics of complex networks by investi-
ating the super-diffusion phenomenon in multiplex networks. First,
e introduce a structural parameter 𝜂 to predict if a given multi-
lex structure can potentially induce super-diffusion. We then test this
arameter on typical network structures, obtaining good prediction
ccuracy for duplex networks composed of ER and SF layers. Moreover,
his parameter can justify the previous literature where NC inter-layer
onnections were observed to be more prone to induce super-diffusion
nd, in general, better dynamical properties in multiplex networks.

We also introduce a novel framework to bound the region of super-
iffusion for some specific multiplex structures. We validate this ap-
roach by testing it on duplex networks composed of unweighted ER
7

networks with both RA and NC inter-layer connections, as well as on
unweighted RR networks.

Finally, we propose that a NC inter-layer connection is the most
effective strategy for promoting super-diffusion in multiplex networks.
This is supported in both the formulation of the structural parameter
and the optimizations conducted with simulated annealing. We observe
that preserving a NC configuration in the changes of inter-layer connec-
tions consistently leads to lower diffusion times. On top of that, we note
a pattern in the free optimization process: significant increments in 𝜆2
are consistently followed by increases in 𝑠min, thereby supporting the
formulation of 𝜂 and strengthening the proposal.

In summary, we have introduced novel insights into the super-
diffusion phenomenon of multiplex networks and how it is highly
related to node strength. These findings have potential implications for
general network dynamics and open new questions, such as how other
properties can reduce diffusion times when different nodes share the
same strength.
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