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Metapolulation models are a relevant framework to model spreading of
infectious diseases between fragmented but coupled subpopulations. Each of
these subpopulations is represented as a node in a network with a certain num-
ber of connections with others. Individuals diffuse following the paths defined
by the links that connect subpopulations. Inside each subpopulation, individ-
uals are assumed to be well-mixed, so that the evolution of the epidemic is
determined by the reproductive number R0 of the disease. In metapopulation
systems this quantity is not sufficient to understand if a macroscopic fraction
of subpopulations will experience an outbreak. The diffusion and coupling be-
tween each node must be considered. Using these arguments a new quantity
is introduced: the global invasion threshold. This is in general a function of the
basic reproductive number, the connectivity patterns, diffusion rates and mo-
bility patterns. Recently, analytical solutions have been found for Markovian
diffusion processes [1]. In this paper we consider a more realistic scenario for
individuals’ mobility. People have a home, and when they travel, they also go
to a specific, not random destination [2].

In our study, we have first analytically evaluated the global invasion thresh-
old for synthetic networks considering explicitly origin and destination matri-
ces. We next added even more realism considering real networks, namely, the
worldwide air transportation network, and different mechanisms that account
for self-initiated behavioral changes that are induced by the spreading of the
epidemic among different subpopulations. In doing so, we have focused on
spontaneous behavioral changes due the evolution and awareness of the epi-
demic. For instance, when an epidemic outbreak takes place, people might
minimize their contacts as a way to reduce the risk to get sick. Besides, it has
also been documented that one of the most common risk aversion strategies
consists of staying at home, i.e., not to engage in a travel if there is the per-
ception (or certainty) that at destination the number of infected individuals is
high. Another behavioral reaction is encountered when travels are not can-
celled, but individuals decide instead to change their itinerary avoiding places
in which the epidemic incidence is perceived as high. These two possible risk
aversion scenarios are considered in our study through the implementation of
two mechanisms accounting for such behavioral changes in a metapopulation
framework. In this supplementary information, we give more details of the
results presented in the main text. In particular, we first describe in details
the synthetic and real world networks used in the analysis. Then we present
the analytical derivation of the global invasion threshold with a simple non-
markovian diffusion scheme with mobility patterns given by origins and des-
tinations. Finally, we move to the numerical details and sensitivity analysis of
the model in which real networks and behavioral changes are introduced.
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Figure 1: Degree distributions of the generated synthetic networks and cor-
relations between nodes strength and betweenness centrality in the ATN. (a)
Degree distribution P (k) of the uncorrelated scale free network made up of
N = 3 · 103 subpopulations used as a substrate in our analysis. (b) Degree
distribution P (k) of a random network generated using the Erdös and Rényi
model. The network is of the same size and average degree of that depicted in
panel (a). (c) Degree distribution P (k) of the uncorrelated scale free network
withN = 3 ·104 subpopulations used in the size dependency analysis. (d) Cor-
relation between the observed traffic strength si of each node i in the ATN and
the betweenness centrality values bi produced by a the shortest path routing
algorithm assumed in the simulations.

1 Networks analysis

Before starting our analysis let us present the networks we used as substrate
to simulate real world populations. First, we focus on synthetic uncorrelated
scale free networks that offer a controlled test-bench for the analytical treat-
ment of the model and then we move to a realistic scenario considering the so-
called Air Transportation Network (ATN). Synthetic scale free networks were
generated following the recipe in [3]. In order to resemble as much as possible
the ATN, we use a network of similar size N = 3 · 103. One might argue that
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this is a too short network size, as it is well-known that the Mean-Field approx-
imation in quenched networks is valid for very large systems sizes. For finite
networks, finite-size corrections might be needed.

Our results show that for a synthetic system of a size equivalent to that of
the ATN, the analytical results nicely fit numerical simulations. This is because
for N = 3 · 103, the differences between homogeneous and heterogeneous net-
works already manifest (see Fig. 1a and Fig.1b). However, in order to test the
effects of the network size in the results shown below, we have also built a
larger scale free network made up of N = 3 · 104 subpopulations. Figure 1c
depicts the corresponding degree distribution.

Another assumption of our model that is related to the connection between
synthetic and real networks has to do with the way individuals move through
the networks. Specifically, we assume that individuals move from their home
to the destination following the shortest path connecting them. In Fig.1d, we
compare the observed nodes’ strengths si from the ATN (i.e., real fluxes be-
tween any two given nodes) and the betweenness centrality bi of that i when
a shortest path routing algorithm is implemented. The linear association be-
tween the two sets of data doubtlessly indicate that the latter is indeed a quite
good proxy for individual mobility.

2 Global invasion threshold in metapopulation net-
works with origin-destination diffusion

Let us consider a network G(V,M) with V nodes, M links and degree distri-
bution P (k). Each node i of the network is considered a subpopulation with
Ni individuals. We set the subpopulation size proportional to its degree. Next,
assume a diffusion process in which each individual in a node i (origin) travel
to another node j (destination) of the network with a probability λ. The des-
tination choice j is selected with a probability proportional to the subpopula-
tion size Nj . Once individuals engage in a travel, the shortest path is selected
among all the possible paths connecting the origin and the destination of the
travel. Besides, we also consider that individuals come back to their home sub-
populations after they reach their destinations. A standard convenient repre-
sentation of the system is provided by quantities defined in terms of the degree
k:

Nk =
1
Vk

∑
i|ki=k

Ni. (1)

Let us consider that an individual of a subpopulation of degree k gets some in-
fectious disease characterized by a reproductive number R0 > 1. Let us define
D0
k as the number of diseased subpopulations of degree k at generation 0. In

the early stage, the number of diseased subpopulations is small, thus, we can
study the evolution of this number using a tree-like approximation (where no
correlations are considered) relatingDn

k withDn−1
k . The average number of in-

fected individuals in the class of degree k during the evolution of the epidemic
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is αNk. The parameter α depends on the specific disease. Each infected indi-
vidual stays in the infectious state for an average time µ−1. Then the number
of infected people circulating through the network after n− 1 generations is:

ωn−1 =
λα

µ

∑
k′

Dn−1
k′ Nk′ (2)

The number of infected individuals that will pass through a subpopulation of
degree k will be a fraction of Eq. (2) proportional to the topological between-
ness (in general, it is proportional to the algorithmic betweenness, but given
that individuals are following the shortest path, it coincides with the topologi-
cal one in our case). This measure is defined as:

b(i) =
∑

j,l=1,n

i 6=j 6=l

Djl(i)
Djl

, (3)

where Djl is the total number of shortest paths from j to l and Djl(i) is the
number of shortest paths from j to l that goes through i. The latter quantity
also measures the centrality of a node assuming a diffusion scenario in which
travelers go through the shortest paths. We can then write:

γn−1
k =

bk
btot

ωn−1, (4)

where btot is the sum of all the betweenness of the nodes. For the nth generation
we have:

Dn
k = Vk

(
1−

Dn−1
k

Vk

)[
1−R−γ

n−1
k

0

]
, (5)

where the second factor on the right is the probability that the subpopulation
is not already seeded by infected individuals and the last is the probability that
the new seeded subpopulation will experience an outbreak. In the early time
and for R0 ∼ 1 we can approximate the last expression considering:

Dn−1
k

Vk
<< 1, (6)

and
1−R−γ

n−1
k

0 ∼ (R0 − 1)γn−1
k , (7)

obtaining:

Dn
k = (R0 − 1)Vkγn−1

k = (R0 − 1)
λα

µ
Vk

bk
btot

∑
k′

Dn−1
k′ Nk′ . (8)

Considering at the equilibrium:

Nk =
k

〈k〉
N̄ , (9)
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where N̄ =
∑
k P (k)Nk is the average subpopulation size, we get:

Dn
k = (R0 − 1)

λα

µ
N̄Vk

bk
btot

1
〈k〉

∑
k′

Dn−1
k′ k′. (10)

Let us define now Θn =
∑
kD

n
kk, then we have:

Θn = (R0 − 1)
λα

µ
N̄

Θn−1

〈k〉
∑
k

Vkk
bk
btot

. (11)

The last term needs can be further developed as:∑
k

Vkk
bk
btot

=
V
∑
k P (k)kbk

V
∑
k′ P (k′)bk′

. (12)

Considering now bk ∼ kη one is left with:

Θn = (R0 − 1)
λα

µ
N̄

1
〈k〉
〈k1+η〉
〈kη〉

Θn−1. (13)

We finally get the global invasion threshold as:

R∗ = (R0 − 1)
λα

µ
N̄

1
〈k〉
〈k1+η〉
〈kη〉

. (14)

We can write the threshold condition for the mobility rate:

λN̄ ≥ 〈kη〉
〈k1+η〉

〈k〉µ
α

(R0 − 1)−1. (15)

These last two expressions are the crucial quantities, and give the conditions for
a global outbreak. It is important to remind that in metapopulation networks
the condition R0 > 1 for each subpopulation is not enough to infer whether a
finite number of subpopulations will be affected by the disease. The diffusion
process must be considered, and it defines the form and value of the invasion
threshold. The previous arguments are valid for the case in which:

µ−1 � l̄v−1, (16)

where l̄ is the average distance between nodes and v−1 is the traveling speed of
individuals that we set as 1 node per time step. In other words, this means that
sick individuals are infectious for a large enough time compared with the time
it takes for individuals to complete their travel. This is a necessary condition
for Eq. (4) to be valid. We can easily get an expression in the other limit:

µ−1 � l̄v−1, (17)

in this case each individual will be infectious for a time window smaller enough
as to infect only the nearest neighbors. In this case the spreading can be thought
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of as a Markovian process and all the analytics is the same reported in Ref. [1].
The expression for the number of infected nodes at the nth generation will be
then:

Dn
k =

∑
k′

Dn−1
k′ (k′ − 1)

[
1−R−λk′k

0

]
P (k|k′)

(
1−

Dn−1
k

Vk

)
, (18)

using the usual approximations (6), (7) and assuming that degree correlations
can be neglected we have:

Dn
k =

(R0 − 1)
〈k〉

kP (k)
∑
k′

Dn−1
k′ (k′ − 1)λk′k. (19)

Considering an homogeneous diffusion we can write:

λk′k =
λ

k′
αNk′

µ
, (20)

where Nk′ = k′

〈k〉N̄ . Using this expression we get:

Dn
k =

λα

µ

(R0 − 1)N̄
〈k〉2

kP (k)
∑
k′

Dn−1
k′ (k′ − 1). (21)

Let us defined Θn =
∑
kD

n
k (k− 1), after multiplying both sides for (k− 1) and

after summing over all k we get:

Θn =
λα

µ

(R0 − 1)N̄
〈k〉2

Θn−1
∑
k

k(k − 1)P (k), (22)

or

Θn =
λα

µ

(R0 − 1)N̄
〈k〉2

Θn−1(〈k2〉 − 〈k〉). (23)

We finally got an expression for the global invasion threshold:

R∗ =
λα

µ
(R0 − 1)N̄

〈k2〉 − 〈k〉
〈k〉2

, (24)

and for the mobility rate

λN̄ ≥ µ

α(R0 − 1)
〈k〉2

〈k2〉 − 〈k〉
. (25)
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2.1 Comparison with numerical results

To compare the analytical approach with the numerical results we choose as
substrate an uncorrelated scale free network generated according to the un-
correlated configuration model with γ = 2.5 and N = 3000. First of all we
tested the assumption made in Eq. (9), in which the number of individuals Nk
at nodes of degree k, at the equilibrium, is proportional to k. To do so, we start
the simulation with a population of Ni ' 1000 in each node, wait until the
traffic equilibrium has been reached, and finally we collect the values of Ni.
Fig. (2)a shows the values ofNk as function of degree k, justifying our assump-
tion. In order to calculate the critical mobility rate λc we use Eq. (15) and λc
reads as:

λc =
1
N̄

〈kη〉
〈k1+η〉

〈k〉µ
α

(R0 − 1)−1. (26)

Thus, we need to know the specific value of η in the chosen network and fix a
value for R0. To obtain an estimate for η we compute the value of the between-
ness bi for each node i and coarse grain it by degree classes k as,

bk =
1
Vk

∑
i|ki=k

bi. (27)

Note that to evaluate bi of each node we decide to make a run of the simulation
and register the number of packets that pass through a link over a very long
period of time. In this way, the values of bi are more precise and closer to the
actual dynamics. Fig. (2)b shows bk as function of the degree classes and the fit
for η gives a value of η = 1.51.

Now we have all the ingredients to calculate the critical value λc and com-
pare it with the numerical results. First we calculate the mean degree of the
network 〈k〉 = 4.0 and then the ηth moment of the degree distribution obtain-
ing 〈kη〉 = 10.93 and finally the (1+η)th moment 〈k1+η〉 = 158.60. Considering
R0 = 1.5 and that N̄ = 1000, and substituting α in Eq. (26) one gets

λc =
1
N̄

〈kη〉
〈k1+η〉

〈k〉µR2
0

2(R0 − 1)2
=

1
1000

10.93
158

4.0 · 0.04 · 1.52

2 · 0.52
= 0.0000496. (28)

In Fig. 2c we show the good agreement obtained when comparing the nu-
merical simulations of the model and the analytical prediction for the global
invasion threshold. Besides, a similar calculation but for µ = 0.5 gives the sec-
ond limit Eq. (17), which is compared in Fig. 2d with numerical simulations,
showing again a good agreement.

2.2 Size dependency analysis

As previously argued, one would expect finite size corrections to the Mean-
Field approach for small systems. In order to address this issue, we consider a
larger synthetic scale free network made up of N = 3 · 104 nodes. Also for this
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Figure 2: Panel (a) represents Nk as a function of the degree classes k and the
best fit, which leads to a linear scaling. In panel (b), we show bk as a function
of the degree classes k and the best estimated value for η is 1.51. In panels (c)
and (d), we show the fraction of infected subpopulations in the null model as
a function of the mobility rate λ for two different values of µ such that µ−1 �
l̄v−1 (c) and µ−1 � l̄ (d).

case we have checked the assumption made in Eq. 9 and estimated the value of
η from the relation between k and bk. In Fig. 3a we show the scaling between
the population on nodes of degree k and k. Again, the scaling turns out to be
linear. Moreover, Fig.3b represents the dependency of bk with k, from which a
value of η = 1.161 is obtained.

We have also tested the robustness of our derivation when infected individ-
uals move at a lower rate than other individuals, which is a realistic ingredient.
In this case we simply need a rescaling of Eq. 26. If, for simplicity, we assume
λI = λ/2 we obtain:

λc =
2
N̄

〈kη〉
〈k1+η〉

〈k〉µ
α

(R0 − 1)−1. (29)

Now considering the mean sub-population size N̄ = 1000 andR0 = 1.5 we can
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Figure 3: Panel (a) represents Nk as a function of the degree classes k. The best
fit leads to a linear scaling for the N = 3 · 104 uncorrelated scale free network.
In panel (b), we show bk as a function of the degree classes k, from which a
best estimate gives η = 1.51. Panels (c) and (d) depict the fraction of infected
subpopulations in the null model as a function of the mobility rate λ for two
different values of R0, R0 = 1.25 (c) and R0 = 1.5 (d).

calculate the invasion threshold value as:

λc =
2
N̄

〈kη〉
〈k1+η〉

〈k〉µR2
0

2(R0 − 1)2
=

2
1000

61.91
3817.69

8.78 · 0.04 · 1.52

2 · 0.52
= 0.0000513068.

(30)
Figures. 3c and 3d show that also in this case we get a good agreement between
numerical simulations and the analytical prediction.
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3 Behavioral changes

During the evolution of an infectious disease, one usually finds that due to risk
perception, people change their traveling habits. Individuals can decide to stay
at home, to avoid crowded places, to reschedule trips, holidays etc.. All realis-
tic epidemic models are based on structured data of human activities [5, 6, 7].
During catastrophic events the system can be driven out of equilibrium invali-
dating the predictive power of existing models. Therefore, behavioral changes
should be in principle considered in any realistic attempt to model the dy-
namics of global infectious diseases. In the recent literature, a few attempts
to model behavioral changes have been done [8, 9, 10, 11, 12, 13, 14] but any
of these tackle the effect of social disruption inside a metapopulation frame-
work. Motivated by this, we introduce different mechanisms that might model
spontaneous self-initiated behavioral responses to the presence of a disease.
In our full model with such changes incorporated, origin-destination matrices
are still considered. Furthermore, with the aim of being more realistic, we use
in our simulations the worldwide air transportation network in which each
node/subpopulation i represents an airport and for each connected pair (i, j)
a weight ωij (number of passengers in that route ) is assigned. The number of
individuals in each subpopulation is set proportional to the strength:

Ni =
∑
j

ωi,j . (31)

As we have discussed in the previous sections, each individual will chose the
destination among all possible subpopulations with a probability that is pro-
portional to the subpopulations sizes. In this way the known heterogeneity of
the traffic is explicitly considered. Let us now imagine that an individual from
node i selects as destination subpopulation j and let dij be the traveled distance
in terms of hops needed to reach the chosen destination. In the previous model
we assumed that once the destination is reached, each individual goes back
immediately. Instead in this second more realistic implementation we assume
that each traveler stay τ time steps at destination. We extract the waiting times
τ from a uniform distribution with mean dij , so that the longer the trip, the
larger the stay. Moreover, we also assume that the probability that an infected
individual will travel is half of the same quantity for healthy people, as infected
people once aware of the illness usually refrain from traveling. These elements
constitute all together the new baseline of our model. In the next sections we
describe the different mechanisms we use to model behavioral changes.

3.1 Departure probability

During the H1N1 pandemic in 2009, especially in the early stage, a big drop
in the number of travelers to (and within) Mexico was registered [15]. A first
plausible mechanism to model behavioral changes is obtained changing the
probability of departure according to the stage of the disease at a given desti-
nation. We can thus assume that individuals might decide to postpone their
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trips. Mathematically this behavior can be modeled as:

λ→ λij = λ

[
1− Ij(t)

Nj(t)

]
. (32)

The expression above considers that the probability that each individual will
travel is not anymore constant but a function of the epidemic incidence at desti-
nation. At the beginning of the spreading process, when the number of infected
individuals is small, the mobility is given by λ for all possible destinations j,
since the second factor above is close or equal to 1. However, during the evolu-
tion of the disease, as soon as the number of infected individuals increases, the
departure probability starts to change from place to place and the mechanism
becomes effective.

3.2 Rerouting

Let us assume that a traveler from subpopulation i has as destination subpop-
ulation j, and that a node m is in the shortest path between its origin and
destination. Let us also suppose that subpopulation m is experiencing a se-
vere outbreak. The individual could decide to travel anyway but changes the
route going through another, maybe longer but less risky alternative path. We
modeled this kind of behavior by introducing a cost function:

cm(t) = hδm + (1− h)
Im(t)
Nm(t)

, (33)

where the parameter h is defined in the closed interval [0, 1] and δk can assume
three values [−1, 0, 1]. −1 is associated to the shortest path (the individual will
be one hop closer to its destination), 0 to a new path which does not change
the current distance to the destination, and 1 otherwise (the individual will be
one hop farther to its destination). At each time step, each individual that is
traveling decides the next node to move to by minimizing the cost function
Eq. (33), unless the next move leads to its destination. Other functional forms
for Eq. (33) could also be defined, however, Eq. (33) is a simple proxy for an
stochastic choice based on the minimum information available.

It is worth noticing that the parameter h, although defined in the interval
[0, 1] can take on only a small subset of meaningful values. If h is too small,
the traveler essentially moves through the network following the landscape of
epidemic incidence, as no information of its destination is taken into account
when deciding where to move. This is a highly unrealistic situation that there-
fore sets a lower bound (> 0) to h. Similarly, one can easily show that h is
also bounded from above. Although h = 1 mathematically corresponds to the
limit of shortest path, this limit is obtained well before. Admittedly, one can
show that in order for a traveler to go through a path one hop farther than the
destination the following condition must be satisfied

I−(t)
N−(t)

− I+(t)
N+(t)

>
2h

1− h
, (34)
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and ∆l = 1. The lines are a guide to the eye and mark the values of R0 and n
at which the crossover takes place.

where I−
N−

and I+
N+

are the densities of infected individuals at subpopulations
one hop closer and one hop farther from the traveler’s destination, respectively.
The same argument leads to the following condition with respect to the pos-
sibility of going through a path that does not change the current distance to
destination:

I−(t)
N−(t)

− I=(t)
N=(t)

>
h

1− h
, (35)

where I=
N=

is the density of infected individuals at a subpopulation which is at
the same distance of the traveler’s destination. We have checked that our re-
sults for the model including behavioral changes are qualitatively the same for
different values of h in the interval [0.05, 0.2] (beyond h = 1/3, no differences
with respect to the shortest path results are obtained, which means that this
limit has been reached at h = 1/3 as expected from Eq. (34)).

3.3 Subpopulations affected by an outbreak as a function of
R0 when the rerouting mechanism is active

When the h mechanism is active, the number of individuals going through a
node in the shortest path between an origin and a destination decreases due
to the rerouting of individuals induced by the risk aversion mechanism. This
implies that a smaller number of individuals goes through that node. This
mechanism defines an interesting phenomenology whose effect on the number
of diseased subpopulations is non-linear and depending on the reproductive
number R0 and the number of traveling individuals n.

Let us consider that n(λ) traveling individuals starts at subpopulation i
with destination in the subpopulation j. Besides, consider that one node r in
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the path connecting both subpopulations is infected. In the case without any
behavioral responses the shortest path is selected and let us consider its length
as l. The number of new diseased subpopulations on the way will be:

Dnew = l(1−R−n0 ), (36)

assuming for now that the l − 1 subpopulations in the shortest path are not
already diseased. Instead, in the case in which the re-routing mechanism to
avoid infected subpopulations is active, individuals may go through alterna-
tive paths. Thus, we will have that:

Dnew
RR = (l + ∆l)(1−R−nΩ

0 ) (37)

where Ω, 0 < Ω ≤ 1 represents the ratio of infected individuals that have been
rerouted. If all the k − 1 neighbors of the nodes before r are not diseased we
can evaluate

Ω ∼ 1
k − 1

(38)

Then, we take the ratio among the two quantities yielding

Dnew
RR

Dnew
=

(l + ∆l)(1−R−nΩ
0 )

l(1−R−n0 )
. (39)

By expanding both the numerator and denominator for R−n0 ∼ 1, Eq. (39) can
be written as

Dnew
RR

Dnew
∼ (1 +

∆l
l

)Ω. (40)

As Ω is of order 1/k (in the best case scenario one does not expect multiple
change of paths), and ∆l and l can be considered to be of the same order, we
can expect

Dnew
RR

Dnew
< 1, (41)

The previous expression has been obtained for R0 ∼ 1 and n relatively
small. For large R0 and n values, we are in a different regime in which the
probabilities

[
1−R−n0

]
1 and

[
1−R−nΩ

0

]
1 are independent of Ω thus defining

Dnew
RR

Dnew
> 1. (42)

Therefore, we expect a crossover from Dnew
RR /D

new < 1 to Dnew
RR /D

new > 1 in
R0 and n. As n is an increasing function of the diffusion rate λ, the crossover
is observed also for increasing values of this parameter. We plot the behavior
of Eq. (39) in Fig. 4 for different values of n, R0 and Ω, setting l = 3 and ∆l = 1
(plausible values in any random or complex networks) which confirms our
findings from mechanistic numerical simulations discussed in the main text.
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Figure 5: Comparison between the fraction of infected individuals R obtained
for the baseline model (i.e., when no behavioral changes are implemented)
with that obtained with different risk aversion mechanisms as a function of
R0 or λ. Panels (a) and (b) show the results when the departure probability
(DP) and the rerouting (RR) mechanisms are switched on separately. Panels
(c) and (d) represent the same quantity but using the full model defined in the
text. We have fixed µ = 0.04. The underlying network is the worldwide air
transportation network (see the text for further details).

3.4 Results

In this section we discuss the results obtained by implementing separately the
two proposed mechanisms and when both are combined into a single, full
model. We first notice that the critical invasion threshold λc is the same for
all the variants of the model. This critical point is independent of the behav-
ioral changes because the model dynamics does not change at low values of the
epidemic incidence, i.e., just around the global invasion threshold. In Fig. (5)
we show the ratio of infected individuals R (epidemic size) as a function of
λ (panel (a)) and R0 (panel(b)). In the main text of the paper we show the
same type of plots done instead for the ratio of diseased subpopulations D/V .
The three different implementations of the model are shown as indicated in
the legends: the baseline, the departure probability mechanism (DP) and the
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rerouting mechanism (RR).

Departure probability

This mechanism brings a smaller reduction of the epidemic size for large values
of R0. In the other case instead the mechanism is not distinguishable from the
baseline. This is due to the fact that for mild epidemics the number of infected
individuals is small and then we can consider λij ∼ λ. Our results confirm
previous findings about the inefficacy of measures like cutting down mobility
of individuals by, for instance, closing airports [16, 17, 18, 19].

Rerouting

This mechanism brings, for values of λ consistently bigger than its critical
value, a bigger epidemic size with respect to the baseline model. This is due to
the fact that, trying to minimize the risks to get sick, individuals change their
route visiting places that otherwise would have not been visited, therefore con-
tributing to a wider spread of the disease. As discussed in the preceding sec-
tion, the previous behavior is not always obtained, since for low values of R0

the number of individuals going through a node in the shortest path between
an origin and a destination decreases due to the rerouting of individuals in-
duced by the risk aversion mechanism. This is what happens, for instance, for
R0 = 1.25 and R0 = 1.5 in Fig. (5)a and Fig. (5)b.

Full model

We implemented both mechanisms together in a full version of the model. As
shown in Fig. (5)c and Fig. (5)d the effect of both risk aversion mechanisms on
the epidemic size depends on the value of R0 and λ. For R0 ≥ 2 and values
of λ larger than the global invasion threshold the full model leads to a bigger
epidemic size when compared to the baseline implementation. In these regions
of parameters, the rerouting mechanism is the dominant one and the large out-
break is due to the fact that people explore much more the network trying to
minimize their risk to get sick. This self-fish strategy gives a worst scenario
confirming how behavioral changes have a significant impact on the invasion
dynamics in a non trivial way.

4 Model’s Implementation

4.1 Internal nodes’ dynamics

In each node a SIR dynamics takes place over a well mixed population of ini-
tial size Ni(0) = wi, being wi the strength of node i. When time goes on, Ni(t)
changes according to the number of individuals that has been received and
has left the node. Within the nodes, one step of a SIR process takes place. The
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Figure 6: Comparison between the number of subpopulations affected by the
outbreak, D/V , in the full (τ = 1 and λI = λ/2) and null versions of the model
for µ = 0.02, 0.08 and 0.1 as indicated. The network is the Air Transportation
Network and destinations are chosen proportionally to nodes’ strengths.

state of every individual inside a node i is changed according to the follow-
ing probabilities: a susceptible individual becomes infected with probability
p(S→I) = 1− (1− β

Ni
)Ii , and an infected recovers with probability p(I→R) = µ.

Specifically, the exact number of individuals that changes its state is deter-
mined by a binomial distribution with the probability p(S→I) (or p(I→R)) and
the susceptible populations size Si(t) (or infected Ii(t)) as parameters. Note
that in this scenario, R0 only participates in the internal dynamics; individuals
traveling through node i are involved in the SIR and thus can change their state
while at node i.

17



Parameter Range explored
µ 0.02− 0.1
τ τ/3− 3τ
λI λ/4− λ
h 0.05−1.0
γ 1/4− 1

Table 1: Summary of the sensitivity analysis performed.

4.2 Numerical simulations

The model is implemented as follows. Each simulation starts with a small
number of infected individuals (1% of the individuals is infected within a ran-
domly chosen subpopulation). In the simulations the traffic and spreading
dynamics have the same time scale so, at each time step, first a diffusion step is
performed and then the SIR internal dynamics is evaluated. For the diffusion
of the individuals, we assume that the number of individuals starting a trip at
time t is given by a binomial distribution with the mobility rate λ and the sub-
population size Ni(t) as parameters. Destinations are chosen according to the
population wi of each node. To keep the nodes’ population constant over time
(excluding transient individuals traveling through the node), once an individ-
ual reaches its destination it starts a new trip back to its origin. Simulations run
until I(t) = 0 for all subpopulations. Note that in this framework only travel-
ers are explicitly followed and that we only keep a counter for the number of
non-traveling individuals inside each node.

5 Sensitivity Analysis

To test the sensitivity of our main results to different choices of the model
parameters, we have performed further numerical simulations varying them.
Namely, the dependency of the results presented throughout this work with
the following parameters was explored: the recovery rate µ, the time spent at
destination before travelling back home τ , the mobility rate of the individu-
als λI and the re-routing intensity h. As an additional test we also extend our
model including a further class of exposed individuals in which the transition
from exposed to infected is governed by the transition rate γ. Table 1 sum-
marizes the sensitivity results shown in the following subsections. Up to the
range explored, the conclusions of our study remain the same. We note that
given the large number of parameters involved and the large computational
times required by the simulations, the sensitivity analysis has been restricted
to values of the parameters within the typical ranges of epidemiological mod-
els or reasonable assumptions as given by the phenomenology of the models
discussed.
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5.1 Effects of recovery rate µ

We have studied the model behavior for other three different values of µ. In
Fig. 6 we compare the results of the full model with τ = 1 and λI = λ/2 for
µ = 0.02(a), 0.08(b) and 0.1(c) and four different values of R0 = 2, 4, 6, 8. The
results show that the behavior of the full model with respect to the baseline
case is qualitatively the same regardless of the specific value of µ.

5.2 Effects of the parameter τ accounting for the time spent at
destination

In Fig. 7 we compare the results of the full model using three different values
of τ : τ ′ = τ/2 (a), τ ′ = 2 · τ (b) and τ ′ = 3 · τ (c), respectively, with the baseline
case. No qualitative change of behavior is observed with respect to the results
in the main text.

5.3 Effects of the mobility rate of infected individuals λI

Fig. 8 shows the results of the full model for three different values of the mo-
bility rate of infected individuals λI = λ/4 (a),λI = λ/3 (b) and λI = λ (c).
Results corresponding to λI = λ/2 are presented in the main text. Note that
although the value of λI determines a variation on the global invasion thresh-
old no qualitative change of behavior is observed with respect to the previous
results. The network is the Air Transportation Network and destinations are
chosen proportionally to nodes’ strengths.

5.4 Effects of rerouting intensity h

We have studied the model behavior for a family of h values. As shown in
Fig. 9, the full model always performs worse than the null case, provided that
h < 1/3. When h is above this value, all the curves collapse into a single family,
whose behavior is nearly the one observed when individuals move following
the shortest path.

5.5 Effects of latency rate γ in SEIR model

Here we simulate an SEIR model assuming that individuals go from suscep-
tible to exposed and then to the infected class at a rate γ. The latter is set to
three different values γ = 0.25, 0.33 and 0.5 respectively. Fig. 10 shows that the
addition of this new compartment does not alter the qualitative behavior of the
model without such a class.
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Figure 7: Comparison between the full and null versions of the model for µ =
0.04 and three choices for the time spent at destination before traveling back
home τ ′ = τ/2, 2 · τ and 3 · τ . D/V is the number of subpopulations affected by
the outbreak. The network is the Air Transportation Network and destinations
are chosen proportionally to nodes’ strengths.
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