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ABSTRACT

The vertiginous increase of e-platforms for social commu-
nication has boosted the ways people use to interact each
other. Micro-blogging and decentralized posts are used in-
distinctly for social interaction, usually by the same individ-
uals acting simultaneously in the different platforms. Multi-
plex networks are the natural abstraction representation of
such "layered” relationships and others, like co-authorship.
Here, we re-define the betweenness centrality measure to ac-
count for the inherent structure of multiplex networks and
propose an algorithm to compute it in an efficient way. To
show the necessity and the advantage of the proposed defini-
tion, we analyze the obtained centralities for two real mul-
tiplex networks, a social multiplex of two layers obtained
from Twitter and Instagram and a co-authorship network
of four layers obtained from arXiv. Results show that the
proposed definition provides more accurate results than the
current approach of evaluating the classical betweenness cen-
trality on the aggregated network, in particular for the mid-
dle ranked nodes. We also analyze the computational cost
of the presented algorithm.
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1. INTRODUCTION

Complex networks have become a natural abstraction of
the interactions between elements in complex systems [20].
When the type of interaction is essentially identical between
any two elements, the theory of complex networks provides
with a wide set of tools and diagnostics that turn out to
be very useful to gain insight of the system under study.
However, there exist particular cases where this classical ap-
proach may lead to misleading results. Specifically, when the
entities under study are related with each other using dif-
ferent types of relations. Representative examples are pro-
vided by temporal networks [19, 11], where edge connectivity
may vary on time, transportation networks [6], where two
geographic places may be connected by different transport
modes, or social networks [18] where users are connected us-
ing several platforms or different categorical layers (for ex-
ample, in co-authorship networks the categories of the field
of study).

Here, we focus our study on a particular type of intercon-
nected multilayer network [7] called "multiplex”, where each
object, if it exists, is univocally represented in each indepen-
dent layer and so the interconnectivity pattern among layers
becomes one-to-one. Figure 1b, 1c shows some representa-
tive examples of multiplex networks where it is possible to
see the characteristics of the related topology. The exam-
ples show a multiplex with two layers where entities s,b,t
exist in both layers. The interconnectivity between them is
different in both layers.

Note that the existence of several topological structures
similar to the one used in this work requires special care in
their differentiation. Several works [16, 23, 3, 2, 25] have
used a structure similar to multiplex networks. The main
difference being that the topology adopted here relies on
the connectivity between nodes representing the same en-
tity in the different layers. In some of these studies, each
layer is treated independently and metrics are evaluated on
each of them to aggregate later the results in different ways.
In the others, the different layers are projected into a sin-
gle layer network by aggregating the edges of the individual
layers and the metrics are computed over this aggregated



network. Another approach that has been considered is the
aggregation of all layers into a single layer with some dif-
ferentiation between the connectivity of the different layers,
like edge-colored graphs. Other structures similar to multi-
plex networks are interdependent networks [10]. The main
difference between those type of networks and the one used
here is more conceptual than structural. In the case of inter-
connected networks elements of layers have no counterparts
on the other layers and consequently the one-to-one struc-
tural relation between elements of the different layers does
not exist. For further details about the classification of such
multilayer networks we refer to [12] and references therein.
In the proposed approach, we do not perform any type of
prior aggregation and keep the inherent structure of the in-
terconnected layers in the multiplex to define the desired
diagnostic, in our case the computation of shortest-path be-
tweenness centrality.

The paper is structured as follows. Section 2 reviews cen-
trality measures on multiplex networks and particularly fo-
cus on the problem of defining the shortest-path between-
ness centrality for these type of networks. Section 2.1 de-
scribes our new proposed definition. Section 2.2 presents
a computationally efficient algorithm to compute the pro-
posed betweenness. Next, Section 3 presents results on real
data, compares this results to the ones obtained by the ag-
gregated network and experimentally evaluates the compu-
tational complexity of the algorithm. Eventually, Section 4
summarizes the main findings.

2. CENTRALITY MEASURES ON
MULTIPLEX NETWORKS

In network theory, centrality diagnostics are aimed to
measure the relative importance of a node, an edge, or some
other subgraph [26, 20]. This diagnostic measure is specially
interesting in social sciences since it is a proxy to determine
influential nodes. However, centrality measures are also ex-
tremely important to address the problem of blind search
and efficient navigation, e.g. PageRank [24] or HITS [13].
The generalization of these particular measures to multiplex
is proposed in [22, 27, 15, 14, 17, §].

Here, we focus on the definition of shortest path ( or
geodesic ) betweenness centrality [9] for multiplex networks.
As motivated in the previous section, social networks are
usually composed by several types of relations, or ties, be-
tween individuals. Consider, for example, the ego network
of an individual. Family, work, and hobbies are likely to
be among his relationships as well as some others are likely
to be maintained with on-line social platforms. In this sce-
nario, the classical procedure of studying such networks is
to project all this information into a single network by col-
lapsing all the relations. However, using this aggregation
procedure, as we will show, the resulting network may not
accurately reflect the real topology.

Consider the scenario described in Figure 1. Figure la
shows a network of three individuals {s, b, t}, edges between
individuals indicate a relation between them. However, since
the aggregation procedure is not injective several scenarios
can lead to the same aggregated network, as shown in Figure
1b and lc. In Figure 1b, individuals s and ¢t can commu-
nicate through individual b in layer 1. This reduces to the
classical approach where all the relations are within a sin-
gle layer. Consider now the scenario of Figure lc, this time

150

individuals s and t are disconnected in both layers and indi-
vidual b acts as a bridge allowing information to flow from
layer 1 to layer 2. Note that without individual b connecting
the two layers, individuals s and ¢ will be disconnected. Un-
doubtedly, individual b in the scenario described by Figure
1c has more importance than individual b in the scenario of
Figure 1b and centrality measures should reflect this fact.
Thus, to obtain reliable centrality measures that accurately
reflect the real structure it is mandatory to analyze the re-
lations between individuals considering the full multiplex
architecture when performing the respective analysis.

2.1 Shortest path betweenness centrality on
multiplex networks

First of all, we define a path, Dsa—tg € Psaﬁtﬁ, on a mul-
tiplex network consisting of L layers and N nodes per layer,
as an ordered sequence of nodes which starts from node s
in layer o and finish in node ¢ in layer 3, with the restric-
tion that an edge exists between every pair of consecutive
nodes in p. ,Psa%tﬂ indicates the set of all possible paths
between node s in layer « and node t in layer 8. For ev-
ery path Dsa—ts it is possible to define a distance function
d (psaﬁtﬂ), usually depending on the weight of the edges
the path traverses to account for the “length” of the path.
Without loss of generality, we define this distance function
as the number of traversed edges in the path. Hence, the
set of shortest-paths P)_,;, from node s to node ¢, in the
multiplex is defined as the set of paths which minimize the
distance function between the two nodes,

P, = arg min (1)
Psa—tg €EPsa—t8]

a,Be{1,...,.L}

d(ps, —tg )

That is, a shortest-path between two individuals, in a multi-
plex network, is a minimum path that starts from the source
node in any layer, and reaches the destination node in any
layer. See that this definition is coherent with the definition
of a multiplex network since the same node in the different
layers represent the same physical entity.

Considering (1), the shortest-path betweenness of node v
on layer I, g(v;) is defined as the sum, for every possible
origin-destination pair (s,t), of the fraction of times that
node v on layer [, belongs to a path in P[’;Ht]. Specifically,
the shortest-path betweenness centrality on a multiplex net-
work is obtained by:

o Tai()
glo) = > T (2)
s,t=1 Ost
s#LFV
where o5+ = |P[;_,,| is the number of shortest-paths from
s to t and os.¢(v;) 1s the number of times node v; is in a
shortest-path from s to t.

Note that with the given definition the shortest path de-
generation increases. I_,, may contain several shortest
paths between s and ¢ in same layer (classical shortest path
degeneration) together with shortest paths that start and
end in the same node but in different layers (multiplex short-
est path degeneration).

Eventually, the shortest-path betweenness of a node, in a

multiplex network, can be obtained by:

L
g(0) = 3" glw). (3)
=1



(a) Aggregated Network.

Layer 1

Layer 2

(b) Individuals are only connected in one layer.

Layer 1

Layer 2

£

(c) Individual b acts as a bridge between the layers.

Figure 1: Example of possible multiplex configurations for
the same aggregated network
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(a) Example of a multiplex with three hubs, one acting as a
bridge between layers.

Aggregate

(b) Aggregated network of Figure 2a. Still contains three

hubs, but all have the same centrality.

Figure 2: Example of how the multiplex obtains different
centrality rankings than the aggregated network.

Usually, not only the numerical value of the betweenness
centrality is of interest [1] about a particular network but
also the ranking of the nodes it provides [4]. In the scenar-
ios described in Figure 1, although the betweenness given
by the aggregated network is different from the betweenness
given by the multiplex network, the rankings are equivalent.
In both cases, node b becomes the most central node in the
network while s and ¢ are ranked as second. However, this
situation is not common. Usually, rankings are substantially
different. To illustrate the situation, consider the scenario
given in Figure 2. Figure 2a represents a multiplex net-
work with two hubs in layer 1 and a third hub linked to
some nodes on layer 1 and some nodes on layer 2. Figure
2b shows the aggregated version of the multiplex in Figure
2a. It is easy to see that the shortest-path betweenness on
the aggregate network of hubs numbered 4, 8 and 9 is the
highest and the same. These nodes are ranked the first on
the aggregated network. However, in the multiplex network
node 8 is ranked the first and nodes 4 and 9 are ranked sec-
ond exhibiting equal betweenness. It is worth noting how
the multiplex representation disambiguates the betweenness
of the aggregated network providing more centrality to the
hub which acts as a bridge between nodes connected in the
different layers. This change in the centrality allows that a
node, which is not central in any single layer, to be ranked
the first in the multiplex network.



Figure 3: Shortest-paths acyclic graph with multiple paths
reaching the same node in different layers.

2.2 Computation of Shortest Path
betweenness

It is a common approach to compute the betweenness cen-
trality in two steps. In the first, the shortest-paths, in form
of a predecessor list, are computed using well known algo-
rithms such as Breadth First Search (with a computational
cost of O(NE) per source node), Dijkstra (with a computa-
tional cost of O(NE + N?log N) per source node, when im-
plemented using a Fibonacci Heap) or Floyd-Warshall (with
a computational cost of O(N?)), where N and E are the
number of nodes and edges, respectively. Once the shortest-
paths information is obtained, each shortest-path is recon-
structed and the corresponding betweenness is accumulated
for the traversed nodes. It is easy to see that the between-
ness computation yields to O(N®) algorithm. Note that,
except for the Floyd-Warshall algorithm, the computational
complexity of the full algorithm is dominated by the calcu-
lus of the betweenness not by the shortest-path. To reduce
the complexity, as Brandes [5] and Newman [21] show, it is
possible to perform a recursive computation of the between-
ness using a backtracking procedure over the shortest-paths
acyclic graph.

Our procedure is inspired in that proposed in [5], and is
outlined in Algorithm 1 for the simple unweighted case'.The
algorithm is divided in two steps. In the first step (line 11
to 27), for a single source node s all the shortest path to all
other nodes are computed. The shortest-path acyclic graph
is stored in variable P as well as the the number of shortest
path that pass thought each node o. The initialization of the
Breadth First Search differs from the classical one to con-
sider the source node s can be localized in any layer. Thus,
the neighbors of source node s are the union of the neigh-
bors of s in all layers (line 17). Besides, note that the short-

IThe adaptation to the weighted case is straightforward, it
is only required to replace the shortest-paths acyclic graph
generation for the Dijkstra algorithm instead of the current
Breadth First Search procedure.
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est paths are computed considering the destination nodes
in the different layers correspond to different entities. The
equivalence of entities in the different layers is performed in
the computation of the betweenness (second step). To cor-
rectly account for these equivalences, we keep track of the
first accessed node (independently of the layer) though vari-
able vOrder and of shortest path distance in the multiplex
though variable das. The necessity of variable ds should not
be confused with d which stores the distance to every node in
every layer. das is used to keep track of the first time a node
is accessed independently of the layer as well as to account
for multiplex path degeneracy. However, d is still necessary
since the shortest path search procedure must travel through
the different layers. Once the all shortest path are found,
to correctly account for the multiplex path degeneracy the
number of shortest paths that pass though each node in-
dependently of the layer is computed (lines 28 to 31). In
the second step, the contribution of each shortest path in P
to the betweenness is accumulated in the betweenness vec-
tor Cp. To account for all shortest path contributions in
an efficient way the shortest path acyclic graph is traversed
starting from the farthest nodes to the source. That is, the
shortest-path acyclic graph is traversed in a backtracking
fashion. In a single layer graph, where only classical path
degeneracy needs to be accounted, at each traversed node w,
the paths that go thought w plus the path that starts at w
are correct distributed among the predecessors v considering
the number of paths that reach w and the number of paths
that reach each predecessor v (o[w] and o[v]). Each frac-
tion of paths is accumulated in each §[v]. Eventually, when
all nodes farther than w to the source are explored, §[w]
can be safely accumulated in the betweenness of w. How-
ever, in a multiplex network this procedure is substantially
more complex since we need to account not only for the first
node it is accessed independently of the layer but also for
multiplex path degeneracy. To illustrate these particulari-
ties, consider Figure 3, which represents a possible acyclic
graph (in black solid arrows) that generates all shortest-
path from node labelled 1, independently on the layer, to all
other nodes. There are two possible shortest-paths (shown
in dashed red arrows) from individual 1 to individual 4 in
the acyclic graph, {lLl, 2L17 4L1} and {lLl, 2L1, 4L17 4L2}-
However, the shortest-path reaching node 4 in layer 2 is not
a valid one, since it exists a shorter path that reaches node 4
in layer 1. To avoid counting these paths, we only consider
a new path starts at w if w is the first accessed node consid-
ering its replicas in the different layers (see this check in line
35). The second particularity that we need to account for
is multiplex path degeneracy, the case of node 5 (in layers 1
and 2) in Figure 3. There are two shortest-paths (shown in
dotted blue) that reach node 5, one reaches node 5 in layer 1
and the other reaches node 5 in layer 2. Thus, for walks that
end at node 5, the betweenness contribution to its predeces-
sors, such as node 3 in layer 1, corresponds to the number of
times we reach 5 considering the layer where it was reached
divided by the times we reach 5 independently of the layer
where it was reached. See in the Algorithm (line 36) how
the contribution to predecessor v of w of the path that ends
at w is given by aﬁﬂ]

3. EXPERIMENTAL RESULTS

To analyze the computational cost of the algorithm and
provide empirical evidences that the ranking of nodes is af-




fected by the mutiplex structure, we performed numerical
experiments on two real-multiplex networks. The first mul-
tiplex corresponds to a co-authorship network obtained from
the arXiv repository (http://arxiv.org/). It is composed by
4 layers and 310 nodes per layer. Each layer corresponds to
a category specially selected to have a certain fraction of au-
thors in common in the layers. We selected: Physics and So-
ciety (physics.soc-ph), Condensed Matter (cond-mat.soft),
Adaptation and Self-Organizing Systems (nlin.ao) and So-
cial and Information Networks (cs.si). Within each layer, we
only consider authors with at least six co-authors, and two
authors have a tie if they co-authored at least two papers.
With the largest connected component of each layer, we cre-
ated the multiplex network by connecting the same author
in the different layers with an edge. We did not consider any
disambiguation mechanism since, in the selected subset, we
detected less than 1% author names with a normalized Lev-
enshtein distance greater than 0.95. The second multiplex
corresponds to a directed ego multiplex of two layers, built
gathering data from two on-line social networks: Twitter
(https://twitter.com) and Instagram (http://instagram.com).
From a list of 13297 users, obtained using an on-line ranking
platform, we obtained their Twitter and Instagram Id. Nei-
ther disambiguation of names nor matching between them
in both platforms was needed since users provide their user
Id on both platforms. To construct the network, we selected
users which have more than 21 friends on Twitter (obtain-
ing 2000 individuals) and 10 friends in Instagram (obtaining
2756 individuals). The topology of each on-line social net-
work was derived from the user’s friend list. Thus, a user
has a tie with another one if he/she is in his/her friend list.
Equivalently to the co-authorship, to create the multiplex
network, we inter-connected the users in both layers when
possible.

Figure 4a and 4b show two plots with the difference of the
rankings obtained with the aggregated network and with the
multiplex network for the co-authorship and social networks,
respectively. The values of the ranking have been computed
using the Dense Ranking approach, and then normalized
to be on the same scale. We see that the amount of en-
tities that obtain different ranking on the two networks is
notable in both cases. In the Arxiv co-authorship network
54% of the entities obtain different ranking and in the Twit-
ter+Instagram network 87%. With respect to the relation-
ship of the rankings obtained in the multiplex and in the
aggregated network, we observe that there is a correlation
of both measures. The amount of entities that obtained the
same ranking can be seen in the central plateau of the fig-
ures. This plateau is greater in the co-authorship network
where the lower differences are observed in the first ranked
and last ranked entities. This tendency is justifiable since
the centrality of the first ranked nodes is notably higher than
middle ranked ones and the changes on the rankings is of few
positions. In order to see this, we provide in Table 1 the first
twelve ranked authors for the co-authorship network. Last
ranked nodes have zero centrality in both rankings. On the
Twitter+Instagram network, we also observe the lower dif-
ferences for first ranked and last ranked entities. However,
these differences are smaller, giving a narrower plateau and
wider tails. The maximum difference on the rankings pro-
vided by the multiplex network and aggregated network is
an increase 21% in the ranking for the co-authorship net-
work and a decrease of 25% in the ranking for the on-line
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Algorithm 1: Shortest path betweenness for multiplex

networks.

N corresponds to the number of nodes per

layer, and L to the number of layers in the multiplex.
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Data: G
Result: Cp
CB[l..N} «— 0;
fors€l...N do

S < empty stack;

P[1..NL] < empty list;

o[1.NL] - 0, o[w] - 1,s =w mod N,

d[1..NL] + —1, d[w] +- 0,s =w mod N;

dym[1..NL] + —1, dy[w] < 0,s =w mod N;

vOrder[l..N| + empty list;

Q < empty queue;

Q@ enqueue s;

while @) not empty do

v <+ first(Q);

S push v;

if v # s then

‘ W = neighbor of v in G

else

w= U
v/ €{1..NL}
v'=s mod N

neighbor of v’ in G

for w € W do
if dlw] < 0 then
Q enqueue w;
dlw] = d[v] + 1;
if dy[w mod N] <0V dyfw
mod N] == d[w] then
dy[w mod N] = d[w];
L vOrderjw mod N| add w;

-

';d[w] =d[v] +1 then
ow] + olw] + olv];
| Plw] add v

for w € {1..N} do
G[w[w] <+~ 0;
for v € vOrder[w] do
| omw] « omlw] + ofv]

while S not empty do
w < pop(S);
for v € Plw] do

if w € vOrder[w mod N] then
| lo]  olo] + 2 (52 + ofw))
else
| 8[v] « d[v] + 2 [w]
if w # s then
| Cplw mod M|+ Cglw mod N|+ d[w]




social network. As a result, we can conclude that the cen-
trality computed on the aggregated network is usually dif-
ferent than the centrality on the multiplex network. Thus,
to obtain accurate betweenness centrality rankings it is cru-
cial to compute these centralities directly on the multiplex
structure.

A crucial point to consider on the definition of measures
for networks is the computational cost of the algorithm re-
quired to compute them. Since most of real networks contain
large number of nodes and also large number of edges, only
algorithms with low computational cost are able to run over
those networks. The theoretical computational complexity
of the algorithm developed here is O(NLE) for unweighted
mutiplex networks and O(NLE+N?L?log N L) for weighted
multiplex networks. N corresponds to the number of nodes
per layer, L to the number of layers and E to the number
of edges in the mutiplex structure.

[ Ranking | Multiplex | Aggregated |
1 s.havlin s.havlin
2 m.barthelemy | z.di
3 z.di m.barthelemy
4 j-wu h.e.stanley
5 h.e.stanley j-wu
6 p.holme h.jeong
7 a.l.barabasi v.latora
8 r.lambiotte r.Jlambiotte
9 m.barahona s.sreenivasan
10 h.jeong m.barahona
11 a.vespignani p-holme
12 v.latora a.l.barabasi

Table 1: First twelve ranked authors of the arXiv co-
authorship dataset.

4. SUMMARY

Multiplex networks are state-of-the-art structures to rep-
resent social interaction, allowing to accurately represent dif-
ferent types of relation between individuals such as family re-
lations, friendship relations or on-line social platforms com-
munication. However, classical measures developed for sin-
gle layer networks cannot be trivially extended (e.g. degree
of the node, clustering coefficient or centrality) to this type
of networks. This situation requires a careful re-definition
of the classical measures and a brand new set of measures
specific for multiplex networks. Among those measures, in
this paper, we focus on shortest-path betweenness central-
ity. In the first part of the paper, we extended the classical
definition and provide an appropriate interpretation of its
meaning. We showed, my means of representative examples
that shortest-path betweenness on multiplex networks tend
to favor individuals which act as a bridge between layers
allowing to connect individuals which are disconnected in-
side layers. In the second part of the paper, we provide an
algorithm to compute the shortest-path betweenness with
a computational cost of O(NLE) for unweighted multiplex
networks and O(NLE + N?L?log NL) for weighted multi-
plex networks.

To validate the convenience and the accuracy of the given
centrality measure we conducted experiments on two real
data multiplex networks, a co-authorship multiplex of 4 lay-
ers and an on-line social multiplex of 2 layers. Results show
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Figure 4: Plot showing the difference of the rankings ob-
tained with the multiplex and with the aggregated network.

a clear difference between the rankings computed on the
multiplex structure and the ones computed with the clas-
sical shortest-path betweenness on the aggregated network.
From the results, we can conclude that the rankings com-
puted on the aggregated network are a proxy of the multi-
plex rankings but to obtain accurate results these need to
be computed directly on the multiplex structure.
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