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Multiplex networks are representations of multilayer interconnected complex networks where the nodes
are the same at every layer. They turn out to be good abstractions of the intricate connectivity of multimodal
transportation networks, among other types of complex systems. One of the most important critical
phenomena arising in such networks is the emergence of congestion in transportation flows. Here, we prove
analytically that the structure of multiplex networks can induce congestion for flows that otherwise would
be decongested if the individual layers were not interconnected. We provide explicit equations for the onset
of congestion and approximations that allow us to compute this onset from individual descriptors of the
individual layers. The observed cooperative phenomenon is reminiscent of Braess’ paradox in which
adding extra capacity to a network when the moving entities selfishly choose their route can in some cases
reduce overall performance. Similarly, in the multiplex structure, the efficiency in transportation can
unbalance the transportation loads resulting in unexpected congestion.

DOI: 10.1103/PhysRevLett.116.108701

Introduction.—Complex networks have become a natu-
ral abstraction of the interactions between elements in
complex systems [1]. When the type of interaction is
essentially identical between any two elements, the theory
of complex networks provides us with a wide set of tools
and diagnostics that turn out to be very useful to gain
insight in the system under study. However, there are
particular cases where this classical approach may lead to
misleading results, e.g., when the entities under study are
related to each other using different types of relations in
what is being called multilayer interconnected networks
[2–4]. Representative examples are multimodal transporta-
tion networks [5,6] where two geographic places may be
connected by different transport modes, or social networks
[7–10] where users are connected using several platforms
or different categorical layers.
Here, we focus our study on the transportation con-

gestion problem in multiplex networks, where each node is
univocally represented in each layer so the interconnectiv-
ity pattern among layers becomes a one-to-one connection
(i.e., each node in one layer is connected to the same node
in the rest of the layers, thus allowing travelling elements to
switch layers at all nodes). This representation is an
excellent proxy of the structure of multimodal transporta-
tion systems in geographic areas [6]. The particular top-
ology of each layer is conveniently represented as a spatial
network where nodes correspond to a certain coarse grain
of the common geography at all layers [11–14].
Transportation dynamics on networks can be, in general,

interpreted as the flow of elements from an origin node to a
destination node. When the network is facing a number of
simultaneous transportation processes, we find that many
elements travel through the same node or link. This, in
combination with the possible physical constraints of the

nodes and links, can lead to network congestion, in which
the number of elements in transit on the network grows
proportionally with time [15,16]. Usually, to analyze the
phenomenon, a discrete abstraction of the transportation
dynamics in networks is used [15–21].
Multimodal transportation can also be mathematically

abstracted as transportation dynamics on top of a multiplex
structure. Note that routings on the multilayer transporta-
tion system are substantially different with respect to
routings on single layer transportation networks. In the
multilayer case, each location of the system (e.g.,
geographical location) has different replicas that represent
each entry point to the system using the different trans-
portation media. Thus, each element with the intention of
traveling between locations i and j has the option to choose
between the most appropriate media to start and end its
traversal. We assume that elements traverse the network
using the shortest paths, so each element chooses the
starting and ending media that minimize the distance
between the starting or ending locations. As we will show
in this work, this “selfish” behavior provokes an unbalance
in the load of the transportation layers inducing congestion,
similarly to what is presented in the classical counterin-
tuitive result of Braess’ paradox [22].
Note that in a multiplex network we can have two types

of shortest paths: paths that only use a single layer
(intralayer paths) and paths that use more than one layer
(interlayer paths). Hereafter, we develop the analysis of
transportation in multiplex networks, consisting of N
locations (nodes per layer) and L layers, and quantify
when this structure will induce congestion. To this aim, we
describe, with a set of discrete time balance equations (one
for each node at each layer), the increment of elementsΔqiα
in the queue of each node i on layer α:
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Δqiα ¼ giα þ σiα − diα; ð1Þ

where giα is the average number of elements injected at
node i in layer α (also called the injection rate, which can be
assimilated to an external particle reservoir), σiα is the
average number of elements that arrive at node i in layer α
from the adjacent links of that node (ingoing rate), and
diα ∈ ½0; τiα� corresponds to the average number of ele-
ments that finish their traversal in node i in layer α or are
forwarded to other neighboring nodes. The control param-
eter is giα: small values of it correspond to a low density of
elements in the network and high values to a high density of
elements. A graphical explanation of the variables of the
model is shown in Fig. 1.
Before reaching congestion, the number of elements in

the queue of each node is constant on average,
Δqiα ¼ 0 ∀ iα, and consequently diα ¼ giα þ σiα < τiα,
where τiα is the maximum processing rate of the node. A
node i on layer α becomes congested when it is requested to
process more elements than its maximum processing rate,
diα > τiα, and therefore its onset of congestion is achieved
when diα ¼ τiα. We are interested in computing the
maximum injection rate giα for which the network is
congestion free. In the noncongested phase, as well as at
the onset of congestion, the number of elements ingoing to
each node σiα can be obtained in terms of the node’s
effective betweenness, see Ref. [15]. Our scenario is
slightly different since we need to account for the effective
betweenness of the multiplex. In addition to the intralayer
and interlayer paths, our definition of the dynamics also
accounts for the number of shortest paths that start (siα) and
end (eiα) at node i on layer α (this can be computed using
any classical shortest path algorithm [23]). Note thatP

αsiα ¼
P

αeiα ¼ N − 1. These factors are essential to
understand the unbalance of the loads between layers in the
multiplex network, and only depend on the distribution of
shortest paths in the full structure.
In the following, we assume a constant injection rateP
αgiα ¼ ρL with ρ being the common injection rate at all

locations i. In addition we also suppose, without loss of
generality, that the maximum processing rate is the same
for all nodes of the multiplex network, τiα ¼ τ. These
hypotheses simplify the analysis but are not crucial to
develop it.
To obtain the critical injection rate of the multiplex, we

require expressions for giα and σiα. The injection rate of
node i on layer α can be obtained as the product of the
number of elements that enter the network using location i,
ρL, and the fraction of multiplex shortest paths that start on
node i on layer α, siα=ðN − 1Þ:

giα ¼ ρL
siα

N − 1
: ð2Þ

The ingoing rate of each node σiα depends on the fraction
of shortest paths that pass through or end in it [15]. Thus,
σiα can be obtained as the number of generated elements
over all the network at each time step, ρLN, times the
fraction of them that arrive (eiα) or traverse it (Biα is the
topological betweenness):

σiα ¼ ρL
Biα þ eiα
N − 1

: ð3Þ

When the network is already congested, Eq. (3) does not
generally holds since elements traversing congested paths
stack in intermediate nodes, resulting in a cascade effect not
captured by the betweenness. Therefore, our analysis only
covers the onset of congestion and it cannot be directly
applied to the congested regime.
An efficient algorithm to compute the betweenness on

multiplex structures can be found in Ref. [24] for shortest
path dynamics and in Ref. [25] for random walk dynamics.
The computation of siα and eiα for shortest path dynamics
can be obtained by modifying the previously cited algo-
rithm to account for the number of paths that reach the
source and destination nodes.
The onset of congestion of the multiplex is attained when

a node i in layer α is required to process elements at its
maximum processing rate, i.e., giα þ σiα ¼ τ. Therefore,
the critical injection rate of the system ρc becomes

ρc ¼ τL−1N − 1

B� ; ð4Þ

where Biα ≡ Biα þ siα þ eiα and B� ≡maxiαBiα. In the
following we call Biα the interconnected betweenness. Note
that Biα depends on the intralayer paths and interlayer
paths, and on the migration of shortest paths between layers
(more efficient layers contain a larger proportion of the
starting and ending routes). We tested the validity of Eq. (4)
against Monte Carlo simulations on top of Erdős-Rényi
multiplex networks, see Fig. 2.
In the following, we investigate the role of the topology

of the individual layers on the multiplex congestion. First of

FIG. 1. Contributions to the size of the queue of each node at
each layer of a multiplex network in our standardized trans-
portation model. Arrows mark the flow direction of elements in
and out of the node.
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all, note that in the definition and computation of the
multiplex betweenness (see Ref. [24]), the shortest paths
(possibly degenerated) between all pairs of multiplex
locations NðN − 1Þ are considered. The multiplex structure
unbalances, in a highly nonlinear way, the distribution of
shortest paths among the layers. However, some approx-
imations are possible to grasp the effect of the different
contributions to the onset of congestion in multiplex
structures.
As stated before, an important parameter of traffic

dynamics in multiplex networks is the fraction of interlayer
shortest paths, i.e., the fraction of shortest paths that
contain, at least, one interlayer edge. Experiments with
multiplex networks composed of two layers, each one
being a different random Erdős-Rényi network, show that
most of the shortest paths are fully contained within a layer,
see the Supplemental Material [[26]]. This effect becomes
more evident as the degree of the layers increases.
Therefore, the fraction of shortest paths fully contained
within layers, λ, is basically 1, and the main factor
influencing the traffic dynamics is the migration of shortest
paths from the less efficient layer (the one with larger
shortest paths) to the most efficient one. Under this
situation we can approximate the interconnected between-
ness of node i in layer α, Biα, in terms of the betweenness of
node i of layer α, Bi

ðαÞ, when layer α is considered as a

single layer network:

Biα ≈ λμαBi
ðαÞ; ð5Þ

where μα < 1 is the fraction of shortest paths using only
layer α, satisfying

P
αμα ¼ 1. The effect of the product of

λμα is to precisely account for the fraction of all shortest
paths that traverse only layer α in the multiplex. Note that
the approximation in Eq. (5) does not account for the
betweenness contribution of the paths that use inter-
layer edges. However, the high value λ ≈ 1 indicates that
they are usually negligible, and we can even further
approximate Biα ≈ μαBi

ðαÞ.
Taking advantage of Eq. (5), the critical injection rate of

the multiplex can be obtained by rescaling the critical
injection rate of the individual layers:

ρc ≈ τL−1 N − 1

λμlB�
ðlÞ

≈
1

Lμl
ρðlÞc ; ð6Þ

where ρðlÞc is the critical injection rate of the most efficient
layer l. Fractions μl and λ are genuine properties of the
multiplex network structure that can be obtained by means
of the multiplex extension of Brandes’ betweenness algo-
rithm [24]. Figure 2(a) shows the accuracy of this approxi-
mation in the calculation of ρc. The high accuracy obtained
in the approximation evidences that the critical injection
rate of the multiplex crucially depends on the migration of
shortest paths between layers, which is captured in μl.
As an example, consider a multiplex structure composed

of two identical layers. In this case, there are no shortest
paths using interlayer edges since they would be longer
than the ones fully included in one layer; thus, λ ¼ 1. Since
the paths in both layers are identical, there is a multiplex
path degeneration: for each shortest path in layer 1 there is
an equivalent shortest path in layer 2. As a consequence, the
nodes on the paths only obtain 1=2 of the betweenness
contribution they would obtain if the layers were separated,
which results in μl ¼ 1=2. Eventually, we see that for
identical layers the multiplex betweenness is 1=2 of the
betweenness computed on any of the layers.
On the other side, consider a multiplex network in which

most of the paths in layer 1 have length 2 and most of the
paths in layer 2 have length 3. Again, there are very few
shortest paths using interlayer edges since their minimum
length is 3 (i.e., one intralayer edge, followed by a change
of layers through an interlayer link, and finally another
intralayer edge); therefore, λ ≈ 1. Moreover, most of the
shortest paths make use of layer 1, where the lengths are
shorter, so μ1 ≈ 1 and μ2 ≈ 0. Substitution in Eq. (5) shows
that the interconnected betweenness of the multiplex is
equivalent to the betweenness of the most efficient layer,
which in this case is layer 1.
We can compute the congestion induced by a multiplex

as the situation in which a multiplex network reaches
congestion with less load than the worst of its layers when
operating individually. In a multiplex with two layers, 1 and
2 (layer 2 being the most efficient), this limiting situation is

obtained when ρc < ρð1Þc , and consequently

FIG. 2. Accuracy of the analytical value of ρc given by Eq. (4)
predicting the actual onset of congestion in experimental simu-
lations on 500 random multiplex networks formed by two Erdős-
Rényi networks (of 500 nodes) as layers. The inset shows the
correlation between the experimentally obtained critical injection
rate and the analytical approximation in Eq. (6) where λ is
approximated by 1. R2 is the coefficient of determination for the
linear fits.
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1

Lλμ2
≲ B�

ð2Þ
B�
ð1Þ

: ð7Þ

Figure 3(a) shows the regions where the multiplex
structure induces congestion for sets of Erdős-Rényi
multiplex networks. In each experiment, two Erdős-
Rényi networks with a different mean degree are coupled
to form a multiplex network. For each pair of mean degrees
we have evaluated 100 random realizations of the multiplex
network and for each realization we have computed the
onset of congestion of the multiplex network and of the
individual layers. We have then obtained the fraction of
times that the multiplex network reaches congestion before
both layers. The boundaries approximated by Eq. (7)
determine accurately the regions where the multiplex
induces congestion. As expected, the approximation using
only μ works well except when both mean degrees are low
since in these cases the number of shortest paths using the
multiplex structure is more relevant. Surprisingly, for larger
degrees (in the diagonal) the Erdős-Rényi networks gen-
erated present small fluctuations on the average degree that
eventually make a node in one layer have a maximum
degree a little bit larger than in the other layer. This
asymmetry, for such dense networks, is enough to provoke
a load unbalance that is reflected in the simulations.
We have used homogenous random network multiplexes

to demonstrate the use of the analytical approach; however,
the theory is general for any other multiplex network
structure. To conclude this Letter, we have also used a
different type of topology, random geometric graphs, more
akin to representing transportation networks [11,27]. To
this end, we propose a simple configuration of a random
geometric multiplex. We assume that each random geo-
metric multiplex is composed of two types of transportation

media: short range (e.g., the bus network) and long range
(e.g., the subway), see Fig. 4.
Our construction method allows us to generate very

extreme geometric multiplexes, from configurations where
the long range layer only contains some of the longer edges
of the short range layer (RMax

L2 ≈ RL1) to those where the
long range layer only contains edges larger than the ones in
the short range layer (RMin

L2 ≈ RL1). However, we usually
obtain configurations where the long range layer has some
degree of edge overlap with the short range layer. The test
set where we have performed the experiments has been
constructed by creating 105 random geometric multiplex
networks, choosing uniformly at random the parameters of
the model. Figure 3(b) shows that Eq. (7) accurately
predicts the region where the multiplex structure induces
congestion.
In summary, we have analyzed the congestion phenomena

on multiplex transportation networks. We developed a
standardizedmodel of how elements traverse those networks
and we provided an analytical expression for the onset of
congestion. We then showed that the multiplex structure
induces congestion and derived analytical expressions to
determine the network parameters that raise these phenom-
ena. All analytical expressions have been assessed on Erdős-
Rényi and geometric multiplex networks, and show perfect
agreement with the empirical results. The reason behind this
phenomenology is the unbalance of the shortest paths
between the layers. The flow follows the shortest path,
increasing the load of the most efficient (in terms of the
shortest paths) layer, and eventually congesting it. The theory

(a) (b)

FIG. 3. Probability of obtaining a multiplex configuration that
induces congestion when (a) the multiplex is composed of two
Erdős-Rényi layers and (b) the topology is a random geometric
multiplex. In both network topologies each layer has 500 nodes.
The number of simulations points is 502, and for each point we
generate 102 configurations fixing hk1i and hk2i. The colors
indicate the probability of observing that the onset of congestion

of the multiplex satisfies ρc < minðρð1Þc ; ρð2Þc Þ. The lines show the
accuracy of Eq. (7) in detecting the region where the multiplex
structure induces congestion. The solid lines represent the
expression when the real value of λ is used and the dashed lines
when we approximate λ by 1.

FIG. 4. Sketch of the generation process of a random geometric
multiplex. We first choose uniformly at random a set of N points
in a bidimensional space, ðx; yÞ ∈ ½0; 1�2; these are our node
locations. We then generate the first layer by adding edges
between all locations i and j separated by a distance dij smaller
than a certain radius RL1 ∈ ½0; 0.4�. The second layer is generated
by adding edges between all node pairs with distance
RMin
L2 < dij < RMax

L2 . The values of RMin
L2 ∈ ½0; RL1� force mini-

mum overlapping between both layers. The value of RMax
L2 ¼

RMin
L2 þ ΔR with ΔR ∈ ½0; RL1� ensures the range ½RMin

L2 ; RMax
L2 �

does not exceed the radius of the first layer.
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and experiments developed in thisLetter are especially useful
to understand the transportation dynamics in multilayer
networks andmight help in the development ofmore efficient
transportation networks and routing algorithms.
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FRACTION OF INTER-LAYER SHORTEST PATHS

An important parameter of traffic dynamics in multiplex networks is the fraction of inter-layer shortest paths, i.e. the fraction
of shortest paths that contain, at least, one inter-layer edge. Experiments with multiplex networks composed of two layers, each
one being a different random Erdős-Rényi network, show that most of the shortest paths are fully contained within a layer, see
Figure 1, and this effect becomes more evident as the degree of the layers increases. Therefore, the fraction of inter-layer shortest
paths (1− λ) is basically negligible, and the main factor influencing the traffic dynamics is the migration of shortest paths from
the less efficient layer (the one with larger shortest paths) to the most efficient one. Taking advantage of this fact, we have been
able to approximate the critical injection rate of the multiplex by rescaling the critical injection rate of the individual layers.
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FIG. 1: Fraction λ of paths fully contained within layers. Each multiplex network is formed by two Erdős-Rényi layers of 500 nodes each. We
plot 100 random realizations for each pair of mean degrees 〈k1〉 and 〈k2〉.


