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Current modeling of infectious diseases allows for the study of realistic scenarios that include population
heterogeneity, social structures, and mobility processes down to the individual level. The advances in the
realism of epidemic description call for the explicit modeling of individual behavioral responses to the
presence of disease within modeling frameworks. Here we formulate and analyze a metapopulation model
that incorporates several scenarios of self-initiated behavioral changes into the mobility patterns of
individuals. We find that prevalence-based travel limitations do not alter the epidemic invasion threshold.
Strikingly, we observe in both synthetic and data-driven numerical simulations that when travelers decide to
avoid locations with high levels of prevalence, this self-initiated behavioral change may enhance disease
spreading. Our results point out that the real-time availability of information on the disease and the ensuing
behavioral changes in the population may produce a negative impact on disease containment and
mitigation.

T
he inclusion of mobility processes is a key ingredient in the modeling of the geographic spread of epidemics.
Recently this has been made evident in the modeling effort concerned with the diffusion of the 2009 H1N1
pandemic in which several papers have obtained estimates of the epidemic parameters and unfolding based

on the knowledge of human travel and mobility patterns1–3. Models that explicitly take into account the mobility
patterns of individuals range from relatively coarse-grained approaches that consider aggregated traveling flows
to highly detailed structured metapopulation or agent-based models allowing for the description of billions of
individuals4–6. However, the available data on human mobility and interaction are descriptive of human behavior
as long as information concerning the unfolding of the epidemic does not induce changes in the population’s
behavior, for at this point the model has to include the population’s behavioral changes that in turn alter the
epidemic spreading. Although behavioral changes are in many cases triggered by the policy-making effort of
public institutions and agencies, self-initiated changes in behavior induced by transmission of information about
the disease both from the media and the local environment (friends, colleagues, etc.) are often initiated by the
population’s individuals. Self-initiated behavioral changes are elusive to modeling because of the difficulty
involved in quantifying these changes and an overall lack of relevant data. In this case mathematical and
computational modeling represents a very effective tool for exploring the impact of behavioral changes on the
epidemic. For this reason there has been an increasing focus in the development of formal models aimed at closing
the epidemic-spreadingRbehavioral-changesRepidemic-spreading feed-back loop for the past decade (see7 for a
recent review). However, only a few of these theoretical and computational approaches have considered the
spatially structured nature of populations and the effect of behavioral and mobility changes in the large-scale
spreading of the epidemic8–10.

Here we consider a metapopulation model that incorporates self-initiated changes in human behavior in
response to an epidemic outbreak and study how these reactions influence the spread of infectious diseases.
The model is general enough to include a number of different behavioral responses. Ultimately, we find that
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prevalence-based behavioral changes do not affect the invasion
threshold, although the number of subpopulations affected by the
outbreak does depend considerably on population behavior. In par-
ticular, we introduce a simple mechanism that provides individuals
with the propensity to avoid locations affected by the epidemic.
Although the aim of such a self-initiated behavior is to prevent an
invididual’s exposure to the disease, it may lead to the unanticipated
effect of facilitating its spread to new locations. The results presented
in this paper underline the importance of the proper consideration of
self-initiated behavioral responses to the spreading of epidemics.

Results
In order to describe the large-scale spreading of infectious diseases
mathematically we use a metapopulation approach11. This frame-
work describes a set of spatially structured interacting subpopula-
tions as a network whose links denote the mobility of individuals
across subpopulations. Each subpopulation consists of a number of
individuals that are divided into several classes according to their
dynamical state with respect to the modeled disease – for instance:
susceptible, infected, removed, etc. The internal compartmental
dynamics models the contagion dynamics by considering that people
in the same subpopulation are in contact and may change their state
according to their interactions and the disease dynamics. Finally,
subpopulations also interact and exchange individuals due to mobi-
lity from one subpopulation to another. Figure 1 shows a schematic
representation of the metapopulation system. The global invasion
threshold that marks the point beyond which a local outbreak
reaches other subpopulations and spreads throughout the metapo-
pulation system not only depends on the infection parameters,
but on the mobility rates of individuals as well12,13 and thus differs
from the single population epidemic threshold. Previous works
have considered fully Markovian dynamics for the movement of
individuals among subpopulations, and more recent analyses
have focused on the analytical description of models with recurrent
patterns.

The model and the invasion threshold. Here we consider a general
scenario in which individuals have memory of their original
subpopulations, which they return to after having reached their
destination location. More explicitly, we define a population of size
N partitioned into V subpopulations. An individual is assigned its
origin destination – its home – among the V subpopulations. The
subpopulations are interconnected by edges that represent the
mobility connections among subpopulations. We can therefore see
the metapopulation system as a network made of V nodes and an
assigned degree distribution P(k) that defines the probability that
any given subpopulation is connected to k other subpopulations.
Given the set of populations we can denote the number of
subpopulations with k connections by Vk. A standard convenient
representation of such a system is provided by quantities defined
in terms of the degree k:

Nk~
1

Vk

X
ijki~k

Ni ð1Þ

The quantity Nk indicates the average number of individuals in a
population of degree k. This is a mean-field approximation that
considers all subpopulations with a given degree k as statistically
equivalent, thus allowing for the introduction of degree-block vari-
ables that depend only upon the subpopulation degree. While this is
an obvious approximation to the system description, it has been
successfully applied to many dynamical processes on complex net-
works and it is rooted in the empirical evidence presented in the
analysis of mobility networks14–18. In the following we assume the
population distribution

Nk~N
k
kh i , ð2Þ

where N~
P

k NkP kð Þ is the average number of individuals per node
in the subpopulation network. The mobility of the population is
defined as follows: for every time step each of the Ni individuals
(N 5 SiNi) of subpopulation i travels with probability lij 5 l. For

Figure 1 | Schematic representation of the Metapopulation System. A population of individuals is divided into V subpopulations connected with

each other following a heterogeneous network. Within each subpopulation, individuals are classified according to their dynamical status as Susceptible

(S), Infected (I) and Removed (R). In absence of behavioral changes (blue arrows), individuals move from a subpopulation to another at a rate l following

the shortest path connecting both subpopulations. The discontinuous arrows represent the second mechanism of behavioral reaction in which people

travel avoiding places with high prevalence at the cost of larger diffusion paths.
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simplicity, let us first consider the case in which destinations j are
randomly chosen proportionally to the size of the population of
the destination node (similar results are obtained by choosing the
destination randomly). Individuals then move along the shortest
paths to their destination nodes. This is a plausible assumption that
corresponds to a traffic of individuals on each edge proportional
to the edge betweenness. Data on the real network confirm this
assumption with a linear statistical association between traffic flows
and betweenness in the airport network (see supplementary online
information). Additionally, once a traveler arrives at its destination,
it must return to its origin subpopulation along the same shortest
route.

For the epidemic dynamics in each subpopulation i we first con-
sider the minimal SIR (Susceptible Infected Removed) model,
according to which individuals are partitioned into Si(t), Ii(t), and
Ri(t) compartments, denoting the number of susceptible, infected,
and removed individuals at time t, respectively. The transition rate
from the susceptible to the infected state is given through the usual
force of infection bIi/Ni, while infected individuals recover at a rate m.
The SIR model11,19 is characterized by the average number of infec-
tious individuals produced by a single infected individual in a fully-
susceptible population, the so-called reproductive number R0 5 b/m.
In a stochastic model if R0 . 1 an outbreak may take place11,19. For the
case of metapopulation models, the previous condition on R0 for
the subpopulation outbreak holds. However, if the mobility rate of
the individuals of the originally infected subpopulation is not enough
to ensure the seeding of other subpopulations before the waning of
the local epidemic, the outbreak does not spread globally. This is
equivalent to the existence of a second reproductive number at the
subpopulation level R* that depends on the mobility parameters and
defines the threshold for the epidemic invasion of a finite fraction of
subpopulations12,20–22.

In order to derive the condition for global spread in our model
with origin-destination dynamics let us consider a metapopulation
system in which a small set of initially infected subpopulations D0

k

� �
is experiencing an outbreak with R0 . 1. In the early stage of the
epidemic, the number of subpopulations experiencing an outbreak is
small and we describe the disease spreading at the level of the meta-
population system as a branching process, using a tree-like approxi-
mation relating the infected subpopulations Dn

k at generation n to the
infected subpopulations Dn{1

k at generation n 2 1. The average
number of infected individuals in subpopulations of degree k during
the evolution of the epidemic is aNk, where a is a disease-dependent
parameter expressing the total number of individuals in the popu-
lation that have been in the infectious state. Furthermore, in the SIR
model, each infected individual stays in the infectious state for an
average time m21. Thus, the total number of infected individuals
circulating through the network at the n 2 1 generation is:

vn{1~
la

m

X
k0

Dn{1
k0 Nk0 ð3Þ

Those individuals can trigger the start of an epidemic in a non-
infected subpopulation with probability 1{R{c

0½ �, where c is the
number of infectious individuals in generation n 2 1 that have visited
the subpopulation23. In order to provide a quantitative estimate of
this number we consider that if individuals follow the shortest route
through the network, then the probability that a node of degree k is
visited by any individual is proportional to the average betweenness
bk of nodes of corresponding degree. This allows us to write explicitly
(as shown in the material and methods section) the branching ratio
that provides the average number of subpopulations that will be
infected by each subpopulation experiencing an outbreak, defining
the following global invasion threshold:

R�~ R0{1ð Þ la

m
�N

1
kh i

k1zgh i
kgh i §1, ð4Þ

which can also be expressed as a threshold condition for the mobility
rate l as

l �N§

kgh i
k1zgh i

kh im
a

R0{1ð Þ{1: ð5Þ

This threshold condition is extremely relevant as it links the
mobility rate and patterns of individuals to the eventual global
spreading of the disease. This allows us to relate the mobility of
individuals to the global spreading of the disease and eventually study
how behavioral changes that affect human mobility may alter the
course of epidemic outbreaks. As we have previously detailed, the
analytic calculations are based on several simplifications and
assumptions and reduce to the critical point of a simple branching
process. In order to test the robustness and reliability of the calcula-
tion we compare results from individual-based simulations in Fig. 2
with the analytic prediction expressed in Eq.(5). The individual-
based simulations are detailed in the Materials and Methods section
and are based on stochastic and discrete binomial models of trans-
mission and mobility24,25. Here we report networks of size V 5 3,500
with N 5 33106 individuals. These relatively small sizes are the most
interesting as the mean-field approximations used in the calculations
are obviously valid in the case of large-scale random graphs. The
figure shows that the mean-field framework nicely estimates the
value of the mobility threshold beyond which the movement of indi-
viduals from infected subpopulations to susceptible ones is large
enough as to seed the latter and spread the epidemic to a system-
wide scale. For the sake of completeness we report simulations in
the supplementary online material for sizes up to V 5 33104 and
N 5 33107 that confirm the analytical results.

Self-initiated behavioral changes. During the outbreak of an acute
infectious disease it is natural to expect self-initiated human
behavioral changes and variations of individuals’ mobility patterns.
Obviously the extent of behavioral change depends on the risk as
perceived by individuals that concerns the severity of the disease,
prevalence of it within the population, and the information
available on the disease. Behavioral changes have been shown7 to
modify the disease state of individuals26,27, model parameters28 and
contact structure29. In our system human responses to the presence
of a disease might have a direct impact on mobility and traveling
habits, since avoiding infected areas is a natural attitude of
individuals and more drastic reactions such as not traveling at all
may spontaneously arise, as documented in the recent epidemic. In

Figure 2 | Mobility Threshold. To compare the analytical insights with

numerical results here we represent the number of diseased subpopulations

D/V as a function of the mobility rate l. The analytical value (Eq.(5)) is

indicated by the arrow and the green triangle. Full circles are results from

numerical simulations and represent the average over at least 100 stochastic

runs (the line is a visual guide). The value of a has been approximated by

a~2 R0{1ð Þ=R2
0

19. The substrate topology is an uncorrelated scale-free

network generated according to the uncorrelated configuration model30

with c 5 2.5, V 5 3000 subpopulations and N 5 33106 individuals. Other

parameters are indicated in the figure.

www.nature.com/scientificreports
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order to model behavioral changes in our framework we consider
that individuals react to prevalence-based information and study two
mechanisms of behavioral change. The simplest one assumes that the
probability pij(t) of traveling from subpopulation i to subpopulation j
at time t is related to the level of infection at the destination
subpopulation so that the higher the incidence of the infection at
the destination, the less likely the individual will engage in traveling,
i.e., pij(t) 5 1 2 Ij(t)/Nj(t). If travel is not cancelled, then the
individual moves following the shortest path to the destination.
This mechanism is the one that has led to the decline in the
number of passengers arriving at airports in Mexico both
domestically and internationally in 2009 due to the H1N1
influenza outbreak.

The second mechanism of mobility change (see Fig. 1) models
behavioral reactions that induce changes in traveling routes.

Specifically, given an individual who is traveling from an origin
(subpopulation i) to a destination (subpopulation j), we assume that
it will try to avoid traversing infected nodes, except when the next
move leads to its destination. This process is obviously not determin-
istic and it consists of a trade-off between the risk associated with
visiting a given subpopulation and the increase of the travel path
length to the final destination. We assume that the risk perception
associated with the visit of a given subpopulation is dependent on the
prevalence of the disease in that subpopulation. However, staying
away from infected subpopulations has the associated cost of travel-
ing through alternative routes. We therefore assume that individuals
move to the neighboring subpopulation l that minimizes the cost
function cl(t) 5 hdl1(12h)Il(t)/Nl(t), where dl is the change in dis-
tance to the destination, which can only take values -1 if node l is in
the shortest path to the destination, 0 if it is at the same distance to the
destination than the actual node, and 11 otherwise. The parameter h
tunes the force of the behavioral response and for h 5 1 the shortest
path is always followed, whereas h 5 0 corresponds to a path
minimizing the risk of traversing infected areas.

Synthetic metapopulation system. As for the analysis of the global
invasion threshold, we simulate a metapopulation network of V 5

3000 nodes and N 5 33106 individuals as detailed in the Materials
and Methods section. In Figs. 3 and 4 we report the behavior of the
density of infected subpopulations D/V at the end of the global
epidemic as a function of both the basic reproductive number R0

and the traveling diffusion rate l. The curves report the baseline
case without behavioral changes and the case in which behavioral
changes are implemented. The results readily show that in all
analyzed cases the metapopulation system exhibits an invasion
threshold which is independent of human behavioral changes. This
feature of the model can be traced back to the fact that the behavioral
changes are prevalence based. Analogously to the basic reproductive
number, the invasion threshold is determined by the average number
that each infected subpopulation will generate in a fully susceptible
metapopulation system. Clearly in this regime the prevalence-based
behavioral changes are irrelevant and the threshold value is thus not
affected. As we increase the value of the parameters above the
epidemic threshold we start observing differences in the two cases
with respect to the number of subpopulations affected by the
epidemic. In particular, it is not difficult to separate the effects of

Figure 3 | Effects of behavioral changes in synthetic networks. The figure

compares the fraction of diseased subpopulations D/V when behavioral

reaction mechanisms are active with the situation in which such behavioral

responses are not taken into account (null model). (A) We show the

dependency of D/V with the mobility rate l (A) for random scale-free

networks generated according to the uncorrelated configuration model30.

Symbols represent the results obtained when individuals do not react to the

presence of the disease (error bars are smaller than symbol sizes). The rest

of the results correspond to the mechanisms of behavioral changes: ‘‘DP’’

stands for ‘‘departure probability’’ and represents the mechanism in which

individuals decide whether or not to travel; ‘‘RR’’ (rerouting) corresponds

to the case in which people travel while trying to minimize the risk of

infection avoiding subpopulations with high prevalence at the cost of long

travel paths. The results confirm that the invasion threshold is independent

of behavioral changes and that the latter has a significant impact on the

invasion dynamics of the metapopulation. The points are the averages

among at least 100 stochastic runs and we consider m 5 0.04 and h 5 0.1.

See the main text for further details. (B) we report the relative difference of

subpopulations experiencing an outbreak in the RR and baseline scenarios

as a function of l. It is possible to see the non-linear behavior that first

induces a decrease – close to the invasion threshold – and then a sharp

increase in the number of affected subpopulations.

Figure 4 | Effects of behavioral changes in data-driven scenarios.
Comparison of the fraction of diseased subpopulations D/V for the full

(behavioral reaction mechanisms are active) and null (behavioral

responses are not taken into account) limits of the metapopulation system.

We plot D/V as a function of the mobility rate l. The results confirm even

in this case that the invasion threshold is independent of behavioral

changes. Moreover, as for synthetic networks, epidemic awareness

enhances the disease spreading as given by the increase in the number of

subpopulations affected by the disease. The averages were taken over at

least 100 stochastic realizations and we fix m 5 0.04 and h 5 0.1. See the

main text for further details.
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the two mechanisms of behavioral changes. When people have the
option of deciding whether or not to engage in travel, the fraction of
diseased subpopulations at the end of the outbreak decreases with
respect to the null case, thus pointing out that this kind of response is
beneficial. The reason for the reduction in D/V is rooted in the
effective reduction of the mobility rate of individuals, which leads
to a smaller exposure of susceptible individuals to the disease both
while traveling and at home. A different scenario emerges in the case
that individuals attempt to avoid infected subpopulations. For values
of the parameter R0 and l close to the invasion threshold the
rerouting of individuals on different paths leads to a reduction of
the outbreak probability 1{R{c

0ð Þ in the subpopulations along the
origin-destination path. This leads to a final reduction of the
subpopulations experiencing an outbreak. For increasing R0 and l
this probability saturates to one and all subpopulations visited on the
original and the rerouted path experience an outbreak. In this regime
the number of subpopulations affected by the epidemic is much
larger than the case without behavioral changes. The enhancement
of the epidemic size is visible in Fig. 3 and occurs close to the invasion
threshold onward. A full discussion with analytical arguments of this
behavior is provided in the supplementary online material, and
points out the important and counter-intuitive effects that may be
generated by behavioral changes in the population.

Data-driven simulations. While the previous set of computational
studies are obtained in a synthetic and in some ways simplified
metapopulation scheme, we also carried out Monte Carlo
simulations using the Air Transportation Network (see Materials
and Methods). This network is highly heterogeneous with respect
to the number of connections between urban areas (subpopulations)
as well as the traffic wil in terms of the number of passengers and
available seats on a given direct route connecting two subpopulations
i and l. Taking into account these traffic patterns, we assume that
initially the number of individuals in subpopulation i is proportional
to its strength Ni 5 Sl wil. In this realistic setting, instead of using a
shortest-path routing we implement a traffic-based routing where
individuals follow paths to the destination proportionally to the
actual traffic to the destination. Moreover, as the travel flows are
not homogeneous, we also consider that individuals choose their
destinations proportionally to the strengths of each possible target
subpopulation and that all travelers spend a time t at their
destinations before coming back home. In this way, we preserve
the inter-city traffic patterns. The parameter t is drawn from a
uniform distribution with mean equal to the traveled distance dil.
Sensitivity analyses for these parameters and those defining the
behavioral changes are reported in the Supplementary Information
file, where we also report the simulation for a more realistic model
with the additional class of exposed individuals (the SEIR model)
added to disease natural history. In Fig. 4 we report the results
obtained for the data-driven model where all mechanisms of
behavioral changes are at work, confirming the results obtained for
the synthetic metapopulation network. We observe: i) a global
invasion threshold that does not depend on behavioral changes;
and, ii) that changes in traveling routes dominate the model
behavior by considerably enhancing the spread of epidemics
affecting a number of subpopulations compared to the case with
no behavioral changes.

Discussion
The results provided by the analysis of the effect of behavioral
changes in both synthetic and data-driven simulations make it clear
that behavioral changes inspired by the best intention of slowing
down and containing the epidemic may give rise to the opposite
effect. The numerical analysis shows that the disease spreading, as
given by the number of subpopulations with local outbreaks,
increases when travelers decide to bypass the subpopulations with

a high number of infected individuals. The behavioral change effect is
clearly observed in the data-driven simulations by plotting the inva-
sion tree in the USA with an epidemic starting in New York. The
invasion tree specifies the disease progression by defining a directed
link i R j from the infecting to the infected subpopulation, i.e. the
origin subpopulation i of the infected individuals who have started
the epidemic to the subpopulation j. Fig. 5A shows that in the absence
of behavioral changes the infection tree is heterogeneous and has
several hubs. This is not the case in the presence of behavioral
changes where the entire tree originates from the initially infected
subpopulation as shown in Fig. 5B. The rationale behind this finding
is that the increased flow of individuals going through alternative
paths brings the infection to new subpopulations that would other-
wise be infected by other subpopulations. This constitutes a very
interesting finding, as one can think of the whole process in terms
of a social dilemma; individuals adopt a sort of selfish behavior by
avoiding highly infected spots, but as a consequence, the disease
invades a larger fraction of the subpopulations in the metapopulation
system. Thus, what is beneficial at the individual level, turns out to
have a negative impact on the whole population, especially in the
cases where the epidemic has pervaded the system (large R0 and l).
As Figs. 3 and 4 show, it is also worth stressing that the effects of this
kind of behavioral change depend nontrivially on both R0 and l.
Moreover, the features observed here are emphasized by models that
take into account a natural history of the disease that allows for
exposed individuals to become infectious after a latency period.
Those individuals are subject to behavioral changes that make them
avoid subpopulations that are already infected, but they do not have
limitations to their mobility, thus providing an even more efficient
mechanism for the large-scale spreading of the infectious disease.

The present finding points out the importance and relevant effects
of behavioral changes. Other behavioral reactions may be considered
separately or in concomitance with the mechanisms studied here,
thus providing more complicated dynamic behavior. The addition of
simple behavioral models in the analysis of the geographical spread-
ing of infectious diseases opens the path to a multitude of effects that
can have a major impact in both our understanding of epidemiolo-
gical data and in the definition of public health intervention.

Methods
Invasion threshold. In order to relate the global epidemic spreading with the network
betweenness we note that the number of seeding infectious individuals for each node
of degree k is ck~

bk
btot

vn{1 where bk is the algorithmic betweenness (equal to the
topological betweenness in the case of shortest path routing) of subpopulations of
degree k, and btot is the normalization factor accounting for the betweenness of all
nodes. For reproductive numbers close to the epidemic threshold R0^1ð Þ we can
approximate the infection probability (see the SI file) and write explicitly the recursive
expression for the number of infected subpopulations with degree k at the nth
generation as

Dn
k^Vk R0{1ð Þ bk

btot

la

m

X
k0

Dn{1
k0 Nk0 : ð6Þ

It is important to remark again that this expression is obtained by assuming that the
network is random, nodes with a given degree k are statistically equivalent, and the
number of infected subpopulations is negligible with respect to the total number of
subpopulations so that 1{

P
k

Dn{1
k
Vk

� �
^1. This also allows us to consider the

branching process as uncorrelated and the seeding of each subpopulation as an
independent event. Furthermore, in this case it is possible to use the general result
bk , kg relating the node betweenness and degree in random networks. The above
expression yields the branching ratio used to calculate the invasion threshold.

Internal nodes’ dynamics. In each node an SIR dynamics takes place over a well-
mixed population of initial size Ni. As time passes, Ni(t) changes according to the
number of individuals that have been received and that have left the node. Within the
nodes, one step of an SIR process takes place. The state of every individual inside a
node i is changed according to the following probabilities: a susceptible individual

becomes infected with probability p S?Ið Þ~1{ 1{ b
Ni

� �Ii

, and an infected individual
recovers with probability p(IRR) 5 m. Specifically, the exact number of individuals that
change state is determined by a binomial distribution with the probability p(SRI) (or
p(IRR)) and the susceptible populations size Si(t) (or infected Ii(t)) as parameters. Note
that in this scenario, R0 only participates in the internal dynamics; individuals
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traveling through node i are involved in the SIR and thus can change their state while
at node i.

Synthetic networks. We consider topologically-uncorrelated random graphs
generated by an uncorrelated configuration model30. The simulations presented
here consider a degree distribution P(k) , k2c with kmin # k # kmax and c 5 2.5 and
kmin 5 2. The population of each node is assigned according to Eq. (2).

Airports network. The airport network data set is composed of passenger flights
operating in the time period November 1, 2000 to October 31, 2001 as compiled by
OAG Worldwide (Downers Grove, IL) and analyzed previously in Ref. 31. It consists
of 3,618 nodes (airports) and 14,142 links. We use a weighted network in our analysis.
Airports corresponding to a metropolitan area have been collapsed into one node in
the original database.

Computational implementation. Each simulation starts with a small number of
infected individuals. Specifically, we randomly choose a small fraction of
subpopulations (less than 1% of the nodes) and within these subpopulations only 1%
of the individuals are infected, assuring that the condition I0w

m
b is fulfilled. In the

simulations the traffic and spreading dynamics have the same time scale, so at each
time step a diffusion step is performed first and then the SIR internal dynamics is
evaluated. For the diffusion of individuals we assume that the number of individuals
starting a trip at time t is given by a binomial distribution with mobility rate l and
subpopulation size Ni(t) as parameters. Destinations are chosen according to the

strength wi of each node. To keep the nodes’ populations constant over time
(excluding transient individuals traveling through the node), once an individual
reaches its destination it starts a new trip back to its origin. Simulations run until the
stationary state I(t) 5 0 is reached. Note that in this framework only travelers are
explicitly followed and that we only keep a counter for the number of non-traveling
individuals inside each node. Individuals are labeled according to their origin
population and both the disease dynamics and the mobility process are simulated
with discrete, binomial processes (See Materials and Methods). Finally, simulations of
the behavioral changes are made more realistic by considering that infected
individuals diffuse at a lower rate, lI, than susceptible subjects. This simulates the
fact that most of the infected individuals will exhibit symptoms that prevent them
from traveling. This happens in influenza-like diseases where only a fraction of
infected individuals is asymptomatic and can continue with regular mobility habits.
Without loss of generality we assume that lI 5 l/2 and we report in the
supplementary online material the sensitivity analysis for different values of this
parameter. In synthetic networks agents select which neighbor to visit next on their
ways to their destinations, presuming that following the shortest path is the preferred
solution in an infection-free scenario. In the simulated airport network individuals
are routed proportionally to real traffic edges and individuals traveling between
subpopulations are tracked in time and the evolution of the disease is monitored. In
addition, we study the invasion dynamics and measure the number of diseased
subpopulations at time t, D(t). All numerical results reported henceforth are averages
taken over at least 100 realizations of the initial conditions and the stochastic
dynamics.

Figure 5 | Invasion tree. Invasion tree describing the air transportation network inside the USA of an epidemic starting in New York. The invasion tree

specifies the disease progression by defining a directed link i R j from the infecting to the infected subpopulation. In panel (A) we show the invasion tree

for the null model when no behavioral reactions are considered. In panel (B) we show the invasion tree starting from the same initial conditions but

consider both mechanisms of behavioral reaction to be active. In order to provide a clear representation we consider in both cases just the first 100 infected

nodes among the total 425 in a single run, respectively. The color scale is a measure of time and is the same for both cases. At the time step in which the first

subpopulation is infected from the seed it is yellow. At the time step in which the last subpopulation (among the first 100 in both cases) is infected it is red.

All the other time steps are in the gradient between these two limits. Panel (A) shows clearly that in the absence of behavioral changes the infection tree is

heterogeneous and contains several hubs that are infected first and that determine the time scale of the spreading infection to smaller airports. This is not

the case in the presence of behavioral changes where the entire tree originates and grows much faster from the initially infected subpopulation as shown in

panel (B). In both cases, we fix the parameters to R0 5 2, m 5 0.04 and l 5 1026.
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