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Abstract
Shortest paths are representative of discrete geodesic distances in graphs, andmany descriptors of
networks depend on their counting. Inmultiplex networks, this counting is radically important to
quantify the switch between layers and it has crucial implications in the transportation efficiency and
congestion processes. Here we present amathematical approach to the computation of the joint
distribution of distance andmultiplicity (degeneration) of shortest paths inmultiplex networks, and
exploit its relation to congestion processes. The results allow us to approximate semi-analytically the
onset of congestion inmultiplex networks as a function of the congestion of its layers.

1. Introduction

Shortest paths in graphs are defined as paths between two nodes such that the sumof theweights of the links
composing the path isminimized [1]. The computation of shortest paths is of utmost importance to determine
the efficiency of the network to exchange information [2], to compute the load of nodes (defined as the number
of shortest path traversing it) [3–6], to predict and alleviate congestion [7–10] or to classify networks [11], to
mention some. Themain applications of the finding of shortest paths are routing strategies [12, 13], analysis of
road networks [14], epidemic spreading [15], or analysis of brain activity [16], among others.

The development of efficient numerical algorithms for both the exact and approximate calculation of
shortest paths is a problemby itself that still attracts the attention of computer scientists [17]. The exact
numerical calculation of all the shortest paths from a single node is commonly addressed using thewell-known
Dijkstraʼs algorithmwhose running time is +( )O M N Nlog , whereN is the number of nodes andM is the
number of edges of the graph. Given that, the numerical calculation of shortest paths in large networks is still
computationally expensive.

In particular, the computation of shortest paths is essential for the determination of a fundamentalmeasure
of centrality: edge and node betweenness. The node (or link) betweenness is normally defined as the fraction of
shortest paths between node pairs that pass through the node (or link) of interest. The ranking according to
betweenness [18] is informative about the bottlenecks of a certain network structure, and can be used to
determine themost critical node or linkwith respect to any process traversing the network using shortest paths.
In particular, the nodewith the largest betweenness in a network defines the onset of congestion [7, 19].

The extension of centrality descriptors tomultiplex networks [20–22]prompts for the quantification of the
distribution of shortest paths in this new scenario [23, 24].Multiplex networks are defined as a set of
interconnected layers of networks, where every node has its own replica through all layers, and is connectedwith
them [25–28]. Shortest paths inmultiplex networks are essentially governed by the shortest paths at each layer,
but also by those emerging frompartial paths at different layers and the switch between layers. Here, we present a
method to analytically determine the distribution of shortest paths inmultiplex networks, with special emphasis
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on themultiplicity of shortest paths occurring in thementioned set up. This computation allows us to determine
semi-analytically the feasible region of congestion induced by themultiplex structure [29].

The paper is structured as follows. First, we present the definition of shortest paths inmultiplex networks.
Next, we showhow to compute the distribution of shortest paths in two-layermultiplex networks. Oncewe
provide away to compute the joint distribution of shortest paths and theirmultiplicities in sigle layer Erdős–
Rényi networks, we extend themethod tomultiplex network, and evaluate the accuracy of our analytical
predictions. Finally, we apply our results to the analysis of congestion inmultiplex networks, being able to
predict the region of parameters inwhich themultiplex structuremay induce congestion.

2. Shortest paths inmultiplex networks

Multiplex networksmay, atfirst sight, seem equivalent to single layer networks, just with the difference of having
two kinds of edges: intralayer links between nodes in the same layer, and interlayer links connecting the replicas
of each node in the different layers (see figure 1). However, the fact that the replicas of each node refer exactly to
the same entity, has important consequences on the structural and dynamical properties ofmultiplex networks.

Suppose, for example, we have the transportation network of a city, formed bymetro and bus connections.
Nodes represent the locations of themetro stations and bus stops, and interlayer links allow the transfer from
metro to bus and vice versa. There exists a cost associatedwith each link, which accounts for the time needed to
travel fromone location to another (intralayer links), and the time spent tomake a transfer (interlayer links). A
path in this networkmust take into account both types of cost, thuswe could use any of the standardmethods to
find the shortest paths in graphs. Now, consider that wewant to go from a source locationA to a destination
locationB taking the shortest route, and that wemay start the trip either with bus (A1) ormetro (A2).The
algorithmprovides uswith four different types of paths: two inwhich the origin and destination are both in the
same layer, A B1 1and A B2 2; and twowhere the endpoints belong to different layers, A B1 2 and

A B2 1. Note that neither of the paths are necessary containedwithin a single layer, e.g. a shortest path
betweenA1 andB1 could change layer twice. Sincewe are only interested in going fromA toB, and it is
irrelevant if we start or end the trip in the bus ormetro, some of these shortest paths should be discarded.For
example, if the length of the shortest paths A B1 1 is larger than that for A B1 2, we should discard ending
our traversal at layer1. Thesemeans that, in two-layermultiplex networks, shortest paths between two nodes
may exist in just one layer, in the other layer, in a pathwith transfers (whatwe callmultiplex paths), or in a
combination of them (see figure 1). Consequently, any property depending on paths inmultiplex networksmust
consider the concept of source and destination as being intrinsically different to that of nodes, such as in the
calculation of centralitymeasures [22–24], the analysis of interdependence [30], the analysis of randomwalks
[21], or the study of congestion [29]. The former definition of shortest paths inmultiplex networks imposes the
necessity of correctly computing their distribution andmultiplicity.

3.Distribution of shortest paths in two-layermultiplex networks

The problemwe are going to address is how the distribution of shortest paths changes whenwe take two
different networks (the layers), and connect them to build amultiplex network. The prescriptionwe propose can

Figure 1. Shortest paths inmultiplex networks. An element traveling between locations s and t on themultiplex structure has to
choose a path among the possible ones shown in thefigure. There are 6shortest paths betweens andt, all of themof length3. Purple
lines in panel (a) show classical single layer shortest paths, layingwithin a unique layer. Green lines in panel (b) showmultiplex
shortest paths, whichmake use of interlayer links to jumpbetween layers.
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be easily extended tomore layers, however its combinatoricsmakes themathematical analysismore involved. In
particular, we are interested in two important parameters [29]:λ, the fraction of all shortest paths fully contained
in one layer (i.e. paths which do notmake use of themultiplex option of changing layer using interlayer links);
andμα, the fraction of non-multiplex shortest paths using only layerα. Thus, må =a a 1, and 1−λ amounts
for the fraction ofmultiplex shortest paths. It is important to remark that shortest paths are usually degenerated,
i.e. there aremany shortest paths with the same length, with some of thembeingmultiplex paths; wewill refer to
this degeneration as themultiplicity of the shortest paths.

Previous works have providedmethods to estimate the complementary cumulative probability F(d) that two
randomly selected nodes are separated by a distance larger thand, for certain classes ofmonoplex (single layer)
randomnetworks [31–35]. Thus, the probability distribution f (d) of two nodes being exactly at distanced can be
expressed in terms of the complementary cumulative probability as

= - -( ) ( ) ( ) ( )f d F d F d1 . 1

Wedenote by f1(d), f2(d) and fM(d) the respective distributions of shortest paths fully contained in layer1, in
layer2, or using the fullmultiplex structure. Assuming an unweighted and undirectedmultiplex networkwith
two layers and no degree correlations, wemay use this relation to obtain the fraction ofmultiplex shortest paths:
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The sum starts with d=3, since theminimum length of amultiplex path is 3, i.e. at least one hop in thefirst
layer, another in the second layer, and one to perform the change of layer. Equation (2) expresses the four
possible ways inwhich shortest paths can appear in themultiplex: onlymultiplex paths;multiplex pathsmixed
with paths in layer1;multiplex pathsmixedwith paths in layer2; andmultiplex pathsmixedwith paths in
layers1 and2.Consider for example the case ofmultiplex shortest pathsmixedwith shortest paths in layer1.
This correspond to the paths that have exactly distance d in layer1, f1(d), and in themultiplex, fM(d), and
distance larger than d in layer2, F2(d). For the termswithmixed contributions, the θ(d) factors capture the
fraction of shortest paths that correspond tomultiplex paths. Thismeanswe cannot calculateλ just with the
knowledge of the shortest paths distributions f (d) and F(d), we also need to estimate themultiplicity of the paths
of each type.

Let us denote by P1(d,f),P2(d,f) andPM(d,f) the probabilities that randomly chosen source and
destination (discarding layer, i.e. locations in our example) are exactly at distancedwithmultiplicityf, for
paths infirst layer, second layer, and in themultiplex, respectively. The averagemultiplicities fá ñ ( )d1 , fá ñ ( )d2

and fá ñ ( )dM for each kind of path can be expressed as:
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Additionally, the distributions f (d) can be recovered asmarginals ofP(d,f):

å f a= Îa
f

a
=

¥

( ) ( ) { } ( )f d P d a, , 1, 2 , 5
1

å f=
f=

¥

( ) ( ) ( )f d P d b, . 5M M
1

Similarly to (2), wemay use the distributions F(d) and f (d), and themultiplicity factors θ(d), to calculate how
the non-multiplex shortest paths are distributed among the layers. The expression for the first layer reads:

åm q= +
=

¥

( )[ ( ) ( ) ( )] ( )f d F d d f d , 6
d

1
1

1 2 1 2

3

New J. Phys. 21 (2019) 035003 A Solé-Ribalta et al



where
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Equivalent expressions hold forμ2, andμ1+μ2=1.
Summarizing, we have set all the necessary ingredients to analyze the use of themultiplex structure and of

the layers in terms of the joint distributions P1(d,f),P2(d,f) andPM(d,f). In the next sections we develop
expressions for each of these probabilities.

4.Multiplicity of shortest paths in Erdős–Rényi networks

The analytical calculation of the joint probability that two nodes are exactly at distance dwithmultiplicityf,P(d,
f), for any type ofmonoplex networks, is quite involved, thuswe are going to restrict our analysis to Erdős–
Rényi networks. However, it would be possible to trywith other types of uncorrelated randomnetworksmaking
use of hidden variables as in [31].

An Erdős–Rényi network is characterized by twoparameters, the number of nodesN, and the probability p
that an edge exists between any pair of nodes. Thus, wewill use the notation Pp,N(d,f) to refer to the joint
distance andmultiplicity distribution for these networks. Clearly, at d=1,

=( ) ( )P p a1, 1 , 8p N,

f f= " >( ) ( )P b1, 0, 1, 8p N,

sincewe do not allowmultiple edges between pairs of nodes. The case d=2 can be obtained as the probability of
not having a shortest path of length1 times the probability of having exactlyf different shortest paths of
length2. Since paths of length2 have just one intermediate node, we have to choosefnodes among theN−2
available to build thef shortest paths. Formally

f
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Note that the existence of paths of length2 has probability p2, thus p2f expresses the probability of havingf
paths of length2, and - f- -( )( )p1 N2 2 the probability that the rest of the (N−2)−fnodes are not used to
build shortest paths of length2.Using the same procedure, the generalization to larger distances becomes
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is the probability density function of the binomial distributionwith probability p d. The termwithin square
brackets in (10) computes the probability of not having any path at distance lower thand.Although (9) is exact,
(10) is an approximation because it does not consider that some shortest pathsmay share some (but not all) of
their links.

5.Multiplicity inmultiplex networkswith Erdős–Rényi layers

Wenow address the computation of the joint distribution PM(d,f) for amultiplex network composed of two
Erdős–Rényi layers, withNnodes each, edge probabilitiesp1 andp2, andwithout interlayer degree correlations;
wewill refer to it as f( )P d,p p N, ,1 2

, to emphasize the dependence on these structural parameters.Multiplex
shortest paths are characterized by the number of interlayer links they contain, i.e. howmany times the path
changes fromone layer to the other, see figure 2.We restrict our analysis to shortest paths that change layer only
once, since the number of shortest paths withmultiple jumps between layers is usually very small, thusmaking
their contribution negligible, and the generalization of themathematical formulation for two ormore jumps is
not difficult but generates very long expressions.
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For eachmultiplex shortest pathwhich has just one change of layer, as infigure 2(a), oncewe have selected
the origin and destination, wemay choose the intermediate switch node among the remainingN−2. Sincewe
are considering amultiplicityf ofmultiplex shortest paths between these origin and destination nodes, the paths
may be distributed inmany different ways. For example, iff=10, we could select7 shortest paths to use one
intermediate switch node, and the remaining3 to choose another one. The set of all structurally different
distributions of one-jumpmultiplex shortest paths is given by the partition set of the given integermultiplicityf.
Thefinding and counting of the number of partitions of an integer number constitutes a classical problem in
number theory [36], e.g. they can be enumerated using Young diagrams [37].Wemay express the set of available
partitions as:

   åf f f f f fF F= Î ¼ = -
f F

F
= =

( ) { ⋃ { } ∣ ∣ } ( )
∣ ∣

∣ ∣ N1, , : , , 2 . 13
r

r

i
i

1 1
1

For example,f=4 can be partitioned infive different ways:  =( ) {( )4 4 , (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)}. If
N=5, wewould have only 3possible intermediate nodes, and partition (1, 1, 1, 1) should be discarded, hence
the F -∣ ∣ N 2 condition added to (13).

Once a partitionΦ is selected, we need to consider the different ways inwhichwe can choose the
intermediate nodes, and the different ways inwhich themultiplicitiesfi are assigned to the selected set of
intermediate nodes. Gathering together all these contributions, wemaywrite the joint distribution ofmultiplex
shortest paths as:


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where the combinatorial number accounts for the selection of intermediate switch nodes, F( )C for the
assignment of individualmultiplicities, ( )R dp p N, ,1 2

stands for the probability of not havingmultiplex paths of
length lower or equal thand, and F( )Q d,p p N i, ,1 2

stands for the joint probability of having one-switchmultiplex
shortest pathswith known intermediate jumpnode. FactorC(Φ) is just themultinomial coefficient
corresponding to the frequencies of the components ofΦ. For example, ifΦ=(14, 3, 3), there are three
components, the14with frequency1 and the3with frequency2, leading toC(Φ)=3!/(1! 2!)=3, which
corresponds to the 3ways inwhichwe can sort the components ofΦ, i.e. (14, 3, 3), (3, 14, 3) and (3, 3, 14).

Figure 2. (a) Shortest path in themultiplex network containing a single interlayer link. (b) Shortest path in themultiplex network
including two interlayer links.
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Probability ( )R dp p N, ,1 2
admits a simple expression:

å å f= -
f= =

¥

( ) ( ) ( )R d Q s1 , , 15p p N
s

d

p p N, ,
1 1

, ,1 2 1 2

However, f( )Q d,p p N, ,1 2
still requires further decompositions. Althoughwe know the origen, destination and

intermediate nodes, the total lengthd of the paths, and the totalmultiplicityf, it remains to establish: the
layerα at which the path starts; the lengthℓcovered in layer1 (the rest of the path in layer2will have length
d−ℓ−1); the distribution of themultiplicities between the two layers.Moreover, whenf>1, wemay have a
combination of paths starting at different layers, with different lengths in each layer, andwith different
distribution of themultiplicities per layer. Denoting byψα,ℓ, β themultiplicity of paths in layerβ, when they
start in layerα and have lengthℓin layer1, the set of possible decompositions of themultiplicity can bewritten
as:

 å åf f y y fY= Î ¼ =
a

a a
´ - ´
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ℓ ℓ
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2
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2
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Note that apaths arriving to the switching node in one layer, and bpaths departing from it in the other layer,
generate ab different paths in themultiplex, hence the products inside the sums in (16). An example of a
decompositionΨ of ( )5, 10 could be: 2paths of length2 starting in layer1, followed by 3paths of length2 in
layer2 (amounting 6paths), plus 1path of length1 starting in layer2, followed by 4paths of length3 in layer1
(amounting 4paths), which correspond toψ1,2,1=2,ψ1,2,2=3,ψ2,3,2=1 andψ2,3,1=4 (the rest of the
components are zero). In practical terms, the calculation of  f( )d, involves:finding the partitions off;
factorizing the parts as products of two integers, by calculating all their divisors; choosing initial layer; and
dividing the total length as the sumof the lengths in each layer plus one.

Using the decomposition set in (16), wemay finally calculate the remaining probabilities in (14) and (15):


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Note the presence of the joint probabilities (10) for single layer Erdős–Rényi networks, which account for the
subpaths of themultiplex shortest paths fully contained in each of the layers.

6. Evaluation of analytical predictions

To check the validity of our calculations of the distribution of paths inmultiplex networks, we have generated a
large set of two-layermultiplex networkswith uncorrelated Erdős–Rényi layers, and compared the predicted
valueswith the experimental ones. In particular, we have analyzedmultiplex networkswith 500nodes in each
layer, for a total of 502 different configurations. These configurations correspond to 50logarithmically spaced
values of the average degree á ñk of each layer, with values ranging between5 and35. For each configuration, we
generate 100differentmultiplex networks, calculate their experimental values ofλ andμ1, and take averages.
These averages are then comparedwith the predicted values using (2) and (6), respectively. The analytical values
only considermultiplex shortest pathswith just one change of layer (as discussed above), and contributions from
multiplicities larger than100 have been discarded. The results are presented infigure 3, which shows an
excellent agreement between theory and experiments.

When the average degree of an Erdős–Rényi network is large, its average shortest path length is small [31],
thus it is difficult tofindmultiplex shortest paths since the overhead of changing layer has to be compensated
with very short paths in the layers. As a consequence, the fractionλ of shortest paths fully included in one of the
layers tends to1, as shown infigure 3(a). If we reduce these average degrees, the shortest paths of the layers
become larger, and the opportunities tofindmultiplex shortest paths increases, yielding lower values ofλ. In the
extreme cases inwhich the average degrees are very small,multiplex shortest paths becomemore common, and
it is even possible tofind shortest pathswith two ormore changes of layer; this is the reason for the small
deviations between the experimental and predicted values ofλ for small á ñ + á ñk k1 2 .

Figure 3(b) shows also that non-multiplex shortest paths tend to be concentrated in the layer with largest
average degree, i.e. with smaller average shortest path length. Thus, parameterμ1 approaches value1when
á ñ á ñk k1 2 , and0when á ñ á ñk k1 2 .
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7. Congestion inmultiplex networks

Shortest paths play an important role in congestion phenomena in complex networks.When elements
(packages, vehicles, etc.) travel a network using shortest paths, the load of the nodes is directly related to the
number of shortest paths thatmake use of them. If the capacity of some nodes to process these elements is lower
than their incoming rate, congestion emerges [7]. In the general case ofmultiplex networks [29], it was shown
that congestion appears when the injection rate per node, ρ, reaches a critical value ρc:

*
r t=

-- ( )L
N 1

, 18c
1

where τ is the processing capacity of the nodes, and * is themaximumbetweenness of all nodes in all layers of
themultiplex network. Additionaly, as it is shown in [29], themaximumbetweenness found in themultiplex can
be approximated in terms of the betweenness of themost efficient layer,ℓ, as * * lm» ℓ ℓ. Specifically,ℓis the
layer for which the onset of congestion is larger than for the rest of the layers, when layers are considered as
independent networks. Thus, the onset of congestion ρc becomes

r
lm

r» ( )
ℓ

ℓ( )

L

1
, 19c c

where r ℓ( )
c is the critical injection rate of layerℓ, given by (see [7])

*
r t=

- ( )ℓ

ℓ

( ) N 1
. 20c

For example, if layer one is themost efficient,ℓ=1, andwe have two layers, L=2, thefirst layer of the
multiplex acceptsmuchmore load than the second layer before congestion appears, thus r r>( ) ( )

c c
1 2 .Whenwe

connect these two layers to form amultiplex, there exists amigration of shortest paths from the second to the
first layer, which increases its load, eventually becoming responsible for the onset of congestion of themultiplex.
This increases the congestion of themost efficient layer, as shown in (19). An important consequence of this
redistribution of shortest paths in themultiplex, and the appearance ofmultiplex shortest paths, is that the
multiplexmay attain congestionwith lower load than for any of its separated layers, the so-called congestion
induced by themultiplex structure [29]. In our example, this happenswhen r r< ( )

c c
2 . By combining this

inequality with (19) and (20), we obtain the condition for having congestion induced by themultiplex:

*
*



lm ( )L . 211
2

1

Wehave shown above how to analytically estimate the values ofλ andμ1, by using (2) and (6), respectively.
However, the estimation of *a in terms of the structural properties of the network is not straightforward.We
have experimentally observed that the relationship between themaximumbetweenness (excluding endpoints)
and á ñak follows a power lawwith exponent−1, with a constant proportional toN−1 and to the average
multiplicity found in Erdős–Rényi networks of the same size, *fá ñ . Thus, wemay express themaximum
betweenness as

Figure 3. (a)Evaluation of the accuracy of (2) on predictingλ, the fraction of non-multiplex shortest paths. (b)Evaluation of the
accuracy of (6) on predictingμ1, the fraction of non-multiplex shortest paths contained in thefirst layer. Each experimental point is
the average of 100two-layermultiplex networkswith Erdős–Rényi layers.
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* * f» - á ñ á ñ + -a a
-( ) ( ) ( )N k N1 2 1 , 221

where

*
 

åf fá ñ = á ñ
á ñ á ñ =

á ñ

á ñ

( ) ( )
d

dmax
1

. 23
k N k d

d

k
2 1

k

The term á ñd k corresponds to themaximumexpected distance in an Erdős–Rényi networkwith average degree
á ñk , and fá ñá ñ( )dk to the averagemultiplicity in (3a) for that network.

We show infigure 4 the estimated region of the parameters space inwhich congestion is predicted to be
induced by themultiplex structure, formultiplex networks composed of Erdős–Rényi layers, in good agreement
with the experimental results.

8. Conclusions

Wehave presented amethod to compute themultiplicity and distribution of shortest paths inmultiplex
networks. Using themethod, we have analytically determined the distribution andmultiplicity of shortest paths
in duplex of Erdős–Rényi networks. This results are essential to determine the onset of congestion onmultiplex
structures, as for example inmanymultimodal transportation networks.We can use the analyticalfindings to
determine the area of the phase diagramwhere themultiplex can induce congestion. This work is relevant for
any dynamical process that uses shortest path as a routing strategy inmultilayer networks.
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