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Virus spread versus contact tracing: Two competing contagion processes
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After the blockade that many nations suffered to stop the growth of the incidence curve of COVID-19 during
the first half of 2020, they face the challenge of resuming their social and economic activity. The rapid airborne
transmissibility of SARS-CoV-2, and the absence of a vaccine, calls for active containment measures to avoid the
propagation of transmission chains. The best strategy to date, popularly known as test-track-treat (TTT), consists
in testing the population for diagnosis, tracking the contacts of those infected, and treating by quarantine all
these cases. The dynamical process that better describes the combined action of the former mechanisms is that
of a contagion process that competes with the spread of the pathogen, cutting off potential contagion pathways.
Here we propose a compartmental model that couples the dynamics of the infection with the contact tracing
and isolation of cases. We develop an analytical expression for the effective case reproduction number Rc(t ) that
reveals the role of contact tracing in the mitigation and suppression of the epidemics. We show that there is a
trade-off between the infection propagation and the isolation of cases. If the isolation is limited to symptomatic
individuals only, the incidence curve can be flattened but not bent. However, if contact tracing is applied to
asymptomatic individuals too, the strategy can bend the curve and suppress the epidemics. Quantitative results
are dependent on the network topology. We quantify the most important indicator of the effectiveness of contact
tracing, namely, its capacity to reverse the increasing tendency of the epidemic curve, causing its bending.

DOI: 10.1103/PhysRevResearch.3.013163

I. INTRODUCTION

2020 has been a year marked by the irruption of COVID-
19, the worst pandemic humanity has suffered since the
Spanish Flu in 1918. From the first case reported in Wuhan
on December 8 [1], as of February 2021, the disease has left
more than 100 million confirmed cases and more than 2.2
million deaths worldwide [2]. The lack of antiviral prophy-
laxis, therapeutics, or vaccines to treat or prevent COVID-19
has put social, economic, and health systems under unprece-
dented strain by engaging in prolonged lockdowns all over the
world. Although confinement measures have been successful
in bending the epidemic trajectory [3–6], countries face the
challenge of keeping the virus transmission under control
while maintaining the usual socioeconomic activity [7].

The impact of the different control policies on the spread of
transmissible diseases becomes evident from the expression
of the effective reproductive number R(t ) that measures the
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average number of contagions that an agent, infected at time t ,
makes during its infectious period [8,9]. This number depends
on diverse epidemiological, demographical, and social aspects
of the particular population but, on general grounds, it can be
expressed as the combination of four contributions:

R(t ) = τkβρS (t ), (1)

namely; the average duration τ of the infectious period, the
average number of contacts per unit time k, the probability of
infection per contact β, and the fraction of susceptible individ-
uals in the population at time t , ρS (t ). When this number takes
values larger than 1, the number of new infections will grow
in time, whereas when R(t ) < 1 the disease is on the decline
and, keeping this trend in time, the number of new infections
will decrease until vanishing. Thus, one of the major goals
when facing an epidemic outbreak is to decrease the initial
reproductive number to values below the epidemic threshold
R(t ) < 1 via either pharmaceutical or nonpharmaceutical in-
terventions.

The existence of pharmaceutical measures such as a
vaccine will reach the goal by reducing the fraction of suscep-
tibles to a number below (τkβ )−1. However, in the absence of
this possibility, nonpharmaceutical interventions must come
into play. This way, social-distancing [10,11] and the use of
prophylactic measures [12,13] (such as face masks and hands
hygiene) aim to reduce the social contacts k and the disease

2643-1564/2021/3(1)/013163(11) 013163-1 Published by the American Physical Society

https://orcid.org/0000-0002-3885-607X
https://orcid.org/0000-0002-6388-4056
https://orcid.org/0000-0003-1820-0062
https://orcid.org/0000-0003-3156-0417
https://orcid.org/0000-0002-7563-9269
https://orcid.org/0000-0002-0723-1536
https://orcid.org/0000-0003-0937-0334
https://orcid.org/0000-0001-5204-1937
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.013163&domain=pdf&date_stamp=2021-02-19
https://doi.org/10.1103/PhysRevResearch.3.013163
https://creativecommons.org/licenses/by/4.0/


ADRIANA REYNA-LARA et al. PHYSICAL REVIEW RESEARCH 3, 013163 (2021)

transmissibility β, respectively, to reach R(t ) < 1. The degree
of social distancing, and consequently the reduction of our
social contacts, depend on the epidemic scenario. It can range
from strict closures when the incidence threatens the capacity
of health systems, thus requiring R(t ) � 1 values to bend the
epidemic curve, to moderate restrictions (such as banning so-
cial gatherings) when the incidence is small and social activity
coexists with a controlled transmission [R(t ) � 1].

The application of social distancing when trying to recover
the usual socioeconomic activity involves a delicate trade-
off between increasing our sociality k, while controlling the
transmission of a virus that takes advantage of our interactions
to spread. For this reason, pro-active control measures such
as test-treat-track (TTT) are mandatory to reach the former
balance and avoid future epidemic waves [14,15]. This strat-
egy is based on the detection of symptomatic individuals,
isolating them, and, more importantly, tracing the contacts
that these individuals have had in the recent past because they
represent potential infections before the index case has been
detected. Successful contact tracing stops the spread of the
virus caused by these secondary cases and hence reduces the
average infectious period τ in Eq. (1), leading to a decrease of
R(t ).

Successful contact tracing requires a personalized and ex-
haustive search of the contacts of each detected case, taking
into account the complex and heterogeneous nature of human
relationships [16–19]. This arduous task, however, becomes
critical when, as in the case of SARS-CoV-2, presymptomatic
and asymptomatic infections are abundant [20–26]. Under
these conditions, the symptomatic cases that are detected have
already infected some of their contacts and, in addition, it is
possible that a large fraction of their known infectees do not
present symptoms during the entire infectious period.

II. CONTACT TRACING AS A COMPETITIVE
CONTAGION PROCESS

The essential characteristics of contact tracing (termed CT
hereafter) can be captured by modeling it as a contagion
process in which the infectious agents detected spread the
possible identification of other positive cases through their
social network. This process competes with the spread of the
pathogen itself and aims to suppress the transmission of the
virus by eliminating the active spreaders whose infection is re-
lated to the identified case. Unlike other competing processes
in which different viruses spread simultaneously in a popu-
lation and interfere with the transmission of others [27–34],
here the cascade of CT identifications can only be activated
by the presence of the pathogen.

To incorporate the CT dynamics into a framework cap-
turing the transmission of SARS-CoV-2 we first construct
an epidemic model including 7 compartments (states): Sus-
ceptible (S), Exposed (E ), Presymptomatic (P), Infectious
asymptomatic (IA), Infectious symptomatic (IS), Detected (D),
and Removed (R). The transitions between these states are
shown in Fig. 1 and explained below.

Susceptible (S) agents are healthy individuals who can
be infected by direct contact with Asymptomatic and Symp-
tomatic Infectious agents with probability βA and βS respec-
tively. When an S agent is infected, she converts into Exposed

FIG. 1. Flow diagram of the compartmental epidemic model.
The epidemiological compartments are susceptible (S), exposed (E ),
presymptomatic (P), infectious asymptomatic (IA), infectious symp-
tomatic (IS), detected (D), and recovered (R). Arrows represent the
possible transitions between the different states.

(E ) in which the individual displays no symptoms and is not
contagious. This state lasts for an average period of η−1 days.
After being in E , agents pass to the Presymptomatic state (P).
In this state, no symptoms are observed but the individual is
already contagious, with contagion probability per contact of
βA. At this P stage, and without detection, the individual lasts
an average of α−1 days.

After the P stage, individuals can continue being asymp-
tomatic (IA) with some probability (1 − p) that is given by the
fraction of fully asymptomatic infections. Individuals in this
compartment share the same characteristics regarding infec-
tivity and detectability as P. Without detection, an individual
lasts an average of μ−1 days in this compartment before enter-
ing the Removed state (R). The rest (a fraction p) of P agents
pass to be Infectious symptomatic (IS). This compartment is
characterized by an infectivity βS when contacting an S agent
and, as in the case of the IA compartment, an (average) of μ−1

days before passing to R, if not detected before.
With the former ingredients, the model (SEPISIAR) can

be viewed as a refined variant of the SEIR class in which
compartment I is split in three infectious states, P, IS , and IA

to accommodate the specific contagion forms observed for the
dynamics of SARS-CoV-2 [35,36]. This model can be used as
a framework for studying the spreading of SARS-CoV-2 and
to assess the impact of contention measures such as social dis-
tancing, prophylactic behavior, or strict quarantines. However,
to study the influence that detection of symptomatic cases
has on the transmission dynamics and, more importantly, to
incorporate the possibility of tracing those infectious con-
tacts of symptomatic individuals, a further, and fundamental,
compartment capturing those infectious agents detected (D) is
needed.

As shown in Fig. 1, compartment D can be reached by
agents in P, IS , and IA states. First, those symptomatic infec-
tious can be directly detected as they display symptoms; this
happens with probability δ, which is related to the average
time spanned from the onset of symptoms to the availability
of the test (e.g., two days would correspond to δ = 0.5). Once
a symptomatic agent is detected, CT is activated. However,
the possibility of tracing recent contacts is subject to the
availability of information about the social activity of those
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TABLE I. Epidemiological parameters of the compartmental
model.

Parameter Value Description Reference

η 1/2.5 day−1 Probabilty E → P [37]
α 1/2.5 day−1 Probabilty P → IA, IS [37]
p 0.65 Fraction of Symptomatic [38]
μ 1/7 day−1 Probability IA, IS → R [13,39]

detected. Here we consider that a fraction f of subjects are
equipped with an application that records those acquaintances
that have installed it as well. Thus, those contacts of D indi-
viduals that are in the P, IA, and IS states can transit to state D
by means of an infection-like process in which the infection
probability is equal to f 2, i.e., the probability that both the
detected individual (in D) and the corresponding infectious
contact (either in P, IA, or IS) are equipped with the tracking
application. Finally, any individual entering in D transits to
Removed (R) with a probability γ , i.e., the CT contagion-like
process has an effective infectious period of γ −1 days. In
the following we will set γ = 1 considering that, once an

agent is detected, the corresponding infectious contacts are
immediately identified.

The complete model has six epidemiological parameters
(those of the SEPISIAR model) and three additional ones, δ,
f , and γ , that characterize the CT contagion process triggered
by symptomatic detection. The values of the epidemiological
parameters are presented in Table I with the exception of βS

and βA, which are assumed to be equal, βS = βA, and whose
value is taken so that the attack rate in the absence of detec-
tion, R∞, is the same in all the networks analyzed. Having
fixed the epidemiological parameters, those corresponding to
detection are used to analyze the impact of CT on epidemics.

Markovian dynamics

The dynamical evolution of the compartmental model can
be studied under a microscopic Markovian time-discrete for-
mulation [40–42]. In this framework, the dynamical state
of a node i at time t is given by the probability of being
susceptible, ρS

i (t ), exposed, ρE
i (t ), presymptomatic, ρP

i (t ), in-
fectious asymptomatic, ρIA

i (t ), infectious symptomatic, ρIS
i (t ),

detected, ρD
i (t ), and recovered, ρR

i (t ). The evolution of these
probabilities is then given by

ρE
i (t + 1) = (1 − η)ρE

i (t ) + [
1 − ρE

i (t ) − ρP
i (t ) − ρ

IA
i (t ) − ρ

IS
i (t ) − ρD

i (t ) − ρR
i (t )

]
	S→E

i (t ), (2)

ρP
i (t + 1) = [

1 − 	P→D
i (t )

]
(1 − α)ρP

i (t ) + ηρE
i (t ), (3)

ρ
IA
i (t + 1) = [

1 − 	
IA→D
i (t )

]
(1 − μ)ρIA

i (t ) + [
1 − 	P→D

i (t )
]
(1 − p)αρP

i (t ), (4)

ρ
IS
i (t + 1) = [

1 − 	
IS→D
i (t )

]
(1 − μ)ρIS

i (t ) + [
1 − 	P→D

i (t )
]
pαρP

i (t ), (5)

ρD
i (t + 1) = (1 − γ )ρD

i (t ) + 	
IS→D
i ρ

IS
i (t ) + 	

IA→D
i ρ

IA
i (t ) + 	P→D

i (t )ρP
i (t ), (6)

ρR
i (t + 1) = ρR

i (t ) + γ ρD
i (t ) + μ

[
1 − 	

IS→D
i (t )

]
ρ

IS
i (t ) + μ

[
1 − 	

IA→D
i (t )

]
ρ

IA
i (t ), (7)

where we have omitted the equation for ρS
i (t ) due to the normalization condition:

ρS
i (t ) + ρE

i (t ) + ρP
i (t ) + ρ

IA
i (t ) + ρ

IS
i (t ) + ρD

i (t ) + ρR
i (t ) = 1. (8)

In the former equations the quantities 	S→E
i (t ), 	P→D

i (t ), 	
IA→D
i (t ), and 	

IS→D
i (t ) account for the probabilities that an

individual passes from Susceptible to Exposed, from Presymptomatic to Detected, from Infectious asymptomatic to Detected,
and from Infectious symptomatic to Detected, respectively. Considering the adjacency matrix A capturing the contacts between
the nodes (Ai j = 1 if i and j are connected and Ai j = 0 otherwise), these probabilities read

	S→E
i (t ) = 1 −

N∏
j=1

{
1 − Ai j

{
βA

[
ρP

j (t ) + ρ
IA
j (t )

] + βSρ
IS
j (t )

}}
, (9)

	P→D
i (t ) = 	

IA→D
i (t ) = 1 −

N∏
j=1

[
1 − Ai j f 2ρD

j (t )
]
, (10)

	
IS→D
i (t ) = 1 − (1 − δ)

N∏
j=1

[
1 − Ai j f 2ρD

j (t )
]
. (11)

Note that in Eqs. (10) and (11) the probabilities of being
detected, 	P→D

i (t ), 	
IA→D
i (t ), and 	

IS→D
i (t ), are calculated

as 1 minus the probability of the complement, i.e., the proba-
bility of not being detected. In the first two cases, 	P→D

i (t )
and 	

IA→D
i (t ), the probability of the complement contains

the product of the probabilities of not being traced from
any detected neighbor j, [1 − Ai j f 2ρD

j (t )]. In addition, the

probability of the complement in 	
IS→D
i (t ) also considers

the probability of not being detected through symptomatic
detection (1 − δ).
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TABLE II. Characteristics of the three proximity networks. For
each network we show the number of nodes, N , the average degree
of the nodes, 〈k〉, and the assortatitivity measured as the Pearson
correlation between the degrees of adjacent nodes, r. We also report
the reference were these networks where presented and analyzed.

Network N 〈k〉 r Reference

Hospital 75 30 −0.18076 [43]
Science gallery 410 13 0.22575 [44]
School 784 60 0.22814 [45]

Although the equations above only give information about
the probability that a node i is in the Detected compartment
at each time, it is possible to construct the probability that
a given node i is detected at time t , either after showing
symptoms, DS

i (t ), or via contact tracing, DCT
i (t ). Thus, the

expected number of symptomatic detections at time t is

DS (t ) =
N∑

i=1

DS
i (t ) = δ

N∑
i=1

ρ
IS
i (t ), (12)

and the expected number of detections via CT at time t is

DCT(t ) =
N∑

i=1

DCT
i (t )

=
N∑

i=1

{
ρP

i (t )	P→D
i (t ) + ρA

i (t )	IA→D
i (t ) + ρ

IS
i (t )

×
[

(1 − δ)

(
1 −

N∏
j=1

[
1 − Ai j f 2ρD

i (t )
])]}

.

(13)

This last expression captures the effects of network topology
on the success of CT strategies. Note that the expressions of
DS (t ) and DCT(t ) are not used as inputs for the Markovian
equations. On the contrary, they are obtained from the time
evolution of the individual probabilities associated with com-
partments P, IS , IA, and D.

III. SYMPTOMATIC DETECTION VERSUS CONTACT
TRACING

The solution of the former Markovian equations allows us
to explore the performance of CT on any particular social
network characterized by its adjacency matrix A in a fast and
accurate way. In Appendix A, we show the validity of these
equations by comparing with the results obtained through
mechanistic stochastic simulations of the compartmental dy-
namics. In the following, we focus on three real proximity
networks with different populations and social structures in
which data were obtained by means of face-to-face sensors
that capture interactions with a temporal resolution of 20 s.
In Table II we report the main structural descriptors of these
proximity networks. Although these networks can be repre-
sented as time-varying or weighted graphs, we created the
static unweighted network for each case. Particularly, for the
school network, we set a temporal window of five minutes

as the minimum interaction time to define a link between
individuals and focus our analysis on its giant component.

Once the contact networks are constructed from proximity
data we implement the compartmental model equipped with
the symptomatic and CT detection to unveil the effects of
these mechanisms on the spreading dynamics. In Figs. 2(a)–
2(c) we show the diagrams R∞(δ, f ) for the three proximity
networks analyzed. In all the plots it becomes clear that the
sole implementation of symptomatic detection ( f = 0) does
not lead to a dramatic decrease of the final attack rate. On
the contrary, even with a poor symptomatic detection (e.g.,
δ = 0.2), the addition of CT with a moderate penetration (e.g.,
f = 0.5) yields much lower attack rates than the case with
perfect symptomatic detection and no CT (i.e., δ = 1 and
f = 0).

We analyze the combined impact of CT and symptomatic
detection in panels Figs. 2(d)–2(f). There we plot the fraction
of cases detected via CT with respect to the total number of
infectious cases identified:

F CT(δ, f ) =
∑∞

t=0 DCT(t )∑∞
t=0[DCT(t ) + DS (t )]

. (14)

In these plots we highlight the curve (orange) corresponding
to those values of δ and f that yield F CT = 0.5. Although the
partition between CT and symptomatic detections depends on
the precise network architecture, from the panels it becomes
clear that CT alone is not responsible of the large decrease
in the attack rate produced for large values of δ and f ; it is
the combination of both mechanisms that allows the efficient
suppression of transmission chains.

A. Microscopic differences: Contact tracing versus
symptomatic detection

The last result is quite expected since CT cannot show
up alone, since it is triggered by symptomatic detections.
However, from the Figs. 2(a)–2(c) it is clear that symptomatic
detection alone does not allow a significant decrease of the
epidemic impact but it needs the addition of CT policies. It
is thus the combination of these two policies that makes de-
tection effective. However, although the number of detections
made with each of the two mechanisms is roughly similar
when reaching the maximum decrease of the attack rate R∞,
not all the identified cases are equally useful to stop the ad-
vance of the disease, as we show below.

To shed light on the mechanisms behind the effectiveness
of CT we analyze the connectivity pattern of those cases
detected by CT and symptomatic detection. To this end, we
construct the probability that a node of degree k has been
detected during the course of an epidemic by symptomatic and
CT detection:

SD(k) = 1

Nk

∑
i;|ki=k

∞∑
t=0

DS
i (t ), (15)

CT (k) = 1

Nk

∑
i;|ki=k

∞∑
t=0

DCT
i (t ), (16)

where Nk is the total number of nodes with degree k.
In Fig. 3 we plot the functions SD(k) and CT (k) when

δ = 0.5 and f varies in the range f ∈ [0, 1], i.e., from no CT
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FIG. 2. CT versus symptomatic detection in three proximity networks (top). The color and size of the nodes is proportional to their
connectivity, being the small (large) and yellow (blue) ones those vertices with the smallest (largest) degree. Panels (a)–(c) show the attack
rate, R∞ as a function of the quality of symptomatic δ and CT detection f . Panels (d)–(f) show the fraction of detected cases by CT, F CT.
We have highlighted the case F CT = 0.5 (orange line) signaling that symptomatic and CT detections identify the same number of cases. The
infectivity probability per contact (βS = βA = β) is chosen so that the attack rate in the absence of any kind of detection (δ = f = 0) is
R∞ = 0.9 for the three networks.

to a situation in which CT is always possible. From Fig. 3(a) it
is clear that when no CT is at work ( f = 0) the function SD(k)
is an increasing function of the degree, i.e., the largest the
connectivity of a node, the more probable that it is detected.
This is clearly due to the high risk of infections of those nodes
with a large connectivity that, consequently, have more prob-
ability of being at compartment IS and hence being detected.
However, as f increases the probability SD(k) becomes a
nonmonotonic function of k and displays a maximum at some
degree class k
. The reason behind this behavior is the action
of CT , that shows [see Fig. 3(b)] an increasing pattern for
CT (k) for any value of f > 0. As f increases the identifica-
tion of those infected nodes with the largest degrees, i.e., the
superspreaders, is progressively replaced by CT in detriment
of symptomatic detection. In fact, by comparing with the
function SD(k) for f = 0, we notice that for f = 0.2 CT
already outperforms the ability of symptomatic detection in
the identification of superspreaders. Moreover, when f > 0.5
the probability that a superspreader is detected via CT is close
to 1, pinpointing that the effectiveness of CT is rooted on the

identification and isolation of superspreaders that have been
in contact with those symptomatic cases previously detected.

B. Dynamical differences: Flattening vs bending

An early identification of superspreaders is key to achieve
an effective control of an outbreak. Superspreaders can be
identified by symptomatic detection in the first stages of an
epidemic as they are usually exposed to a number of po-
tential infections due to their large connectivity. However,
symptomatic detection restricts its identification to those that
display symptoms and, moreover, their identification always
happens once after they have transited the P compartment,
thus provoking contagions in a number of neighbors prior to
detection. On the contrary, CT allows catching superspread-
ers at any infectious compartment, specially those in P, thus
providing with an early suppression of superspreading events.
The earliness of CT with respect to symptomatic detection is
manifested in the progressive replacement in the identification
of large degree nodes as f increases observed in Fig. 3.
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FIG. 3. Symptomatic detection and CT as a function of degree k
of the nodes. The panel shows the probability of being detected via
(a) symptoms and (b) CT as a function of the degree of the nodes for
the School proximity network. The curves correspond (from red to
blue) to f = 0, 0.1, 0.2, 0.3, 0.5, and 1.

The early identification of superspreaders provided by CT
is more evident when analyzing the time evolution of the epi-
demic curve when subjected either to symptomatic detection
or to CT. To monitor the effects that both detection mecha-
nisms have on the epidemic trajectory we monitor in Figs. 4(a)
and 4(b) the time evolution of the number of new contagions
when symptomatic detection and CT are the only detection
mechanisms, respectively. The number of new contagions that

occur at a given time t , C(t ), can be readily computed from the
Markovian dynamics as

C(t ) =
N∑

i=1

ρS
i (t )	S→E

i (t ). (17)

The first set of curves, Fig. 4(a), shows how symptomatic
detection changes the epidemic curve as δ varies from 0 to 1.
This plot shows that the sole action of symptomatic detection
causes the so-called flattening of the epidemic curve in which
the peak of the epidemic curve is delayed and decreased.
This flattening becomes more pronounced as δ increases, thus
reducing progressively the final attack rate. On the other hand
the effect of CT, see Fig. 4(b), yields a qualitative different
scenario. In this case we set a very small degree of symp-
tomatic detection δ = 0.05 to trigger the CT cascade, and vary
f from 0 to 1. The result is that the epidemic curve is no longer
flattened but bent, i.e., CT is able to reverse the increasing
tendency of the curve corresponding to f = 0. This bending
occurs the sooner the larger the fraction f of individuals
adopting the CT application. To illustrate the bending action
of CT we show (blue impulses) the evolution of the number
of CT detections, DCT(t ) [Eq. (12)], for the case f = 1. It is
clear that as soon as CT is triggered the increasing trend of the
epidemic curve is reversed leading to a successful mitigation.

Effective case-reproduction number Rc(t )

To shed more light on the qualitative differences between
CT and symptomatic detection, we can monitor the effective
case-reproductive number Rc(t ) to analyze their respective
impact on the evolution of the infective power of nodes in the
network. Rc(t ) is defined as the average number of secondary
cases that a case infected at time step t will eventually infect
during her infectious period [6,46]. Here, an agent can transit
three infectious states, namely P, IS , and IA, thus, in general,

FIG. 4. Dynamical evolution of the epidemic trajectory under symptomatic detection and CT. Panels (a) and (b) show the evolution of the
new contagions when different degrees of symptomatic detection and CT are implemented, respectively. In panel (b) we also show (impulses)
the evolution for number of detected cases via CT when f = 1. The bottom panels (c) and (d) show the evolution of Rc(t ) corresponding to
the different epidemic curves shown above. The calculations are performed using the School proximity network.
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the effective case-reproduction number would be

Rc(t ) = Rc
P(t ) + pRc

IS
(t ) + (1 − p)Rc

IA
(t ), (18)

where Rc

(t ) is the average number of infections made by

an agent infected at time t when staying at compartment 
.
However, when CT is active, the time window associated with
each infectious compartment does depend on the instant state
of the system, and the former partition is not straightforward.
In this case, the calculation of Rc


(t ) should be performed
starting from its general definition:

Rc(t ) =
∑N

i=1 ρS
i (t − 1)	S→E

i (t − 1)Ii(t )∑N
i=1 ρS

i (t − 1)	S→E
i (t − 1)

, (19)

where Ii(t ) is the number of infections caused by agent i
provided she has been infected at precise time t .

To calculate Ii(t ) in a general way, we introduce the joint
probabilities Pi(τE , τP, τA|t ) and Pi(τE , τP, τS|t ) that account
for the probabilities that an agent i infected at time t stays
a time τE in the exposed compartment, a time τP in the
presymptomatic stage, and a time τA or τS in the infectious
asymptomatic or symptomatic stages, respectively. Note that
these two probabilities do not depend on t and factorize,

Pi(τE , τP, τ
|t ) = P (τE )P (τP )P (τ
), (20)

when the time interval in each compartment does not depend
on the state of the system, as is the case when f = 0. The
general form of these conditional probabilities for any value
of δ and f probabilities is derived in Appendix B.

Once given the probabilities Pi(τE , τP, τS|t ) and
Pi(τE , τP, τA|t ), the average infections made by an individual
i can be written as

Ii(t ) = p
∞∑

τE =1

∞∑
τP=1

∞∑
τS=0

Pi(τE , τP, τS|t )

{
t+τE +τP∑

s=t+τE +1

N∑
j=1

Ai jβAρS
j (s) +

t+τE +τP+τI∑
s=t+τE +τP+1

N∑
j=1

Ai jβIρ
S
j (s)

}

+ (1 − p)
∞∑

τE =1

∞∑
τP=1

∞∑
τA=0

Pi(τE , τP, τA|t )

{
t+τE +τP+τA∑

s=t+τE +1

N∑
j=1

Ai jβAρS
j (s)

}
, (21)

and the evolution of Rc(t ) can be computed to illustrate
the qualitative differences between symptomatic detection
and CT.

In Figs. 4(c) and 4(d) we show the evolution of Rc(t ) for
the different epidemic curves shown in Figs. 4(a) and 4(b).
The evolution of Rc(t ) when symptomatic detection is at
work shows the fingerprint of the flattening effect observed
in Fig. 4(a), i.e.„ the effective reproduction number, while
being smaller in the beginning of the epidemic, slows down
the decreasing trend as δ increases, thus reaching Rc(t ) = 1 at
larger times. On the contrary, from Fig. 4(d) we observe that
the action of CT is the opposite: as f increases the decreas-
ing trend of Rc(t ) is accelerated, thus achieving Rc(t ) = 1
much sooner than in the case without detection. It is also
remarkable that, in the case of large values of f , the long-term
values of the effective reproductive number remain Rc(t ) � 1.
This explains the situation shown in Fig. 4(b), in which an
almost-steady small number of new contagions are observed
after the epidemic curve is bent, thus providing a large and
slow discharge of new cases. This way, CT places the system
in a kind of critical equilibrium that lasts as long as there
is a large enough fraction of susceptible individuals to be
infected.

To round off, we can use the expression for Rc(t ) to mon-
itor the impact on the reproduction number of each degree
class. To this aim, we can define the case effective reproduc-
tion number of the nodes of degree k, Rc

k (t ), as

Rc
k (t ) =

∑
(i|ki=k) ρ

S
i (t − 1)	S→E

i (t − 1)Ii(t )∑
(i|ki=k) ρ

S
i (t − 1)	S→E

i (t − 1)
. (22)

Computing this expression for each degree class, we show
in Fig. 5 the evolution of Rc

k (t ) when symptomatic detec-
tion (δ = 1, f = 0) and CT (δ = 0.05, f = 1) are at work

in Figs. 5(a) and 5(b), respectively. From these two plots
it becomes clear the fast drop of the infective potential of
superspreaders under the action of CT compared with the case
of symptomatic detection.

FIG. 5. Evolution of the case reproduction number for the dif-
ferent degree classes. The panels show the evolutions of probability
of Rc

k (t ) for (a) symptomatic detection (δ = 1, f = 0) and (b) CT
(δ = 0.05, f = 1) for all the degree classes present in the School
proximity network. The curve in gray accounts for the points where
Rc

k (t ) = 1.
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FIG. 6. Validation of Markovian dynamics by stochastic simu-
lations. Each panel shows the evolution of the occupation of each
compartment as obtained from stochastic simulations [bands and
points (median)] and the Markovian equations (lines). The network
substrate is the School proximity network and the detection pa-
rameters are set to δ = 0.1 for symptomatic detection, and f = 0.4
for CT.

IV. CONCLUSIONS

The recent outbreaks of COVID-19 in many countries that
had already controlled the first epidemic wave during the first
months of 2020 show the need of efficient control measures.
These measures should allow the development of normal
socioeconomic activity, while avoiding the deployment of epi-
demic waves that threaten the sustainability of health systems.
To achieve this former balance, actions aimed at eliminat-
ing local transmission chains should be implemented without
jeopardizing the normal functioning of societies. To this pur-
pose, the tracking of suspicious contacts of identified cases is
key.

Here we have analyzed the effectiveness of CT by formu-
lating its functioning as a secondary contagion dynamics that
is triggered by the identification of symptomatic individuals
and propagates as a detection wave. This way CT competes
with the spread of the pathogen eliminating potential trans-
mission chains. This compartmental model has been analyzed
under a Markovian framework that nicely agrees with mecha-
nistic simulations and allows a systematic study of particular
network architectures such as the proximity networks and
the analysis of microscopic dynamical patterns. Under this
approach, we have been able to derive the evolution of the
effective case reproductive number, an indicator that quanti-
fies the average number of secondary cases that a case will
eventually infect during her infectious period and, therefore,
it allows us to monitor both the spread of diseases and the
quality of the contention strategies implemented.

Our results identify the importance of implementing CT
in addition to symptomatic detection. The most important
indicator of the effectiveness of CT is its capacity to sharply
reverse the increasing tendency of the original epidemic curve,
causing its bending. In contrast, the implementation of symp-
tomatic detection, yields a softer modification to the epidemic

trajectory, known as flattening, in which the epidemic peak is
delayed and lowered.

The qualitative differences in the performance of CT and
symptomatic detection are rooted microscopically. We have
shown that CT allows an early detection of large degree in-
fectious nodes, well before than symptomatic detection does.
This early identification of superspreaders during their conta-
gious cycle is fundamental to pre-empting the spread of the
virus, cut the newest transmission channels, and cause the
bending of the epidemic trajectory rather than its flattening.
In more general grounds, the advantage of CT to advance the,
often covert, transmission of SARS-CoV-2 lies in the use of
its same strategy: a fast propagation across our social fabric
taking advantage of its heterogeneous nature.

Apart from these findings the formalism presented here al-
lows us to understand and quantify the impact of CT strategies
in particular proximity networks that are critical to protect.
Examples of these networks include companies, hospitals,
and schools to name a few. It also allows the possibility of
designing modifications of these social structures in order to
both decrease the impact of potential virus transmission and
enhance the efficiency of CT strategies.

The simple nature of the Markovian model has allowed us
to analyze the importance of CT and the qualitative changes
with respect to symptomatic detection. However, the compart-
mental dynamics and the social structure can be expanded in
order to address the performance of CT on realistic scenarios.
For instance, here we assume that CT is implemented by
means of an application whose penetration is characterized by
f . Instead, direct contacts such as those within the household
or close acquaintances at workplaces can be directly tracked
without the need of digital tracing. This duality can be cap-
tured with the use of multiplex social structures in which
usual contacts are distinguished from casual ones. Also, here
we have not considered the waiting times associated with de-
tection. However, in many practical situations tests cannot be
done immediately and thus the waiting time cooperates with
the infectious period of infectious acquaintances, since they
are not identified until the symptomatic case is confirmed.
In addition, once confirmed, all the contacts of the detected
agent are, in principle, suspects of being infectious. In those
situations all the individuals are quarantined so that also
Susceptible and Exposed neighbors are also removed from
the population together with those Presymptomatic, Asymp-
tomatic, and Symptomatic. Another limitation is the absence
of directionality of the model since here traced contacts can
correspond to either secondary (forward CT) or prior (back-
ward CT) infections of those detected cases, provided the
traced cases are infective. These and other features should be
considered as extensions of the model presented here.
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APPENDIX A

To confirm the validity of the Markovian equations we
have compared the results obtained from these equations with

mechanistic stochastic simulations. In these simulations we
start by assigning the CT application randomly to a fraction
f of the agents. As initial condition we set a small fraction
(1%) of individuals in the E compartment while the rest of
the population is S. Then the stochastic dynamics is iterated
following, at each time step, the transition rules described in
Fig. 1. For each value of f and δ we make 103 realizations to
calculate the corresponding averages.

In Fig. 6 we compare the time evolution of the occu-
pation of each compartment given by the iteration of the
Markovian equations with the average evolution given by
the different realizations of the stochastic dynamics of the
compartmental model for δ = 0.1 and f = 0.4. We also plot,
for each evolution, the 95% CI obtained from the pool of
stochastic simulations. In all the cases the Markovian equation
reproduces well the trajectories obtained from mechanistic
simulations, showing the accuracy of the Markovian frame-
work used along the paper.

APPENDIX B

Here we complete the derivation of the effective reproduction number Rc(t ) from the Markovian equations. To this end we
show the calculation of the probability that an individual i infected at time t spend times τE , τP, and τS or τA in compartments E ,
P, and IA or IA, respectively. Considering the Markovian equations the probability for those transiting the symptomatic phase is

Pi(τE , τP, τS|t ) = (1 − η)τE −1η
{
δτS,0	

CT
i (t + τE + τP ) + (1 − δτS,0)α

[
1 − 	CT

i (t + τE + τP )
]}

×
t+τE +τP−1∏
s=t+τE +1

(1 − α)
[
1 − 	CT

i (s)
]

×
{

δτS,0 + (1 − δτS,0)
[
δ + (1 − δ)

{
	CT

i (t + τT ) + [
1 − 	CT

i (t + τT )
]
μ

}]

×
t+τE +τP+τS−1∏
s=t+τE +τP+1

(1 − μ)(1 − δ)
[
1 − 	CT

i (s)
]}

, (B1)

while for those asymptomatic reads

Pi(τE , τP, τA|t ) = (1 − η)τE −1η
{
δτA,0	

CT
i (t + τE + τP ) + (

1 − δτA,0
)
α
[
1 − 	CT

i (t + τE + τP )
]}

×
[

t+τE +τP−1∏
s=t+τE +1

(1 − α)
[
1 − 	CT

i (s)
]]

×
{

δτA,0 + (1 − δτA,0)
{
	CT

i (t + τT ) + [
1 − 	CT

i (t + τT )
]
μ

}

×
t+τE +τP+τA−1∏
s=t+τE +τP+1

(1 − μ)
[
1 − 	CT

i (s)
]}

, (B2)

where τT is defined as the total duration of the infectious period of the infected agent, i.e., τT = τE + τP + τS for symptomatic
individuals and τT = τE + τP + τA for asymptomatic patients. In both expressions 	CT

i (t ) is the probability of being detected
through CT and is equal to 	P→D

i (t ) and 	
IA→D
i (t ) as written in Eq. (11).

Computing Eqs. (B1) and (B2) requires saving the time evolution along the epidemic trajectory of the following quantities:
	CT

i (t ) and ρS
i (t ) for all the nodes (i = 1, ...,N). These two sets of quantities, together with the evolution of the infection

probabilities of each node 	S→E
i (t ), allow us to obtain the effective case-reproduction number Rc(t ) in Eq. (22).

To illustrate the validity of the former expressions, lets suppose that CT is absent, so that 	CT
i (t ) = 0 ∀ t and i. Then the

conditional probabilities are identical for all the nodes:

P (τE , τP, τS|t ) = [δ + (1 − δ)μ](1 − μ)τS−1(1 − δ)τS−1α(1 − α)τP−1(1 − η)τE −1η, (B3)
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and

P (τE , τP, τA|t ) = μ(1 − μ)τA−1α(1 − α)τP−1(1 − η)τE −1η, (B4)

and the factorization of the two probabilities and their time independence becomes clear.
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