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Abstract

Background: The initial wave of the COVID-19 pandemic placed a tremendous strain on health care systems worldwide. To
mitigate the spread of the virus, many countries implemented stringent nonpharmaceutical interventions (NPIs), which significantly
altered human behavior both before and after their enactment. Despite these efforts, a precise assessment of the impact and efficacy
of these NPIs, as well as the extent of human behavioral changes, remained elusive.

Objective: In this study, we conducted a retrospective analysis of the initial wave of COVID-19 in Spain to better comprehend
the influence of NPIs and their interaction with human behavior. Such investigations are vital for devising future mitigation
strategies to combat COVID-19 and enhance epidemic preparedness more broadly.

Methods: We used a combination of national and regional retrospective analyses of pandemic incidence alongside large-scale
mobility data to assess the impact and timing of government-implemented NPIs in combating COVID-19. Additionally, we
compared these findings with a model-based inference of hospitalizations and fatalities. This model-based approach enabled us
to construct counterfactual scenarios that gauged the consequences of delayed initiation of epidemic response measures.

Results: Our analysis demonstrated that the pre–national lockdown epidemic response, encompassing regional measures and
heightened individual awareness, significantly contributed to reducing the disease burden in Spain. The mobility data indicated
that people adjusted their behavior in response to the regional epidemiological situation before the nationwide lockdown was
implemented. Counterfactual scenarios suggested that without this early epidemic response, there would have been an estimated
45,400 (95% CI 37,400-58,000) fatalities and 182,600 (95% CI 150,400-233,800) hospitalizations compared to the reported
figures of 27,800 fatalities and 107,600 hospitalizations, respectively.

Conclusions: Our findings underscore the significance of self-implemented prevention measures by the population and regional
NPIs before the national lockdown in Spain. The study also emphasizes the necessity for prompt and precise data quantification
prior to enacting enforced measures. This highlights the critical interplay between NPIs, epidemic progression, and human
behavior. This interdependence presents a challenge in predicting the impact of NPIs before they are implemented.
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Introduction

Spain was among the strongest-hit countries worldwide during
the first wave, with officially 28,000 fatalities attributed to
COVID-19 [1]. In terms of excess deaths, there was an alarming
increase of 80% [2], coupled with an attack rate of about 5%
[3]. In response to the rapidly rising case numbers, the Spanish
authorities implemented stringent containment measures to
control the spread of SARS-CoV-2.

The first case in Spain was reported on January 31. The first
local transmission was reported on February 26. On March 8,
all autonomous communities (Comunidades Autonomas
[CCAA]) had reported local transmission. The fast-rising case
numbers led the authorities to impose a national lockdown on
March 15. Bars, hotels, and restaurants had to close, and
individuals were only allowed to leave their homes for work
and essential shopping. However, the national lockdown was
foregone by various regional measures. On March 10, Madrid
and Álava (Basque Country) closed the entire educational
system. Other CCAA followed shortly afterward. Madrid and
Andalusia closed the gastronomy sector on March 13 and 14,
respectively. Additional local measures consisted of the
cancellation of festivities and football matches.

The Spanish government declared a state of emergency on
March 14, a day before the lockdown took effect. Despite the
lockdown being in place, case numbers were still rising toward
the end of March [1]. As a result, the national authorities
intensified the lockdown between March 28 and April 12, during
which all nonessential economic activities came to a halt. The
lockdown was then gradually lifted from May 2 onward under
the competence of the local authorities (CCAA).

In short, the nonpharmaceutical interventions (NPIs) issued by
the national and local authorities, which came along with a
strong reduction in mobility, were eventually sufficient to
mitigate the daily infections. A thorough analysis of the series
of events that shaped the epidemic evolution during the first
wave, as performed in various countries [4-10], is essential to
design future mitigation strategies of COVID-19 or other
emerging respiratory diseases [11,12].

The imposed NPIs and voluntarily practiced social distancing
caused a strong reduction in contacts that was reflected by a
decrease in mobility. Different studies show that mobility is a
robust indicator for the evolution of the epidemic and, hence,
the reproduction number [6,9,13-17]. The relationship was most
evident during the early phase of the epidemic, when there was
no efficient contact tracing in place and only minor use of face
masks [16]. Accordingly, a joint analysis of mobility and
epidemiological data can provide valuable insight into the
evolution of the first wave in Spain.

Moreover, a combined examination provides an opportunity to
investigate the factors influencing epidemic trends beyond the
implementation of NPIs. Numerous earlier studies that assessed
the epidemic's progression assumed sudden shifts in transmission
rates as NPIs were implemented [4,18,19]. This method may
potentially exaggerate the effects of NPIs, as it does not account
for the voluntary behavior modifications of the population that

could impact the epidemic's trajectory. By addressing this issue,
the integrated analysis presented here offers a more
comprehensive perspective on the forces driving the dynamics.

More specifically, in this study, we first evaluate large-scale
mobile phone data to show how mobility evolved in the face of
rising case numbers and during the lockdown. In particular, we
analyze whether there was any change in mobility prior to the
introduction of the lockdown. To determine the impact of
mobility on the epidemic dynamics, we then contrast the
evolution of mobility with epidemiological data, such as case
numbers, hospitalizations, and fatalities. More specifically, we
blend a direct analysis of the epidemiological data [5,18] and
model-based inference [10,19-21]. Furthermore, leveraging the
model-based inference, we evaluate the evolution of the
underreporting of infections over time. Finally, although most
previous studies have focused exclusively on the impact of
NPIs, this model-based approach allows us also to build
counterfactual scenarios and quantify how the epidemic response
that anticipated the lockdown substantially reduced the impact
of SARS-CoV-2 in Spain during the first wave.

Methods

Mobility Data
The data were provided by the Ministry of Transport, Mobility
and Urban Agenda (MITMA) [22]. The raw data stemming
from 1 mobile network provider consisted of the anonymized
individual trajectories of about 13 million individuals. Beyond
the intrinsic limitation of mobile phone data, we assumed that
the 13 million individuals would provide a reasonable sample
of the Spanish population. By using additional information,
such as land usage, sociodemographic indicators, the transport
network and the schedule of the public transport, the raw data
were transformed into an origin-destination matrix by the
MITMA. We directly used the origin-destination matrices and
did not have access to the raw data. More details can be found
in the methodological note provided by the MITMA [23]. Trips
are recorded on the level of municipalities and aggregated on
an hourly basis. Additionally, trips are separated into 6 different
distance classes. To calculate the mobility reduction on a
national or provincial level, we summed up the number of trips
and compared it to the corresponding day during the reference
period (February 14-20).

Reconstruction of Exposure Times
We reconstructed the exposure times for different autonomous
communities and regions (CCAA) by using a deconvolution
process with the symptom onset data. This method allowed us
to estimate the time individuals were exposed to the virus before
they started exhibiting symptoms, providing a more accurate
understanding of the transmission dynamics within each region.
By tracing back the exposure times, we can gain valuable
insights into the infection patterns and better assess the
effectiveness of various interventions and public health measures
implemented across the CCAA. This information can then be
used to improve and refine epidemic models and guide future
decision-making to better control the spread of the virus. More
specifically, we used the backprojNP function [24] from the
surveillance package [25,26] in R. The method, initially
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proposed by Becker et al [27], infers the expected number of
exposures, given the probability mass function of the incubation
period, through a maximum likelihood deconvolution approach.

Credible intervals were calculated based on a bootstrap
procedure [28]. We fixed the smoothing factor k=6, which
corresponds to a centered rolling average of days. The bootstrap
procedure made use of 1000 samples (B=1000). The incubation
period distribution was fixed as a gamma distribution with mean
5.2 and SD 2.8 days [29]. The time series with symptom onsets
was provided by the Centro Nacional de Epidemiología [1].

Estimation of Rt
From the median incidence, obtained by the reconstruction of
the exposure times, we estimated the evolution of Rt using the
EpiEstim package [30,31]. For the infectivity profile, we chose
the generation time estimated by Ganyani et al [32]. To be more
precise, we assumed a generation time following a gamma
distribution with mean 5.2 (95% CI 3.78-6.78) days and SD
1.72 (95% CI 0.91-3.93) days. This generation time distribution
corresponds to the estimation by Ganyani et al [32] for
Singapore, while assuming the same incubation period
distribution [29] as we did in the reconstruction of the exposure
times. We assumed SDs of 1.0 and 1.2 days for the mean and
the generation time, respectively. However, we bound the values
for the mean and SD by the estimations of Ganyani et al [32].
We fixed a centered rolling average of 7 days. To bootstrap the
credible intervals, we took 100 samples of the generation time
distribution and considered 100 posteriors for each of these
samples (n1=100 and n2=100, respectively).

Identifying the Linear Segments of Rt
To identify the linear segments, we use the R package segmented
[33,34]. The method proposed by Muggeo [33,34] implements
a maximum likelihood approach using linear predictors. The
credible intervals are obtained through bootstrapping. As
previously pointed out, we assumed 3 segments of Rt. An initial
constant value R1 as the disease was spreading freely in Spain,
as well as 2 linear evolving parts corresponding to the decrease
in Rt toward the lockdown and the constant decrease observed
during the lockdown.

Model
An alternative method for investigating the evolution of Rt is
to perform model-based inference [10,19,20]. By fitting a
minimal model to daily fatalities and hospitalizations, we can
compare the results with those derived from the reported number
of infections and assess whether the early decrease in Rt can be
attributed to saturation in testing capacity. This approach is
more reliable as fatalities and hospitalizations are less
susceptible to fluctuating reporting rates. However, daily
fatalities experience significant underreporting. Although the
official number of COVID-19 fatalities during the first wave is
approximately 28,000, excess deaths amount to around 50,000
[2]. Nonetheless, the reported fatalities and excess deaths follow
similar trends, with excess deaths exhibiting a slower decline
(Figure S13, Multimedia Appendix 1). Consequently, we
considered the reported fatalities to be a sufficiently robust data
stream.

We opted for a discrete-time model, informed by empirically
derived distributions for the generation time [32], incubation
time [29], and time from symptom onset to hospitalization and
death [35-37]. The time between symptom onset and
hospitalization or death varies significantly by age [35] and
region [36]. Since our data were aggregated by age and location,
we did not incorporate age stratification or geographical
heterogeneity through metapopulations.

Moreover, we assumed an instantaneous reproduction number

RtM with a functional form. The notation RtM distinguishes this
from the reproduction number inferred from reported infections,

Rt. The functional form of RtM was inspired by the Rt inferred
from the reported infections.

We divided RtM into 3 linear segments: the “free” spreading
phase before restrictions (constant value R1), the initiation of
the epidemic response (linear decrease at time BP), and the
lockdown (constant value R2) on March 15. We referred to the

intersection between R1 and R2, or the moment RtM began to
decrease, as the breakpoint BP. Along with R1, R2, and the
initial number of infected individuals I0, the initiation of the
epidemic response remained a free parameter. The assumption

that RtM would reach a constant value R2 upon lockdown
implementation was re-evaluated in the sensitivity analysis.
This framework allowed us to assess the plausibility of an early
decrease around March 5/6, as found in the reported infections.

We decided against using intensive care unit (ICU) admissions
as a data stream for our inference. During the first wave, some
CCAA reported current occupancy, while others reported new
admissions, and many changed their reporting criteria over time.
Additionally, only in Madrid and Catalonia, the hardest-hit
CCAA, did we observe an earlier peak in the 70-79-year age
group compared to younger groups, followed by a rapid decrease
in ICU admissions (Figure S14, Multimedia Appendix 1). This
strongly suggests that ICU admission criteria were adjusted due
to health care system overload. Another indication of this is that
hospital admissions and ICU admissions peak on the same day,
even though health authorities report a 3-day delay from
symptom onset to ICU admission compared to hospital
admissions (Figure S15, Multimedia Appendix 1). These factors
suggest that ICU admissions data are not a reliable data stream.

Given the form of RtM, the generation time distribution w(t),
and the size of the population N, the daily incidence It on day
t evolves as [38]:

We used the same generation time distribution as that for
estimating Rt [32]. From the daily incidence, we propagated
the symptom onset as well as the daily fatalities through
convolution [14,19]. Given the incubation time distribution P(t),
and the distribution of time from symptom onset to
hospitalization H(t) and to death D(t), the daily number of
individuals developing symptoms St, the daily hospitalizations
Gt, and the daily fatalities Ft evolve as:
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Model Fitting
We fixed the incubation time distribution as that for the
estimation of exposure times [29]. We fixed the infection
hospitalization ratio (IHR) and the infection fatality ratio (IFR)
by dividing the total number of hospitalizations and fatalities,
respectively, by the total number of infected individuals. The
latter was fixed through a nationwide seroprevalence study that
found an attack rate of 5% by the end of April 2020 [39]. This
led to an IHR and an IFR of 4.54% and 1.18%, respectively.

We assumed the times from symptom onset to hospitalization
and to death to follow a gamma distribution. Since case line
data were not available, we fixed the shape factor as 2.5 and
2.2, respectively, according to Hawryluk et al [35]. However,
the health authorities published the median and IQR of these
distributions [37]. They reported a median time from symptom
onset to hospitalization and death of 6 (IQR 3-9) and 11 (IQR
7-17) days, respectively. We fixed the scale values by
performing a least-squares fit with respect to these data. This
resulted in a shape and scale parameter for time between
symptom onset to hospitalization and death of 2.68 and 5.85,
respectively.

We adjusted the model to the daily hospitalizations and fatalities
through a Markov chain Monte Carlo (MCMC) approach—to
be more precise, through Hamiltonian Monte Carlo [40]. For
the log-likelihood, we chose a negative binomial distribution
with a dispersion parameter that was left as a free parameter.
Motivated by previous findings [13,19], we fixed the prior of
R1 as a normal distribution with mean 4.5 (SD 1.0). The prior
of R2 was a uniform distribution between 0.4 and 1.0. Similarly,
the prior of BP was flat between and days before lockdown.
The initial number of infected individuals I0 was uniform
between and 5000. We set the prior for the dispersion as a
normal distribution with mean 10.0 and SD 5.0. The daily
fatalities were not accurately adjusted using directly the
distribution received from the least-squares fit. Therefore, we
added the scale and shape parameter of the distribution for time
between symptom onset and death as a free parameter. We fixed
the prior as a normal distribution with a mean as that found
from the least-squares fit and SD 0.1. The form of the inferred
distribution from symptom onset to death is shown in Figure
S20, Multimedia Appendix 1. The model was implemented in
Stan [41,42]. We ran 6 chains with 4000 iterations, where 2000
iterations were used for warm-up. Gelman-Rubin convergence
statistics [43], that is, potential scale reduction factors, were all

smaller than 1.001. Posteriors and trace plots are shown in
Figures S21 and S22, Multimedia Appendix 1, respectively.

Counterfactual Scenarios
A common question when analyzing the pandemic's evolution
retrospectively is, What would have happened if we had acted
earlier or later? Several studies have examined the impact of an
earlier or later lockdown [4,7,20]. These detailed modeling
efforts allow us to address this question by considering a shift
in the entire epidemic response [7,20]. If the reproduction
number is initially constant, as was the case in our analysis, the
effect of shifting the epidemic response is entirely determined
by R1, that is, the initial doubling time. In other words, if one
shifts the epidemic response by the number of days equivalent
to the doubling time, the attack rate, hospitalizations, and
fatalities double.

Here, however, we focused on the epidemic response that
occurred before the lockdown implementation. This
encompassed regional measures, individual awareness,
nationwide educational system closures, and the lockdown
announcement. Essentially, we moved the breakpoint BP by a
specific number of days. If the shift surpassed the lockdown
date, the BP remained fixed on March 15.

Sensitivity Analysis
The first part of the sensitivity analysis consisted of relaxing
the assumption that the reproduction number would reach a
stable value (R2) on March 15, the day the lockdown took effect.
To do so, we introduced a second breakpoint BP2 that defined

when RtM would reach R2. For BP2, we chose a flat prior from
March 15 onward. The detailed results of the fit are shown in
Figures S16-S18, Multimedia Appendix 1. The other estimated
parameters, as well as the counterfactual scenarios, were robust.
The median of BP2 was found half a day later than March 15,
with a credible interval between March 15 and 17. This added

plausibility to our assumption that RtM would reach R2 on
March 15. Furthermore, we considered a second generation
time distribution taken from Ferretti et al [44]. The generation
time corresponded to a Weibull distribution, compared to a
gamma distribution in the main text, with mean 5.0 and SD 1.9
days. The results did not substantially change and are presented
in Figures S23 and S24, Multimedia Appendix 1.

Ethical Considerations
The Research Ethics Committee of Rovira i Virgili University
deemed this study as exempt from ethics review
(URV.F01.04.00 ALTRES-2023-PRD-0001). The mobility data
from the mobile phone provider were anonymized and
aggregated. Individual traces were not available. No other ethical
considerations apply to this work.

Results

The Evolution of Mobility
As highlighted previously, mobility is an indicator for the impact
of NPIs. Here, we analyzed a data set provided by the MITMA
that analyzed the evolution of mobility through anonymized
mobile phone data from about 13 million users (see the Methods
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section for more details). The data indicated that already before
the lockdown, there was a substantial reduction in mobility from
March 10 onward (Figure 1A). The initiation of this decrease
coincided with the first regional NPIs introduced in Madrid and
in the Basque country. Furthermore, the early reduction was
consistent with an increase in COVID-19–related searches on
Google (Figure S1, Multimedia Appendix 1). During the
lockdown, mobility was about 50% of the prepandemic level.
Mobility increased from the end of the stronger lockdown
toward the end of lockdown to about 60%.

Here, we referred to the aggregated, nationwide number of trips.
However, the reduction in mobility was heterogeneous. For
example, long-distance trips exhibited a much greater reduction
than short trips, and long trips were only about 15%-20% of the
prepandemic level (Figure 1B). A more detailed overview on
the evolution of mobility during the lockdown is provided in
Figures S2 and S3, Multimedia Appendix 1. Furthermore, there
were regional heterogeneities. If we look at the provincial level
(administrative subdivisions of CCAA), the strongest-hit
province in terms of infections, Madrid, showed the highest

reduction in mobility (Figure 1C). Similarly, highly affected
provinces, such as Álava and Barcelona, were among the 5
provinces with the highest mobility reduction.

In fact, we found a pronounced correlation (R=–0.74) between
the mobility level and the number of cases (Figure 1D) prior to
the lockdown, which then substantially reduced during the
lockdown (Figure S5, Multimedia Appendix 1). Interestingly,
we observed a stronger correlation with the absolute number of
cases than with the population size. The same held true for
hospitalizations, ICU admissions, and fatalities (Figure S6,
Multimedia Appendix 1).

We did not find regions with increased traffic on the days
preceding the lockdown (Figure S7, Multimedia Appendix 1).
In addition, the economic level or the fraction of individuals
belonging to the working population did not seem to have been
factors that determined the mobility level (Figures S8 and S9,
Multimedia Appendix 1). However, we observed a general
tendency that the reduction in mobility was greater in urban
areas than in rural ones (Figures S8 and S9, Multimedia
Appendix 1).

Figure 1. Evolution of mobility during the first wave. (A) Average, nationwide aggregated mobility before and during the lockdown. Dots indicate the
data points, while the solid line shows a rolling centered 7-day average. Vertical dashed lines indicate the first NPIs introduced in Spain on March 10
(school closure in Madrid and Basque Country) and the announcement of the lockdown on March 13. The shaded area in light gray indicates lockdowns
1 and 3. In dark gray, we indicated lockdown 2, where, in addition, all nonessential economic activity was shut down. (B) Nationwide aggregated
mobility but separating the distances of trips. Dots indicate data points, and the solid lines represent a rolling centered 7-day average. In general,
long-distance trips showed a much higher reduction than shorter trips. (C) Mobility level during the lockdown (March 15-May 2) for the total number
of trips in the provinces (administrative subdivisions of CCAA) of Spain. Ceuta and Melilla are not shown. Please note that the Canary Islands (islands
at the bottom) were moved to be visible. (D) Correlation between the accumulated number of cases until the lockdown and the mobility level. Points
represent the provinces of Spain. We excluded the provinces of Madrid and Barcelona since they represent statistical outliers due to their high number
of cases. For completeness, the results with these provinces included are shown in Figure S4, Multimedia Appendix 1. The factor R and P denote the
Pearson correlation coefficient and the associated P value. Similarly, the Spearman correlation coefficient was found to be –0.7 with P<.001. CCAA:
Comunidades Autonomas; NPI: nonpharmaceutical intervention.

Estimation of Rt
Figure 2A shows how the exposure times substantially
anticipated the reported infections. The respective curves peaked
with a delay of 16 days. In Figure 2B, we observe how the 3
linear segments capture the essential evolution of Rt.
Additionally, we see a minimal variation in Rt during the
lockdown, and the second breakpoint aligns with the lockdown

implementation on March 15. Given that the average incubation
time is about 5 days, this indicates a substantial delay from
symptom onset until individuals were tested, results were
received, and eventual positive cases were reported. We repeated
the same analysis for each CCAA (Figure 2D and Figure S10,
Multimedia Appendix 1). The delay ranged, among the CCAA,
between 8 days in Extremadura and 20 days in Catalonia.
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Given the exposure times, we inferred the reproduction number
Rt shown in Figure 2B. We estimated that initially, the epidemic
spread with a reproduction number of around 3. Rt started to
decrease on March 5/6 according to the linear segments we
identified. Furthermore, the first time Rt was below 1 was
shortly after the beginning of the lockdown: between March 15
and 17. Repeating the same analysis for the regions, we observed
that Rt dropped below 1 in all CCAA between March 13 and
21 (see Figure 2E). Please note that the nationwide data are
strongly dominated by Madrid due to the high case numbers
there. The evolution of the reproduction number in the CCAA
is shown in Figure S11, Multimedia Appendix 1.

Although Rt dropping below 1 shortly after the lockdown was
expected, the early decrease in Rt that was initiated on March
5/6 was rather surprising. At this point, no NPIs were in place
and we did not observe any reduction in mobility. Furthermore,
test-trace-isolate was implemented on such a small scale that it
seems unlikely to have substantially contributed to the decrease.

A possible explanation for this early reduction in Rt could be
a saturation in testing capacity.

Looking at the temporal evolution of the delays between
infection and reporting dates, we found an indication that the
health care system was under increased strain to test and report
infected individuals. The delay between infection and reporting
continuously increased toward the peak in infections (Figure
2C). Although initially, we found a delay of 12 days, it increased
steadily toward the peak of 16 days. Furthermore, this pattern
was consistent across almost all CCAA. The only CCAA that
showed a reduction in the delay toward the peak were Aragon
and Extremadura (Figure S12, Multimedia Appendix 1).
Interestingly, these were the CCAA with the lowest delay
between the peak in infections and reported cases (Figure 2D)
and were the last CCAA to have an Rt below 1 (Figure 2E).
This further supports the hypothesis that there was a general
overload on the testing facilities that impacted the evolution of
Rt, which in turn may have led to the anticipated decrease in
Rt.

Figure 2. Reconstruction of the exposure times and estimation of Rt. (A) Cases when they were reported (blue), onset of symptoms (yellow), and
reconstructed exposure times. Dots indicate data points and the solid line a rolling centered 7-day average. The shaded area for the exposure times
represents 95% credible intervals. (B) Estimation of Rt. Vertical bars indicate 95% credible intervals. The dashed yellow line represents the 3 linear
segments we identified. The shaded yellow area shows the 95% credible interval for the 2 breakpoints. The 2 breakpoints are between March 5 (95%
CI 4-6) and March 15 (95% CI 14-16), where the latter coincides with the implementation of the lockdown. (C) Delay between exposure time and
reporting date. The position is defined with respect to the peak. To be more precise, we showed the time difference when both curves reached x% of
their peak value. The 3 points (beginning, middle, and peak) correspond to 5%, 50%, and 100%, respectively, of daily infections compared to the peak
incidence. Each point corresponds to a CCAA. Gray lines indicate how the delay evolves for each CCAA. We note that the delay steadily increased
toward the peak in almost all CCAA. (D) Blue and red dots indicate the day the curves of the reported cases and exposure times reached their respective
peaks. The number in between denotes the difference in days between these dates. (E) The day Rt was first below 1 in the different CCAA. Horizontal
bars indicate 95% credible intervals. CCAA: Comunidades Autonomas.

Model-Based Inference
Figure 3A,B shows the fit of the minimal epidemic model with
respect to the fatalities and hospitalizations, respectively. The
adjusted curve for the fatalities peaked slightly later compared
to the real data. This could stem from the faster decrease in

reported fatalities compared to the excess deaths. Looking at

RtM, we found R1=3.27 (95% CI 3.01-3.61) and R2=0.66 (95%
CI 0.64-0.67). Both R1 and R2 were consistent with the
estimation from the reported cases, Rt. Given the generation
time we used here, this resulted in a doubling time of 2.55 days
(95% CI 2.32-2.78) during the free phase and a half lifetime of
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9.11 (95% CI 8.72-9.56) days after the lockdown. The small
doubling time suggests how the considerable delay between
infection and reporting dates may have contributed to a
substantial discrepancy between the actual epidemiological
situation and the one that we could infer from the data. However,
the low value of R2, together with the half-life time, shows the
efficiency of the lockdown during the first wave and how it
contributed to the low case numbers during the early summer
months.

Let us turn now to the initiation of the epidemic response. The

model adjustments yielded the initiation of the decrease in RtM

on March 10 (95% CI 8-12), contrasting with the decrease in
Rt on March 5/6. This suggests that the early decrease was due
to an overload in the health care system, which eventually
impeded testing infected individuals. The initiation of the

decrease in RtM was consistent with the reduction in mobility.

In Figure 3C,D, we contrast the reduction in mobility with RtM.
Note that we weighted the mobility reduction by various daily
epidemiological indicators—reported cases, fatalities,
hospitalizations, and ICU admission—in the different provinces

rather than by population. Hence, we accurately reflected the
impact of mobility reduction on the evolution of the epidemic.
Note that there was an additional, even though less rapid,
decrease in mobility from March 15 onward. However, results
from the sensitivity analysis (Figures S16-S18, Multimedia
Appendix 1) suggest that the reproduction number reached a
stable value timely after the lockdown. In this sense, the impact
of the additional decrease in mobility on the epidemic seems
not to have been substantial.

The eventual saturation of testing capacity also had
consequences for ascertainment, that is, the fraction of cases
that were detected compared to the total number of infections.
We assumed our model output to be the total number of
infections and compared it to the number of infections (exposure
times) that we inferred previously. We noted that initially,
ascertainment was only around 5% and subsequently increased.
However, it then substantially dropped around May 5/6 before
eventually starting to increase again. This substantial increase
was consistent with the pronounced expansion in testing capacity
in the middle of April (Figure S19, Multimedia Appendix 1)
that enabled the detection of around 15% of the infections.

Figure 3. Model adjustment to epidemiological data. (A and B) Model adjustment to the daily hospitalizations and fatalities, respectively. The green
and light-green shaded areas represent 50% and 95% credible intervals, respectively. The solid line represents the median. (C) Inferred evolution of

RtM. The dashed vertical line indicates the implementation of the lockdown. (D) Aggregated mobility level of the Spanish provinces prior to the lockdown
and shortly afterward. Instead of averaging by population size, we averaged by different daily epidemiological indicators to visualize the impact of

mobility reduction on epidemic evolution. This is in analogy with the definition of Rt [31]. We observed that mobility and RtM started to decrease
around the same time. ICU: intensive care unit.

Counterfactual Scenarios
The results of the counterfactual scenarios, shown in Figure
4B-D, indicate that the absence of an epidemic response before
the lockdown would have resulted in an attack rate of 8.6%
(95% CI 7.1-11.0), which is more than 50% higher than the
actual value. The higher attack rate would then have resulted

in 45,400 (95% CI 37,400-58,000) fatalities and 182,600 (95%
CI 150,400-233,800) hospitalizations compared to 27,800
fatalities and 107,600 hospitalizations, respectively, that were
reported. In other words, the results suggest that the pandemic
response before the lockdown contributed substantially to
limiting the impact of SARS-CoV-2 during the first wave in
Spain.

JMIR Public Health Surveill 2023 | vol. 9 | e40514 | p. 7https://publichealth.jmir.org/2023/1/e40514
(page number not for citation purposes)

Steinegger et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Ascertainment and counterfactual scenarios. (A) Evolution of ascertainment in time. Ascertainment is defined as the ratio between the reported
cases and the incidence from the adjusted model. We compared the date of infection (exposure time) instead of the reporting date. We noted a sudden
decrease from March 5/6 toward the lockdown. Later, the testing capacity substantially increased, which increased ascertainment (Figure S19, Multimedia
Appendix 1). (B) Counterfactual scenarios for the attack rate, death toll, and total number of hospitalizations. The counterfactual scenarios consist of
shifting the breakpoint BP by x days. If the BP exceeded March 15 (ie, lockdown), no further shift was applied. We noted how the response before the
implementation of the lockdown substantially contributed to limiting the impact of the epidemic.

Discussion

Principal Findings
Our analysis of large-scale mobility data revealed a significant
reduction in mobility initiated before the lockdown.
Additionally, we discovered a strong correlation between the
decrease in mobility before the lockdown and the number of
reported cases across Spanish provinces. Although the direct
analysis of reported infections suggested a reduction in the
reproduction number preceding the decrease in mobility, the
model-based inference using hospital admissions and deaths
primarily attributes this to a declining reporting rate as the
epidemic progressed. The model-based inference indicates a
simultaneous decrease in mobility and the reproduction number.
According to our counterfactual scenarios, we estimate that the
reduction in the reproduction number before the lockdown
reduced the attack rate, hospital admissions, and deaths by over
30%.

The direct analysis of reported cases revealed a constant increase
in the delay between exposure and notification as the epidemic
peaked. An average delay of 16 days highlights the late testing
of symptomatic individuals, a significant test turnaround time,
and considerable notification delays. Studies have reported
similar delays in other countries [17,20]. Such delays obstruct
accurate evaluations of the epidemiological situation and hinder
effective epidemic response management [45].

The increasing reporting delay also suggests a saturation in
testing capacity. We hypothesized that the reduction in mobility
before the decrease in Rt resulted from a worsening reporting
rate. Our model-based approach supports this hypothesis,
indicating an epidemic evolution consistent with the reduction
in mobility, as found in other studies [15-17,46]. Moreover,
ICU capacities seemed to have reached their limits. Specifically,
ICU admissions among 70-79-year-olds peaked earlier than for
younger age groups in the hardest-hit provinces, Madrid and
Barcelona, indicating a change in admission criteria. These
factors illustrate the immense pressure the Spanish health care
system faced during the first wave.

The decrease in mobility began on March 9/10, 5-6 days before
lockdown implementation. Linka et al [17] observed a similar
decrease in mobility before lockdown introductions in other
Western European countries. Identifying the exact cause of the
early mobility decrease is challenging, as various factors are
likely to have contributed to the decline. Worsening situations
in many countries, reported in the media [47] and further
disseminated through social networks [48], might have increased
public awareness. In line with this increased awareness, the
usage of SARS-CoV-2–related hashtags in Spain surged from
March 9 onward [49]. We also found a significant correlation
between mobility levels and the number of cases at the
provincial level, suggesting the presence of risk-based individual
awareness [50]. Other studies have identified risk-based
awareness for SARS-CoV-2 [51,52], as well as for HIV [53]
and measles [54].

The correlation between mobility and reported cases was
especially high before lockdown implementation, as contact
reduction mainly occurred voluntarily (Figure S5, Multimedia
Appendix 1). However, the first autonomous communities
announced educational system closure on March 9, with many
others following suit. These factors are interconnected, as public
awareness of COVID-19 influences voluntary social distancing,
and individuals' attitudes toward the disease also impact
authorities' decisions. Moreover, lockdown announcements can
have similar effects as their implementations [55]. Our results
should not be interpreted as lockdowns and NPIs being generally
ineffective. Various studies have emphasized the impact of NPIs
[18,56]. Our findings, however, highlight the complex interplay
between risk-based and policy-induced behavioral changes and
challenge a mechanistic understanding of NPIs, where any
reduction in the reproduction number is solely attributed to
policy [10,19]. In summary, studies analyzing the impact of
public health policies should also account for voluntary
behavioral changes beyond NPIs.

At the beginning of the model dynamics on February 10, we
estimated around 1100 infectious individuals. In contrast, the
first case of local transmission in mainland Spain was reported
on February 26. This discrepancy underscores how
SARS-CoV-2 initially spread silently through the population.
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This observation aligns with the excess deaths attributed to
influenza in February 2020 in Catalonia [57]. In line with this,
the model consistently predicts more fatalities at the beginning
of the epidemic than were reported.

Our counterfactual study demonstrates that the early decrease
in mobility significantly contributed to mitigating the impact
of the first wave in Spain. Our results suggest that if the
epidemic response had started with the lockdown
implementation on March 15, the attack rate would have been
8.6%, resulting in 180,000 hospitalizations and 45,000 fatalities,
an increase of 60%-70% in these indicators. This finding
indicates that in addition to the national lockdown, the
combination of awareness and regional measures helped slow
the spread of SARS-CoV-2 in Spain. Shifting the entire
epidemic response, including the lockdown, would have led to
twice/half as many infected individuals for every 2.5 days
later/earlier. This emphasizes the importance of timely
containment efforts in managing emerging epidemics
[7,19,20,58].

Limitations
Several aspects of our analysis could be improved if more
detailed data were available. For instance, the epidemiological

model could be age-stratified if relevant data were available for
Spain regarding symptom onset to hospitalization and death
[36]. The same applies to geographical heterogeneity. If case
line data were available at the regional level, autonomous
communities could be treated separately [35]. In the absence of
such data, age or location stratification is not feasible. Access
to data that are not publicly available, unlike in other countries
[4], would enable a more detailed and comprehensive analysis
of the 2020 SARS-CoV-2 epidemic in Spain [11,12].

Conclusion
Summarizing, this study emphasizes that the behavioral response
to an epidemic is multifaceted, driven by both voluntary
decision-making and health authorities' policies. Although our
results indicate that the reproduction number reached its lowest
point during the lockdown in Spain, they also suggest a decrease
before the implementation of any containment policies.
Disentangling voluntary from policy-induced behavioral changes
remains a future challenge, as this interplay involves individual
psychology, societal dynamics, and pathogen spread [59].
However, understanding this complex interplay is crucial for
designing better health policies and accurately assessing the
need for public health interventions.
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