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Abstract The rapid growth of population in urban areas is jeopardizing the mobility
and air quality worldwide. One of the most notable problems arising is that of traffic
congestion which in turn affects air pollution. With the advent of technologies able
to sense real-time data about cities, and its public distribution for analysis, we are in
place to forecast scenarios valuable to ameliorate and control congestion. Here, we
analyze a local congestion pricing scheme, hotspot pricing, that surcharges vehicles
traversing congested junctions. The proposed tax is computed from the estimation of
the evolution of congestion at local level, and the expected response of users to the
tax (elasticity). Results on cities’ road networks, considering real-traffic data, show
that the proposed hotspot pricing scheme would be more effective than current mech-
anisms to decongest urban areas, and paves the way towards sustainable congestion
in urban areas.
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1 Introduction

Urban life is characterized by a huge mobility, mainly motorized. Amidst the com-
plex urban management problems there is a prevalent one: traffic congestion. INRIX
Traffic Scorecard (http://www.inrix.com/) reports the rankings of the most congested
countries worldwide in 2014. US, Canada and most of the European countries are in
the top 15, with averages that range from 14 to 50 hours per year wasted in conges-
tion, with their corresponding economic and environmental negative consequences.
Several approaches exist to efficiently design road networks (Yang et al. 1998; Szeto
et al. 2015) and routing strategies (Bast et al. 2007; Qian and Zhang 2013), how-
ever, the establishment of collective actions to prevent or ameliorate urban traffic
congestion require further improvements, given the complex behavior of drivers.

An striking, as well as controversial, strategy to address the problem is congestion
pricing (Boarnet et al. 2014; De Palma and Lindsey 2004; Friesz et al. 2004). It
consists in taxing vehicles for accessing a road/area, at certain times, based on the
supply-demand model (Samuelson et al. 1995). Since the supply quantity is fixed
(no more lanes or roads are usually added to the transportation network) the access
to demanded areas is taxed. Two main types of congestion pricing (de Palma and
Lindsey 2011) exist: i) road pricing, where vehicles are charged for using a particular
road section —such as freeways, ring roads, tunnels or bridges—, and ii) cordon
pricing, where vehicles are charged to access a particular zone susceptible to traffic
congestion —such as historical towns, business districts or simply crowded areas—.
A similar variant is area pricing, where the tax applies per day. While road pricing
is usually understood as a Pigovian tax to compensate for the externalities caused
by drivers (Arnott and Small 1994), cordon pricing can be understood solely as an
incentive for reducing the traffic congestion and improving the air quality of the city
(Parrish and Zhu 2009), but eventually also becomes a tax income for urban areas.

Generally speaking, cordon/area pricing is, in general, effective in reducing the
overall amount of cars accessing restricted areas and reducing pollution (Moroni et al.
2013; Beser Hugosson and Eliasson 2006) but it is still insufficient to reduce conges-
tion hotspots within the taxed zone. These hotspots usually correspond to junctions
and are problematic for the efficiency of the network as well as for the health of
pedestrians and drivers. It has been shown (Petersson 1987) that drivers in-queue
are the most affected collective to car exhaust pollution inhalation. In addition, these
hotspots are usually located in the city center, magnifying the problem (Raducan and
Stefan 2009). Assuming that congestion is an inevitable consequence of urban motor-
ized areas, the challenge is to develop strategies towards a sustainable congestion
regime at which delays and pollution are under control.

Since ten years ago the scientific community has proposed models to analyze the
problem of traffic congestion (Tadić et al. 2004; Zhao et al. 2005; Gawron 1998;
Nagel et al. 2008) and decongestion (Singh and Gupte 2005; Yan and Lam 1996;
Arnott et al. 1993), pollution generated by traffic (Kickhöfer and Nagel 2016; Grote
et al. 2016; Misra et al. 2013; Panis et al. 2006), transitions between traffic states
(Guimera et al. 2002; Echenique et al. 2005; Kim et al. 2009), and the design of
optimal topologies (Donetti et al. 2005; Danila et al. 2006; Barthélemy and Flammini
2006; Li et al. 2010) and algorithms (Ramasco et al. 2010; Scellato et al. 2010)

http://www.inrix.com/
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to avoid it. The focus of attention of most of the previous works was the onset of
congestion, which corresponds to a critical point in a phase transition, and how it
depends on the topology of the network and the routing strategies used. However, the
proper analysis of the system after congestion has remained analytically slippery. It
is known that when a transportation network reaches congestion, the travel time and
the amount of vehicles queued in a junction diverge (Dorogovtsev et al. 2008).

Here, we rely on our Microscopic Congestion Model (MCM) to identify urban
traffic hotspots in real scenarios and devise a mechanism to palliate its conges-
tion (Solé-Ribalta et al. 2016). The mechanism is a taxing scheme that charges
directly vehicles crossing congested spots (junctions) considering the overall topo-
logical structure and traffic functionality of the network. The aim is to eliminate the
congestion hotspots using a network topology pay-per-use scheme. Specifically, we
build up a flow model based on two steps: (1) detection of the hotspots using MCM,
and (2) prediction of the required tax to be applied to every congested junction to
encourage drivers to divert the excess flow to neighboring and less congested regions.
Our approach follows a similar idea to the one proposed by Vickrey back in 1963
(Vickrey 1963), with the main difference that we now can analytically predict the
model behaviour considering real data.

2 Microscopic Congestion Model for Hotspot Detection

The taxing scheme we propose relies on the identification of the city hotspots.
Although stochastic micro simulations could be used to obtain the required param-
eters, here we focus on a recently developed analytically tractable model, called
Microscopic Congestion Model (MCM) (Solé-Ribalta et al. 2016). The model
assumes the following discrete and stylised car-flowing dynamics. At each time step
vehicles are injected into each junction i of the system by exogenous process at rate
ρi following a given distribution. During the following time steps, vehicles navigate
towards their destination following the shortest-path; the model can also consider
other traffic dynamics, such as diffusion dynamics or random walks, or even other
mobility models such as the gravitational model (Zipf 1946; de Dios Ortuzar et al.
1994) or the radiation model (Simini et al. 2012; Ren et al. 2014). To simulate the
waiting time of vehicles at road junctions, we assign a first-in-first-out queue to each
one.1 We suppose these queues have a maximum processing rate, τi , that mimics
the physical constraints of the junction. That is, at most τi vehicles cross a junction
per unit time. Similar car-flowing dynamics, also based on queues, have been previ-
ously used to develop agent-based models for traffic analysis (Gawron 1998; Cetin
et al. 2003; Raney et al. 2003; Grether et al. 2012) and pricing policies (Yan and Lam
1996; Kickhöfer and Nagel 2016). As it is shown in (Solé-Ribalta et al. 2016) the
previous scenario has a critical generation rate ρc such that, for any generation rate
larger than ρc, the network is not able to route or absorb all incoming vehicles. In

1Alternatively, a more realistic approach would be to attach queues to links instead of junctions, and
modify the equations accordingly. Here, we just rely in MCM as described in (Solé-Ribalta et al. 2016).
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this situation, the total amount of vehicles Q(t) in the network grows proportionally
to time. Locally, each junction of the network has its own critical injection rate ρci

which is governed by its node effective betweenness Bi (Newman 2010), ρci
∝ 1/Bi .

The first junction to reach congestion defines the network critical injection rate, ρc.
The MCM describes the full state of system for any amount of congested junctions.

The MCM is based on assuming that the growth of vehicles observed in each con-
gested node of the network is constant, which corresponds to the stationary state. This
assumption allows us to describe, with a set of balance equations (one for each node),
the increment of vehicles in the junction queues’. Mathematically, the increment of
the vehicles per unit time at every junction i of the city, �qi , satisfies:

�qi = gi + σi − di, (1)

where gi is the average number of vehicles entering junction i from the area sur-
rounding i, σi is the average number of vehicles that arrive to junction i from the
adjacent links of that junction, and di ∈ [0, τi] corresponds to the average of vehi-
cles that actually finish in junction i or traverse towards other junctions. A graphical
explanation of the variables of the model is shown in Fig. 1. The system of Eq. 1
defined for every node i, is coupled through the incoming flux variables σi , that can
be expressed as

σi =
S∑

j=1

Pjipjdj , (2)

where Pji accounts for the routing strategy of the vehicles (probability of going from
j to i), pj stands for the probability of traversing junction j but not finishing at j

and S is the number of nodes in the network.
For each junction i, the onset of congestion is determined by di = τi , meaning

that the junction is behaving at its maximum capability. Thus, for any flux generation
rate (gi), routing strategy (Pij ) and origin-destination probability distribution, Eq. 1
can be solved using an iterative approach to predict the increase of vehicles per unit
time at each junction of the network (�qi). See (Solé-Ribalta et al. 2016) for further
details of the model and a detailed description on how to obtain the system variables.

Fig. 1 Illustration of the variables of the MCM model. (a) Vehicles entering junction i from the area
surrounding i. (b) Vehicles entering junction i from its neighboring junctions. (c) Vehicles leaving junction
i, either to go to other neighboring junctions or to finishing the trip in its surrounding area
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In the following sections, we apply the Hotspot Pricing scheme in cities that are
in the congested regime, �qi(t) > 0 for some junctions. We use the MCM to obtain
the data-driven state of the system. The very basic idea of the hotspot pricing scheme
is to reduce the excess of vehicles that accumulate at the queues of each congested
junction to reach to the desired level.

In this work, we have used two real source and destination distributions, obtained
through Open Data portals, that consider the ingoing and outgoing flux of vehicles
of the cities of Milan (Italy) and Madrid (Spain). Although different origin and des-
tination models can be used (e.g. gravity and radiation models), here we assume a
“Home-to-Work” travel pattern, where vehicles arrive from the outskirts of the city
and go to the city center. Consequently, traffic is generated at rate ρi in the periph-
eral junctions of the network (arrival to the city), go to a randomly selected junction
(arrival to work) and then returns back to a peripheral junction (return home). We do
not consider trips with origin and destination inside the city center since public trans-
portation systems (e.g., train or subway) usually constitute a better alternative than
private vehicles for those trips.

3 Hotspot Pricing Scheme

To reduce congestion levels, we propose to tax the junctions where �qi > 0. Clearly,
the higher the tax, the fewer the drivers that will want to pass through the taxed
junction and consequently the lower the congestion. To estimate the required tax for
each junction, we use the economic concept of elasticity (Frank 2007). The elastic-
ity measures the response of the demand of a good in terms of an increase of its price
and it is formally obtained as the ratio between the relative increase of the demand
of a good and the relative increase of its price. The elasticity has been successfully
used to predict the electricity demand given an increase of its price (Labandeira et al.
2012), to forecast fuel consumption (Dahl 2012), to price in the Internet transit mar-
ket (Valancius et al. 2011) or to obtain airport charges given their passengers profiles
(Pels and Verhoef 2004) and, within the context of transportation planning, to mea-
sure the effect of an increase of fares on the public transport demand (Paulley et al.
2006) or to model the effect and consequences of toll roads (Olszewski and Xie 2005;
Swan and Belzer 2010). Here, we use the elasticity the other way around. Instead of
predicting the traffic demand that we would observe given a tax, we predict the tax
to obtain the desired reduction in the congestion. The elasticities of road taxing and
cordon pricing are negative, meaning that an increase of tax produces a decrease of
the traffic (Litman 2012; Boarnet et al. 2014). These elasticities lay between −0.2
to −0.9 for cordon pricing schemes and between −0.03 to −0.5 for road tolls, and
they depend on the country and on the application. The lower the elasticity the less
reactive is the society towards taxing schemes. Thus, the demand curve with respect
to price follows a power law function which can be fitted given an observation and
a slope (the elasticity). This curve can be used to predict how traffic is affected by
a change of tax. In the rest of the article, we assume that an equivalent tax produces
the same effect on the incoming flow at each junction. Note that this assumption has
been made because of a lack of actual information about the real elasticities, although
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this does not undermine the essential behavior of the model that can be fitted with
observed elasticities when available.

The predicted fraction of flow of vehicles after a tax c is applied (i.e. those vehicles
that decide to pay instead of diverting their paths) is given by:

φ = φ0

(
c

c0

)μ

(3)

where φ0 is the observed fraction of flow after applying the tax c0, and μ is the
elasticity value (see (de Palma and Lindsey 2011) for a detailed description of the
technological implementation of taxes).

To approach zero congestion, the proposed hotspot pricing scheme consists in
taxing each congested junction i (that is, junctions with �qi > 0) to eliminate the
accumulation of vehicles,

ci = c0

(
φi

φ0

)1/μ

= c0

(
1 − �qi

ρi + σi

)1/μ

. (4)

where σi is the total amount of vehicles arriving at junction i per unit time coming
from the neighbouring junctions. The term between parentheses represents the max-
imum flux, with respect to the original incoming flux, the junction can deal with
without being congested.

4 An Application of the Model to the Traffic in Milan

We have analyzed the potential effect of the proposed hotspot pricing scheme using
the predictions of our simulations in the city with largest INRIX value, Milan (Italy).
Milan actually applies a cordon pricing scheme to reduce the transit of vehicles inside
the historical city center; they call “Area-C” to this restricted traffic area. Their taxing
scheme is monitored by camcorders at 43 gates. The individual tax applied depends
on the type of car and also on its activity. The tax ranges from free tax for elec-
tric vehicles, scooters and public transport to 5AC for non-resident vehicles. Results
published by “Comune di Milano” show that, after the cordon charge establishment,
there has been a reduction of approximately 45% of non-resident vehicles and around
35% of the total traffic. This observation allows to assimilate the tax value c0 = 3AC
corresponding to an average reduction of φ0 = 0.35. We recover the original flux
of vehicles, previously to the establishment of the Area-C, rescaling the observed
flux considering the observed reduction. With respect to the value of the elasticity,
we cannot predict precisely how responsive will be vehicle users to the hotspot pric-
ing (the elasticity) but current elasticities observed for cordon pricing and toll roads
should be closely related in sign (negative) and in magnitude. In the following, we
assume an elasticity of μ = −0.1 which is compatible with the values observed for
road tolls in other cities.

To apply the hotspot pricing scheme, we first gather data about the road network
topology using Open Street Map (OSM), a well-known data source for traffic anal-
ysis (Behrisch et al. 2011; Sommer et al. 2011). OSM data represents each road (or
way) with an ordered list of nodes which can either be road junctions or simply
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changes of the direction of the road. We have obtained the required abstraction of
the road network building a simplified version of the OSM data which only accounts
for road junctions (nodes). Then, for each pair of adjacent junctions we have queried
the real travel distance (i.e. following the road path) using the API provided by
Google Maps. The resulting network corresponds to a spatial weighed directed net-
work (Barthélemy 2011) where the driving directions are represented and the weight
of each link indicates the expected traveling time between two adjacent junctions (see
Fig. 2). We build up the dynamics of the model analyzing real traffic data provided by
Telecom Italia for their Big Data Challenge. The data provides, for every car entering
the cordon pricing zone in Milan during November and December 2013, an encod-
ing of the car’s plate number, time and gate of entrance. This allows us to obtain
the (hourly) average incoming and outgoing traffic flow, for each gate of the cordon
taxed area. Without any extra information, we are forced to consider all vehicles of
the same type, and we assume that all are required to pay the same type of tax. Given
the previous topology and traffic information, we first compute the expected traffic
within the city (see Section 2), and then calculate the required tax (see Section 3).

4.1 The Cost of Zero Congestion

For illustration purposes, we first analyze the predicted cost to remove all congestion
within the Area-C of Milan. To this aim, we have gathered for each hour of the day
and each day of the week the ingoing flow of vehicles. Given the values of di , σi and
�qi , obtained using Monte Carlo simulations, we have computed the junction taxes
to redistribute the required vehicles to achieve �qi = 0 at all junctions i. Figure 3

Fig. 2 Topology of the road network inside the Area-C of Milan. Data gathered from Open Street Map
(http://www.openstreetmap.org)

http://www.openstreetmap.org
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Fig. 3 Congestion and hotspot pricing for zero congestion in Milan. (a) Distribution of the predicted
congestion, �qi , of a week. (b) Distribution of the required junction prices (in euros) to eliminate the
congestion of a week. (c) Average predicted congestion per hour of the day (in vehicles per minute)

reports the obtained results applying the double-step process described above only
once. We see that most of the junctions have an increment, per unit time, �qi , below
5 vehicles per minute which yields in general to a price per traversal below 10AC.
Extending the analysis to the full year, the annual income predicted by our model is
145MAC in the case of taxing from 7 a.m. to 7 p.m., as it is done at present, or an
income of 167MAC in case of extending the taxing scheme to the full day. Note that
even though the distribution is heavy tailed, the price at a set of junctions is almost
prohibitive (around 25 AC).

Figure 4 shows the reduction of travel times when the zero congestion hotspot tax-
ing scheme is applied. Here we have supposed equal waiting times at all intersections
except at the congested ones, where waiting times take into account the size of the
queues. It is remarkable that the total travel times of the vehicles that cross and pay
at the hotspots are only slightly better than the times for those vehicles avoiding the
hotspots.
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Fig. 4 Comparison of the expected travel times (in minutes) of the trips affected by congested junctions
before and after the zero congestion hotspot taxing scheme is applied, in Milan. For the hotspot pricing
model, we show the distribution of travel times of trips crossing congested junctions after the hotspot
establishment (labeled ‘Hotspot pay’), of the trips that now avoid the hotspots (’Hotspot diverted’), and of
both of them together (‘Hotspot average’)
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4.2 Comparison with Cordon Pricing

We now compare the effectiveness of hotspot pricing with respect to cordon pricing
without requiring zero congestion. The main advantage of hotspot pricing is that it
does not prevent vehicles from entering the Area-C zone, but it encourages that vehi-
cles crossing conflicting hotspots avoid them, decongesting the hotspot and possibly
its surrounding area. To compare the possible effects on the congestion of the city
after the establishment of the two pricing schemes, we fix for both models the same
revenue P and the same number of vehicles entering Area-C (which is equivalent
to fixing the elasticity value). Specifically, P is the tax income received using the
cordon pricing scheme (20MAC reported in the literature). We then compute the max-
imum number of vehicles that will avoid the taxed junctions, such that the remaining

Fig. 5 (a) Distribution of the congestion after applying the different taxing schemes in the city of Milan.
The value of the congestion is given by the accumulation rate of vehicles (�qi ), in vehicles per minute,
for the different congested junctions. The distributions are computed considering all data from Monday to
Friday and they are shown grouped by hour of the day. Below, maps of Milan showing the expected ratios
between incoming and outgoing vehicles of each junction after the establishment of the cordon pricing
tax (b) and the hotspot pricing scheme (c). Junctions with a ratio greater than 1 are congested since they
receive more cars that the ones they can route
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vehicles that accept to pay the tax produce total income equal to P (see Appendix).
As in Eq. 4, we consider that taxing junction i at some price ci is enough to encourage
a fraction 1 − φi of vehicles currently traversing i to bypass it by choosing another
non-taxed route. Under these conditions, we measure for every junction the accumu-
lation of vehicles per minute (congestion), and compare their averaged distributions
during weekdays for both models, see Fig. 5a. We observe that the median of the
hotspot model is on average half the value of the cordon tax model, affording an
improvement on the congestion of approximately 50%.

Note that the number of vehicles within the Area-C is now different: while in
the cordon taxing scheme it was reduced, in the hotspot pricing scheme it corre-
sponds to the original flow of vehicles, but with a very different distribution over the
city. Essentially, the distribution of congestion after the establishment of cordon tax
scheme is not altered and it is still concentrated at the hotspots, as observed in real
data. However, applying the hotspot scheme, the redistribution of vehicles is spread
among neighboring junctions of the hotspots, which summarizes in less congested
points even though the number of vehicles within Area-C is larger; remind we do not
encourage vehicles to avoid entering the area. Graphical results about the conges-
tion distribution in both cases are presented in Fig. 5b and c, respectively. We also
report in Fig. 6 the distribution of travel times without and with the taxing schemes.
The hotspot pricing approach is able to yield significantly better travel times despite
handling more vehicles in the Area-C than the cordon pricing.

5 Potential Effects of the Hotspot Pricing on Air Quality in Madrid

The previous results show the hotspot pricing scheme could be a good alternative for
managing traffic congestion in cities and this will probability have effects in their
air quality. To give some hints of these effects, we have analyzed also the potential
impact on the air quality of the city of Madrid (Spain) with a supposed establish-
ment of the hotspot pricing scheme. Madrid city center is one of the most polluted
areas in Spain, to the point that the Spanish government is pushing the city of Madrid
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to apply an urban tax to reduce pollution. Madrid is also the city of Spain where
drivers waste more time in congestion (with an INRIX index of 10.8), followed by
Bilbao (10.2) and Barcelona (8.6). The city plan of mobility includes the definition
of a series of restricted traffic areas in the near future. To obtain the expected benefit
of the hotspot pricing, we gathered data of the city topology and real traffic and pol-
lution from Open Street Map and Open Data Madrid (http://datos.madrid.es/portal/
site/egob/) respectively. Madrid open data portal provides the necessary information
to obtain the expected contribution of cars to the overall city pollution. Madrid does
not have any pricing zone so we apply the analysis to the zone delimited by the
Madrid ring road M-30. The city topology and the entry and exit gateways have been
obtained using Open Street Map. For the city topology, we have followed an equiva-
lent procedure to Milan. The resulting topology can be seen in Fig. 7. For the ingoing
and outgoing gateways, we have manually selected the 108 roads crossing the M-30.
Each cross point was selected to be an ingoing or outgoing gateway, depending on the
road direction. Then, we have gathered traffic count point locations from the Madrid

Fig. 7 Topology of the road network inside the ring road M-30 of Madrid. Data gathered from Open
Street Map (http://www.openstreetmap.org)

http://datos.madrid.es/portal/site/egob/
http://datos.madrid.es/portal/site/egob/
http://www.openstreetmap.org
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Fig. 8 The image shows the manually selected 108 ingoing and outgoing gateways of Madrid and the 7
air quality stations of type “Urbana tráfico” within the selected area. City ingoing and outgoing gateways
are symbolized with white and black squares respectively. Gray squares indicate gateways where vehicles
travel in both directions. Air quality stations are represented by circles of 100 meter radius, green circles
are stations for which the hotspot pricing scheme is expected to decrease the sensed NO2 levels

Open Data portal2 and have assigned each of the 108 gates to the closer traffic count
point. Figure 8 shows the gateway locations.

To obtain the contribution of each car to the overall pollution, we have taken data
of the pollution and traffic levels of August 2014, which is one of the most stable
months in terms of meteorology. Air pollution levels of Madrid3 have been obtained
for each sensing station type “Urbana tráfico”, i.e. stations located near main roads.
See Fig. 8 for the location of the sensing stations. We have focussed in the NO2
levels since it is known that, in Madrid, approximately 77% of the NO2 concentration
comes from vehicles.4 Then, we have accumulated the flux of vehicles of all count

2http://datos.madrid.es/portal/site/egob/
3http://www.mambiente.munimadrid.es/opencms/opencms/calaire
4http://www.mambiente.munimadrid.es/opencms/opencms/calaire/ContaAtmosferica/portadilla.html

http://datos.madrid.es/portal/site/egob/
http://www.mambiente.munimadrid.es/opencms/opencms/calaire
http://www.mambiente.munimadrid.es/opencms/opencms/calaire/ContaAtmosferica/portadilla.html
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points within a distance of 100 meters to each sensing station. With this information
we have built a linear model to predict the contribution of vehicles to the pollution
sensed by every station. The August meteorological data, the scatter plots of vehicle
flux with respect to NO2 concentration, and the linear fits are shown in Fig. 9. We
have obtained an average slope of 0.16 meaning that, in average, each car per hour
contributes to 0.16μg/m3 of NO2 to the sensing station. The results are in perfect
agreement with similar studies (Raducan and Stefan 2009).

To simulate the traffic dynamics of Madrid, we have analyzed the traffic data of
October 2014 and obtained the average flow of vehicles per day and hour of the
week. To analyze the possible effects on the air pollution after the introduction of the
hotspot pricing scheme, we have computed the expected traffic of each junction of the
city and then the expected traffic after the application of the hotspot pricing scheme.
With the difference of vehicle flux in each junction we have computed the maxi-
mum possible reduction in NO2 concentration. This maximum reduction assumes

Fig. 9 Panels (a) and (b) show the main meteorological data (wind speed, preassure, temperature and hu-
midity) of Madrid during August 2014. (c) Scatter plots of vehicle flux with respect to NO2 concentration,
and the corresponding linear fits for each air quality stations
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that the hotspot pricing motivates vehicles to bypass congested junctions, choosing
other routes outside the 100 meter radius of the sensing station. Results are shown in
Fig. 10. After the hotspot pricing is applied, we observe a reduction of the level of
NO2 in 3 out of 7 air quality stations inside the ring road M-30 (see Fig. 8 for the loca-
tion of the sensing stations). Clearly, this represents a local reduction and we cannot
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Fig. 10 Panels (a) and (b) show the expected decrement of NO2 concentration for S1, S2 and S3 stations.
Plots consider data from Monday to Friday (a) and weekend (b) and are grouped by hour of the day. Circles
colored with green in Fig. 8 indicate the locations of S1, S2 and S3 stations. (c) Map of Madrid showing
the ratio between incoming and outgoing vehicles for each congested junction before the establishment
of the hotspot pricing scheme. Junctions with a ratio greater than 1 are congested since they receive more
vehicles than the ones they can route. (d) Ratio between incoming and outgoing vehicles for the same
junctions shown in (c) after the establishment of the hotspot pricing scheme
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claim it implies a global pollution reduction. Panels (A) and (B) show the expected
reduction per hour of the day for weekdays and weekends respectively. The larger
reductions are observed in the morning rush hour, approximately from 7 to 10 on the
weekdays and from 9 to 14 for the weekends. Panels (C) and (D) show the expected
scenario before and after the the hotspot pricing. The overall amount of NO2 is not
reduced since the amount of cars in both scenarios is exactly the same. However, as
expected, congestion, which was strongly centralized in several junctions, spreads
and ameliorates within neighboring junctions.

6 Conclusions

Summarizing, traffic congestion is a common and open problem whose negative
impacts range from wasted time and energy, unpredictable travel delays, and an
uncontrolled increase of air pollution. Here, we have presented a hotspot pricing
scheme, characterized by the application of local taxing policies instead of area tax-
ing. The results are competitive reducing congestion and consequently pollution. We
have shown two real case scenarios computing specific values of congestion and
expected revenues. These results pave the way to a new generation of physical mod-
els of traffic on networks within the congestion regime, that could be very valuable
to assess and test new traffic taxing policies on urban areas in a computer simulated
scenario.
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Appendix: Optimal Traffic Redistribution Given Fixed Revenue

We want to compute the maximum fraction of vehicles, 1 − φi , that will avoid the
junctions with the hotspot pricing by fixing the overall tax income for the city P .
This may happen when local authorities want to fix the economic effort of the drivers
to improve the traffic conditions. This is equivalent to the following minimization
problem:

min{φi }

(
∑

i

φiσi

)
s.t.

∑

i

φiσici = c0

φ
1/μ

0

∑

i

φ
(μ+1)/μ
i σi = P , (5)

where σi is the amount of cars junction i receives before the taxing, c0 is the initial
price to obtain a reduction of φ0, μ is the elasticity and ci is defined in Eq. 4. The
linear problem stand for the remaining cars that will cross the congested junctions
after the taxing is applied and the restriction stands for the overall income produced
by those cars.
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We solve the minimisation problem using Lagrange multipliers. The objective
function is

L(φi, λ) =
∑

i

φiσi − λ

(
∑

i

φi
k2σi − k1

)
, (6)

where k1 = Pφ
1/μ
0

c0
and k2 = μ+1

μ
. Setting the gradient ∇L({φi}, λ) = 0 we have:

∂L

∂φj

= σj − λk2φj
k2−1σj = 0 =⇒ φj =

(
1

λk2

) 1
k2−1

, (7)

∂L

∂λ
=

∑

i

φi
k2σi − k1 = 0 =⇒

∑

i

φi
k2σi = k1 . (8)

From Eq. 7 we see that all the φj are equal, i.e. independent of the node. Substituting
Eqs. 7 into 8 we can obtain λ. Specifically,

(
1

k2λ

) k2
k2−1 ∑

i

σi = k1 =⇒ λ = k2
−1

(
k1∑
i σi

) 1−k2
k2

, (9)

which yields an homogeneous fraction

φ =
(
Pφ0

1/μ

c0
∑

i σi

) μ
μ+1

. (10)

The local reduction to be applied is given by Eq. 10, and the tax to apply to every
congested junction is

c =
(

c
μ
0 P

φ0
∑

i σi

)1/(μ+1)

. (11)
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50 A. Solé-Ribalta et al.

Qian ZS, Zhang HM (2013) A hybrid route choice model for dynamic traffic assignment. Networks and
Spatial Economics 13(2):183–203

Raducan G, Stefan S (2009) Characterization of traffic-generated pollutants in bucharest. Atmósfera
22(1):99–110
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