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The rapid growth of population in urban areas is jeopardizing
the mobility and air quality worldwide. One of the most notable
problems arising is that of traffic congestion. With the advent
of technologies able to sense real-time data about cities, and
its public distribution for analysis, we are in place to forecast
scenarios valuable for improvement and control. Here, we
propose an idealized model, based on the critical phenomena
arising in complex networks, that allows to analytically predict
congestion hotspots in urban environments. Results on real
cities’ road networks, considering, in some experiments, real
traffic data, show that the proposed model is capable of
identifying susceptible junctions that might become hotspots if
mobility demand increases.

1. Introduction
Urban life is characterized by a huge mobility, mainly motorized.
Amidst the complex urban management problems, there is a
prevalent one: traffic congestion. Several approaches exist to
efficiently design road networks [1] and routing strategies [2];
however, the establishment of collective actions, given the
complex behaviour of drivers, to prevent or ameliorate urban
traffic congestion is still at its dawn. Usually, congestion
is not homogeneously distributed around all city areas but
there are salient locations where congestion is settled. We
call this locations congestion hotspots. These hotspots usually
correspond to junctions and are problematic for the efficiency
of the network as well as for the health of pedestrians
and drivers. It has been shown [3] that drivers queuing
in a traffic jam are the most affected individuals to car
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exhaust pollution inhalation. In addition, these hotspots are usually located in the city centre, magnifying
the problem [4]. Assuming that congestion is an inevitable consequence of urban motorized areas, the
challenge is to develop strategies towards a sustainable congestion regime at which delays and pollution
are under control. The first step to confront congestion is the modelling and understanding of the
congestion phenomena.

The modelling of traffic flows has been a prevalent hot topic since the late 1970s when Gipps’
model appeared [5]. Gipps’ model and other car-following models [6,7] have evidenced the necessity of
modelling traffic flows to improve road network efficiency and also have shown how congestion severely
affects the traffic flows. Since 10 years ago the complex networks community has also proposed stylized
models to analyse the problem of traffic congestion in networks and design optimal topologies to avoid
it [8–21]. The focus of attention of the previous works was the onset of congestion, which corresponds
to a critical point in a phase transition, and how it depends on the topology of the network and the
routing strategies used. However, the proper analysis of the system after the onset of congestion has
remained analytically slippery. It is known that when a transportation network reaches congestion, the
system becomes highly nonlinear, large fluctuation exists and the travel time and the number of vehicles
queued at a junction diverge [16]. This phenomenon is equivalent to a phase transition in physics, and
its modelling is challenging [22–24]. Here, we propose an idealized model to predict the behaviour of
transportation networks after the onset of congestion. The presented model is analytically tractable and
can be iteratively solved up to convergence. To the best of our knowledge, this is the first analytical model
that is able to give predictions beyond the onset of congestion. We present the model in terms of road
transportation networks but it could also be applied to analyse other types of transportation networks,
such as computer networks, business organizations or social networks.

2. Transportation balance equations
To identify congestion hotspots in urban environments, we propose a model based on the theory of
critical (congestion) phenomena on complex networks. The model, that we call the microscopic congestion
model (MCM), is a mechanistic model (yet simple) and analytically tractable. It is based on assuming that
the growth of vehicles observed at each congested node of the networks is constant. This usually happens
in real transportation networks at the stationary state. The assumption allows us to describe, with a set of
balance equations (one for each node), the increment of vehicles in the junction queues and the number of
vehicles arriving or traversing each junction from neighbouring junctions. Mathematically, the increment
of the vehicles per unit time at every junction i of the city, �qi, satisfies the following balance equation

�qi(t) = gi(t) + σi(t) − di(t), (2.1)

where gi(t) is the average number of vehicles entering junction i from the area surrounding i at time t,
σi(t) is the average number of vehicles that arrive to junction i from the adjacent links of that junction and
di(t) ∈ [0, τi] corresponds to the average number of vehicles that actually finish in junction i or traverse
towards other junctions. Note that the value of di is upper-bounded by the maximum number of vehicles
τi that can traverse junction i in a time step. This simulates the physical constraints of the road network.
A graphical explanation of the variables of the model is shown in figure 1.

The system of equations (2.1) defined for every node i, is coupled through the incoming flux variables
σi(t), that can be expressed as

σi(t) =
S∑

j=1

Pji(t)pj(t)dj(t), (2.2)

where Pji(t) accounts for the routing strategy of the vehicles (probability of going from j to i), pj(t) stands
for the probability of traversing junction j but not finishing at j and S is the number of nodes in the
network.

For each junction i, the onset of congestion is determined by di = τi, meaning that the junction is
behaving at its maximum capability of processing vehicles. Thus, for any flux generation (gi), routing
strategy (Pij) and origin–destination probability distribution, equations (2.1) can be solved using an
iterative approach to predict the increase of vehicles per unit time at each junction of the network (�qi(t))
(see §3). The only hypothesis we use is that the system dynamics has reached a stationary state in which
the growth of the queues is constant. It is worth commenting here that the MCM model considers a fixed
average of new vehicles entering the system gi. However, gi certainly changes during daytime, with
increasing values in rush hours and lower values during off-peak periods. MCM can easily consider
evolving values of gi provided the time scale to reach the stationary state in the MCM (which is usually
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Figure 1. Illustration of the variables of theMCMmodel. (a) Vehicles entering junction i from the area surrounding i. (b) Vehicles entering
junction i from its neighbouring junctions. (c) Vehicles leaving junction i, either to go to other neighbouring junctions or to finishing the
trip in its surrounding area.

of the order of minutes in real traffic systems) is shorter than the rate of change in the evolution of gi
(which is usually of the order of hours for the daily peaks).

3. Microscopic congestion model
Let node i denote a road junction, edge aij the road segment between junctions i and j, Nin

i and Nout
i

the sets of ingoing and outgoing neighbouring junctions of junction i, respectively, and S the number of
junctions in the road network of the city. Incoming vehicles to node i at each time step can be of two
types: those coming from other junctions Nin

i and those that start their trip with node i as their first
crossed junction. We consider this second type of incoming vehicles as generated in node i. Our MCM
describes at the stationary state the increment of the vehicles per unit time at every junction i of the city,
�qi, as

�qi = gi + σi − di. (3.1)

As described above, we decompose the incoming flux of vehicles σi to node i in the stationary state as

σi =
∑

j∈Nin
i

Pjipjdj. (3.2)

As vehicles just generated in a certain node are not affected by the congestion in the rest of
the network, we separate their contributions in the computation of probabilities p and P. Thus, we
decompose pi as

pi = pgen
i ploc

i + (1 − pgen
i )pext

i , (3.3)

where the first term accounts for vehicles generated in node i (pgen
i ) whose destination is not i (ploc

i ) and
the second term accounts for vehicles not generated in i whose destination is not i (pext

i ). Supposing trips
consist in travelling through two or more junctions, we have that ploc

i = 1. Probability pgen
i is equal to the

fraction of vehicles generated in i with respect to the total number of incoming vehicles

pgen
i = gi

gi + σi
. (3.4)

Considering the distribution of origins, destinations, the routing strategy and the congestion in the
network, probability pext

i can be expressed in terms of the effective node betweenness B̃i and the effective
vehicle arrivals ẽi (the number of vehicles with destination node i that arrive to node i at each time step)

pext
i = B̃i

B̃i + ẽi
. (3.5)

The effective betweenness B̃i of a node i accounts for the expected number of vehicles each node i receives
per unit time considering the routing algorithm and the overall congestion of the network. See §3.2 for
an extended description and computation of the effective node betweenness B̃i and the effective vehicle
arrivals ẽi.
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In the same spirit, we decompose the probability Pji that a vehicle waiting in node j goes to node i as

Pji = prgen
j Ploc

ji + (1 − prgen
j )Pext

ji . (3.6)

The first term corresponds to the routed vehicles generated in node j (prgen
j ) that go to node i (Ploc

ji ) and

the second term to the routed vehicles not generated in j that go to node i (Pext
ji ). Similarly as before, prgen

j
can be expressed as the rate between the vehicles generated in j and the total number of routed vehicles

prgen
j = gj

gj + σjpext
j

, (3.7)

and Ploc
ji and Pext

ji can be computed in terms of the normalized effective edge betweenness of the network

Ploc
ji =

Ẽloc
ji∑S

k=1 Ẽloc
jk

, (3.8)

and

Pext
ji =

Ẽext
ji∑S

k=1 Ẽext
jk

, (3.9)

where the computation of Ẽloc
ji only considers paths that start on node j and Ẽext

ji only considers paths that

do not start on node j. Equivalently to the effective node betweenness B̃i, computation of Ẽloc
ji and Ẽext

ji
consider, if required, all congested junctions in the network, as described in a later section, as well as the
distribution of the vehicle sources and destinations. Note that the sum of Eloc

ji and Eext
ji corresponds to the

classical edge betweenness. Moreover, Pji is an exact expression before and after the onset of congestion.
Eventually, the MCM is composed of a set of S equations (�qi = gi + σi − di), one for each junction,

and, in principle, a set of 2S unknowns, �qi and di for each junction. To see that the system is
indeed determined, we need to note that for congested junctions �qi > 0 and, thus, after the transient
state, di = τi. For the non-congested junctions, we have that �qi = 0 and consequently di = gi + σi. In
conclusion, for any node i, either di = τi or di = gi + σi which reduces the number of unknowns to S.

To solve the model given a fixed generation rate gi, we start by considering that no junction is
congested and we solve the set of equations equations (3.1)–(3.9) by iteration. It is possible that some
nodes exceed their maximum routing rate. If this is the case, we set the node with maximum di as
congested and we solve the system again. This process is repeated until no new junction exceeds its
maximum routing rate.

3.1. Onset of congestion using the microscopic congestion model
Most of the works that consider static routing strategies assume that the generation rate of vehicles is the
same for all nodes, gi = ρ. In that case, it is possible to compute the critical generation rate ρc such that for
any generation rate ρ > ρc the network will not be able to route or absorb all the traffic [25–30]. After this
point is reached, the number of vehicles Q(t) in the network will grow proportionally with time, Q(t) ∝ t,
as some of the vehicles get stacked in the queues of the nodes. This transition to the congested state is
characterized using the following order parameter:

η(ρ) = lim
t→∞

〈�Q〉
ρS

, (3.10)

where 〈�Q〉 represents the average increment of vehicles per unit of time in the stationary state. Basically,
the order parameter measures the ratio between in-transit and generated vehicles.

In the non-congested phase, the number of incoming and outgoing vehicles for each node can be
computed in terms of the node’s algorithmic betweenness Bi [25]. In particular,

σi = ρ

(
Bi

S − 1
+ 1

)
, (3.11)

where the second term inside the parentheses accounts for the fact that, in our model, vehicles are also
queued at the destination node, unlike in [25]. When no junction is congested, we have that �qi = 0 for
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all nodes and consequently

di = ρ + σi = ρ

(
Bi

S − 1
+ 2

)
. (3.12)

A node i becomes congested when it is required to process more vehicles than its maximum processing
rate, di > τ . Thus, the critical generation rate at which the first node, and so the system, reaches
congestion is

ρc = min
i

τ (S − 1)
Bi + 2(S − 1)

. (3.13)

This is one of the most important analytical results on transportation networks with static routing
strategies. In the following, we show that we can recover equation (3.11) before the onset of congestion
using our MCM approach. After substitution of the expression of the probabilities in equation (3.2)

σi =
∑

j

ρ(Bj + S − 1)Ploc
ji + σjBjPext

ji

(ρ + σj)(Bj + S − 1)
dj, (3.14)

and, given we do not have congestion (i.e. dj = ρ + σj), it simplifies to

σi =
∑

j

ρ(Bj + S − 1)Ploc
ji + σjBjPext

ji

Bj + S − 1
. (3.15)

Equation (3.15) in matrix form becomes
(I − M)σ = ρπ , (3.16)

where

Mij =
BjPext

ji

Bj + S − 1
(3.17)

and
πi =

∑
j

Ploc
ji , (3.18)

and then
σ = ρ(I − M)−1π . (3.19)

This expression can be shown to be equivalent to equation (3.11) by using the following relationship
between node and edge betweenness

Bi + (S − 1) =
∑

j

(BjP
ext
ji + (S − 1)Ploc

ji ). (3.20)

The right-hand side corresponds to the accumulated fractions of paths that pass through the neighbours
of node i and then go to i. Each neighbour contributes with two terms, the paths that go through j coming
from other nodes, and the paths that start in j.

3.2. Effective betweenness in congested transportation networks
The effective betweenness B̃i of a node i, as defined in [25], accounts for the expected number of vehicles
each node i receives per unit time. When the network is not congested and the vehicle generation
rate gi is equal for all nodes, gi = ρ, the number of vehicles each node receives can be obtained using
equation (3.11). However, if the network is congested, the traffic dynamics becomes highly nonlinear
and the value of σi computed in equation (3.11) becomes a poor approximation.

Suppose we focus on a particular congested node j∗ of the network. For j∗, being congested means
that it is receiving more vehicles that the ones it can process and route. In particular, from the σj∗ + gj∗

vehicles that arrive to the node, only τj∗ can be processed at each time step.
Therefore, the contribution to the effective betweenness B̃i of the paths from a source/destination pair,

(s, t), that traverse the congested node j∗ before reaching i, must be rescaled by the fraction of processable
vehicles

sj∗ = τj∗

σj∗ + gj∗
. (3.21)

When a path traverses multiple congested nodes j∗, k∗, . . ., the remaining fraction of paths that will reach
the target node will be the result of the application of the multiple rescalings sx∗ .
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The computation of sj∗ is not straightforward. In general, σi is not known after the onset of congestion

and depends on the effective betweenness that requires, at the same time, to know the sj∗ fraction for all
congested nodes. Thus, an iterative calculation is needed to fit all the parameters at the same time as we
do in our MCM.

The effective arrivals ẽi account for the number of vehicles with destination node i that arrive at node
i at each time step. This value in the non-congested phase can be obtained, considering homogeneous
source and destination nodes, as

ei = ρ(S − 1). (3.22)

However, congestion also affects the variable ei and needs to be corrected accordingly using the same
procedure presented above.

4. Results
To simulate the traffic dynamics of the road network, we assign a first-in-first-out queue to each junction
that simulates the blocking time of vehicles before they are allowed to cross it and continue their trip.
We suppose these queues have infinite capacity and a maximum processing rate that simulates the
physical constraints of the junction. Vehicle origins and destinations may follow any desired distribution.
In this work, we have considered two distributions: a random uniform distribution for the synthetic
experiments, and one obtained considering the ingoing and outgoing flux of vehicles of the city of Milan.
At each time step (of 1 min duration) vehicles are generated and arrive to their first junction. During the
following time steps, vehicles navigate towards their destination following any routing strategy. Here,
we have used two different routing strategies: shortest-path and random local search.

4.1. Congestion on synthetic networks
To evaluate the MCM, we have conducted experiments on several synthetic networks and with two
different routing strategies: local search strategy and shortest path strategy. In both routing strategies
we assume, for simplicity, that all vehicles randomly choose the starting and ending junctions of their
journey uniformly within all junctions of the network. Thus, each junction generates new vehicles with
the same rate gi = ρ. For shortest path strategy, vehicles follow a randomly selected shortest path towards
the destination. Without loss of generality, we fix τ = 1 and analyse the performance of MCM for different
values of ρ.

Figure 2 shows the accuracy on predicting the values of the order parameter η = ∑
�qi/ρS and di for

shortest paths routing strategy. As in [25,30], this order parameter η corresponds to the ratio between
in-transit and generated vehicles. In the electronic supplementary material, we extend the evaluation
considering local search routing strategies and also evaluate the accuracy on predicting other variables
of the model. All experiments show that the MCM achieves high accuracy in predicting the macroscopic
and microscopic variables of the stylized transportation dynamics.

4.2. Application to real scenarios
INRIX Traffic Scorecard (http://www.inrix.com/) reports the rankings of the most congested countries
worldwide in 2014. USA, Canada and most of the European countries are in the top 15, with averages
that range from 14 to 50 h per year wasted in congestion, with their corresponding economic and
environmental negative consequences. To demonstrate that the MCM model can be applied to real
scenarios to obtain real predictions, in the following we apply the MCM model to the nine most
congested cities according to the INRIX Traffic Scorecard (table 1).

We first focus on the city of Milan, the city with largest INRIX value. To evaluate the outcome of
the MCM model, we first gather data about the road network topology using Open Street Map (OSM).
OSM data represent each road (or way) with an ordered list of nodes which can either be road junctions
or simply changes of the direction of the road. We have obtained the required abstraction of the road
network building a simplified version of the OSM data which only account for road junctions (nodes).
Then, for each pair of adjacent junctions we have queried the real travel distance (i.e. following the
road path) using the API provided by Google Maps. The resulting network corresponds to a spatial
weighed directed network [31] where the driving directions are represented and the weight of each
link indicates the expected travelling time between two adjacent junctions (see electronic supplementary
material, figure S21).
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Figure 2. Validation of themicroscopic congestionmodel with Barabási–Albert (a,b) and Erdős–Rényi (c,d) networks of 1000 nodes and
shortest path routing strategy. In the construction procedure of the Barabási–Albert networks each newnode is connected to one existing
node in the network. The Erdős–Rényi networks have an average degree of 50. In (a,c), accuracy in predicting the order parameter η. In
(b,d), correlation between predicted and simulated values of di . Vertical solid lines on panels (a,c) show the predicted critical generation
rateρc . Vertical dashed lines show theρ values where d is evaluated on the panels (b,d).

Table 1. Comparison between the INRIX (12 months) traffic index and the number of hotspots estimated by the proposed model for the
most congested cities of the world.

city INRIXa hotspots nodes links

Milano 36.2 108 6924 14 315
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

London 32.4 93 6378 14 662
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Los Angeles 32.2 57 6799 19 368
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Brussels 30.5 50 6645 15 624
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Antwerpen 28.6 44 6530 15 252
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

San Francisco 27.9 45 8854 25 530
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Stuttgart 21.9 34 8330 19 946
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Nottingham 21.6 28 7337 16 723
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Karlsruhe 21.3 19 4257 10 379
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aThe INRIX index is the percentage increase in the average travel time of a commute above free-flow conditions during peak hours, e.g. an INRIX index
of 30 indicates a 40-min free-flow trip will take 52 min. Each city has been mapped to a graph with the indicated numbers of nodes and links. See text
for details and electronic supplementary material, figures S1–S18 for the graph representation of the cities and the geographical representation of the
congestion hotspots.

Second, we build up the dynamics of the model analysing real traffic data provided by Telecom Italia
for their Big Data Challenge. The data provide, for every car entering the cordon pricing zone in Milan
during November and December 2013, an encoding of the car’s plate number, time and gate of entrance
(a total of 9 183 475 records). This allows us to obtain the (hourly) average incoming and outgoing traffic
flow, for each gate of the cordon taxed area.
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Figure 3. Congestion hotspot analysis of the city of Milan. Panel (a) shows the typical situation around 9.00 for a weekday. The image
and the data have been obtained with Google Maps. Google Maps displays traffic information considering historical data and real-time
car velocity reported by smartphones [32]. Panel (b) shows the prediction of theMCMmodel considering the real road topology obtained
using Open Street Map and real traffic data provided by Telecom Italia for their Big Data Challenge. The extracted road network topology
is provided in electronic supplementary material, figure S19. For all congestion hotspots the model has predicted, we show its mean
increment of the queue size, 〈�qi〉.

Given the previous topology and traffic information, we generated traffic compatible with the
observations, and evaluated the outcome of the MCM model. Specifically, the simulated dynamics is
as follows: for each vehicle entering the Area-C we fix a randomly selected location as destination and
use the shortest path route towards it. After the vehicle has arrived to its destination, it randomly chooses
an exit door and travels to it also using the shortest path route. This is similar to the well-known Home-
to-Work travel pattern where vehicles arrive from the outskirts of the city, go to the city centre and then
return to the outskirts. Specifically, in our simulation, traffic is generated in the peripheral junctions of
the network, goes to a randomly selected junction within the city and then returns back to a randomly
selected peripheral junction. We do not consider trips with origin and destination inside the city centre
because public transportation systems (e.g. train or subway) usually constitute a better alternative than
private vehicles for those trips. The maximum crossing rate of each junction τi accounts, among others,
for the existence of traffic lights governing the junction, the width of the street as well as its traffic. We
have not been able to get this information for the studied cities, and consequently we cannot set to each
junction its precise value. Instead, without loss of generality and for the sake of simplicity, we set to all
junctions the same maximum crossing rate, τi = 15 (an estimation of the average of their real values).

Figures 3 and 4 show the obtained results. Figure 3b displays the predicted congestion hotspots on
a map of Milan, panel (a) of the same figure shows a real traffic situation obtained with Google Maps.
We see that the predicted congestion hotspots are located in the circular roads of Milan as well as on the
arterial roads of the city; this agrees with the real traffic situation shown in panel (a). Figure 4a shows
the distribution of the mean increments each junction has to deal with. This might be a good indicator
to decide about future planning actuations to improve city mobility. However, differently from what is
described in [11], the improvement of the throughput of a single junction might not be enough to improve
city mobility because this might end up with the collapse of neighbouring junctions (their incoming rate
σi will increase). This situation is similar to Braess’ paradox [33]. Figure 4b shows the mean increment
of vehicles (in vehicles per minute) for each hour of the weekday. The figure clearly shows the morning
and evening rush hours as well as the lunch time.

For the other top nine congested cities, we do not have previous traffic information, neither about
the real flux of vehicles nor about the vehicle source and destination distributions (to obtain a fair
comparison between all the analysed cities, we have not considered the Telecom traffic data for Milan
here). Thus, for each city, we consider homogeneously distributed source and destination locations and
the required road traffic to obtain an order parameter η compatible with the congestion effects recorded
by INRIX sensing of real traffic. By relating the INRIX value and η, we are assuming that there exists
a relation between the fraction of global congestion and the fraction of extra time wasted reported by
INRIX. The obtained results are summarized in table 1, which shows that the number of hotspots is
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Figure 4. Statistics of Milan congestion hotspots. Panel (a) shows the distribution of the vehicle increments (�qi) of each congestion
hotspot predicted by theMCM. The plot aggregates theMCM predicted congestion considering the average traffic for every weekday and
every hour of the day. Panel (b) shows the average city congestion in terms of mean increment of vehicle in transit for every hour of the
day during a weekday.

correlated with the INRIX value. This shows evidence that the percentage increase in the average travel
time to commute between city locations is related to the number of congestion hotspots and the excess
of vehicles within the city. The extracted road network topology for all the analysed cities as well as the
predicted congestion hotspots is provided in electronic supplementary material, figures S1–S18.

5. Discussion
The previous results show that the MCM can be used to predict the local congestion before and beyond
the onset of congestion of a transportation network. To the knowledge of the authors, this is the first
analytical model that is able to give predictions beyond the onset of congestion where the system is
highly nonlinear, large fluctuation exists and the number of vehicles on transit diverge with respect to
time. Our model is based on assuming that the growth of vehicles observed in each congested node of the
networks is constant, which allowed us to derive a set of balance equations that can accurately predict
macroscopic, mesoscopic and microscopic variables of the transportation network.

Traffic congestion is a common and open problem whose negative impacts range from wasted time
and unpredictable travel delays to a waste of energy and an uncontrolled increase of air pollution. A first
step towards the understanding and fight of congestion and its related consequences is the analytical
modelling of the congestion phenomena. Here, we have shown that the MCM model is detailed enough
to give real predictions considering real traffic data and topology. These results pave the way to a new
generation of stylized physical models of traffic on networks in the congestion regime that could be very
valuable to assess and test new traffic policies on urban areas in a computer-simulated scenario.
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