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Current modeling of infectious diseases allows for the study of realistic scenarios that include population
heterogeneity, social structures, and mobility processes down to the individual level. The advances in the
realism of epidemic description call for the explicit modeling of individual behavioral responses to the
presence of disease within modeling frameworks. Here we formulate and analyze a metapopulation model
that incorporates several scenarios of self-initiated behavioral changes into the mobility patterns of
individuals. We find that prevalence-based travel limitations do not alter the epidemic invasion threshold.
Strikingly, we observe in both synthetic and data-driven numerical simulations that when travelers decide to
avoid locations with high levels of prevalence, this self-initiated behavioral change may enhance disease
spreading. Our results point out that the real-time availability of information on the disease and the ensuing
behavioral changes in the population may produce a negative impact on disease containment and
mitigation.

T
he inclusion of mobility processes is a key ingredient in the modeling of the geographic spread of epidemics.
Recently this has been made evident in the modeling effort concerned with the diffusion of the 2009 H1N1
pandemic in which several papers have obtained estimates of the epidemic parameters and unfolding based

on the knowledge of human travel and mobility patterns1–3. Models that explicitly take into account the mobility
patterns of individuals range from relatively coarse-grained approaches that consider aggregated traveling flows
to highly detailed structured metapopulation or agent-based models allowing for the description of billions of
individuals4–6. However, the available data on human mobility and interaction are descriptive of human behavior
as long as information concerning the unfolding of the epidemic does not induce changes in the population’s
behavior, for at this point the model has to include the population’s behavioral changes that in turn alter the
epidemic spreading. Although behavioral changes are in many cases triggered by the policy-making effort of
public institutions and agencies, self-initiated changes in behavior induced by transmission of information about
the disease both from the media and the local environment (friends, colleagues, etc.) are often initiated by the
population’s individuals. Self-initiated behavioral changes are elusive to modeling because of the difficulty
involved in quantifying these changes and an overall lack of relevant data. In this case mathematical and
computational modeling represents a very effective tool for exploring the impact of behavioral changes on the
epidemic. For this reason there has been an increasing focus in the development of formal models aimed at closing
the epidemic-spreadingRbehavioral-changesRepidemic-spreading feed-back loop for the past decade (see7 for a
recent review). However, only a few of these theoretical and computational approaches have considered the
spatially structured nature of populations and the effect of behavioral and mobility changes in the large-scale
spreading of the epidemic8–10.

Here we consider a metapopulation model that incorporates self-initiated changes in human behavior in
response to an epidemic outbreak and study how these reactions influence the spread of infectious diseases.
The model is general enough to include a number of different behavioral responses. Ultimately, we find that
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prevalence-based behavioral changes do not affect the invasion
threshold, although the number of subpopulations affected by the
outbreak does depend considerably on population behavior. In par-
ticular, we introduce a simple mechanism that provides individuals
with the propensity to avoid locations affected by the epidemic.
Although the aim of such a self-initiated behavior is to prevent an
invididual’s exposure to the disease, it may lead to the unanticipated
effect of facilitating its spread to new locations. The results presented
in this paper underline the importance of the proper consideration of
self-initiated behavioral responses to the spreading of epidemics.

Results
In order to describe the large-scale spreading of infectious diseases
mathematically we use a metapopulation approach11. This frame-
work describes a set of spatially structured interacting subpopula-
tions as a network whose links denote the mobility of individuals
across subpopulations. Each subpopulation consists of a number of
individuals that are divided into several classes according to their
dynamical state with respect to the modeled disease – for instance:
susceptible, infected, removed, etc. The internal compartmental
dynamics models the contagion dynamics by considering that people
in the same subpopulation are in contact and may change their state
according to their interactions and the disease dynamics. Finally,
subpopulations also interact and exchange individuals due to mobi-
lity from one subpopulation to another. Figure 1 shows a schematic
representation of the metapopulation system. The global invasion
threshold that marks the point beyond which a local outbreak
reaches other subpopulations and spreads throughout the metapo-
pulation system not only depends on the infection parameters,
but on the mobility rates of individuals as well12,13 and thus differs
from the single population epidemic threshold. Previous works
have considered fully Markovian dynamics for the movement of
individuals among subpopulations, and more recent analyses
have focused on the analytical description of models with recurrent
patterns.

The model and the invasion threshold. Here we consider a general
scenario in which individuals have memory of their original
subpopulations, which they return to after having reached their
destination location. More explicitly, we define a population of size
N partitioned into V subpopulations. An individual is assigned its
origin destination – its home – among the V subpopulations. The
subpopulations are interconnected by edges that represent the
mobility connections among subpopulations. We can therefore see
the metapopulation system as a network made of V nodes and an
assigned degree distribution P(k) that defines the probability that
any given subpopulation is connected to k other subpopulations.
Given the set of populations we can denote the number of
subpopulations with k connections by Vk. A standard convenient
representation of such a system is provided by quantities defined
in terms of the degree k:

Nk~
1

Vk

X
ijki~k

Ni ð1Þ

The quantity Nk indicates the average number of individuals in a
population of degree k. This is a mean-field approximation that
considers all subpopulations with a given degree k as statistically
equivalent, thus allowing for the introduction of degree-block vari-
ables that depend only upon the subpopulation degree. While this is
an obvious approximation to the system description, it has been
successfully applied to many dynamical processes on complex net-
works and it is rooted in the empirical evidence presented in the
analysis of mobility networks14–18. In the following we assume the
population distribution

Nk~N
k
kh i , ð2Þ

where N~
P

k NkP kð Þ is the average number of individuals per node
in the subpopulation network. The mobility of the population is
defined as follows: for every time step each of the Ni individuals
(N 5 SiNi) of subpopulation i travels with probability lij 5 l. For

Figure 1 | Schematic representation of the Metapopulation System. A population of individuals is divided into V subpopulations connected with

each other following a heterogeneous network. Within each subpopulation, individuals are classified according to their dynamical status as Susceptible

(S), Infected (I) and Removed (R). In absence of behavioral changes (blue arrows), individuals move from a subpopulation to another at a rate l following

the shortest path connecting both subpopulations. The discontinuous arrows represent the second mechanism of behavioral reaction in which people

travel avoiding places with high prevalence at the cost of larger diffusion paths.
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simplicity, let us first consider the case in which destinations j are
randomly chosen proportionally to the size of the population of
the destination node (similar results are obtained by choosing the
destination randomly). Individuals then move along the shortest
paths to their destination nodes. This is a plausible assumption that
corresponds to a traffic of individuals on each edge proportional
to the edge betweenness. Data on the real network confirm this
assumption with a linear statistical association between traffic flows
and betweenness in the airport network (see supplementary online
information). Additionally, once a traveler arrives at its destination,
it must return to its origin subpopulation along the same shortest
route.

For the epidemic dynamics in each subpopulation i we first con-
sider the minimal SIR (Susceptible Infected Removed) model,
according to which individuals are partitioned into Si(t), Ii(t), and
Ri(t) compartments, denoting the number of susceptible, infected,
and removed individuals at time t, respectively. The transition rate
from the susceptible to the infected state is given through the usual
force of infection bIi/Ni, while infected individuals recover at a rate m.
The SIR model11,19 is characterized by the average number of infec-
tious individuals produced by a single infected individual in a fully-
susceptible population, the so-called reproductive number R0 5 b/m.
In a stochastic model if R0 . 1 an outbreak may take place11,19. For the
case of metapopulation models, the previous condition on R0 for
the subpopulation outbreak holds. However, if the mobility rate of
the individuals of the originally infected subpopulation is not enough
to ensure the seeding of other subpopulations before the waning of
the local epidemic, the outbreak does not spread globally. This is
equivalent to the existence of a second reproductive number at the
subpopulation level R* that depends on the mobility parameters and
defines the threshold for the epidemic invasion of a finite fraction of
subpopulations12,20–22.

In order to derive the condition for global spread in our model
with origin-destination dynamics let us consider a metapopulation
system in which a small set of initially infected subpopulations D0

k

� �
is experiencing an outbreak with R0 . 1. In the early stage of the
epidemic, the number of subpopulations experiencing an outbreak is
small and we describe the disease spreading at the level of the meta-
population system as a branching process, using a tree-like approxi-
mation relating the infected subpopulations Dn

k at generation n to the
infected subpopulations Dn{1

k at generation n 2 1. The average
number of infected individuals in subpopulations of degree k during
the evolution of the epidemic is aNk, where a is a disease-dependent
parameter expressing the total number of individuals in the popu-
lation that have been in the infectious state. Furthermore, in the SIR
model, each infected individual stays in the infectious state for an
average time m21. Thus, the total number of infected individuals
circulating through the network at the n 2 1 generation is:

vn{1~
la

m

X
k0

Dn{1
k0 Nk0 ð3Þ

Those individuals can trigger the start of an epidemic in a non-
infected subpopulation with probability 1{R{c

0½ �, where c is the
number of infectious individuals in generation n 2 1 that have visited
the subpopulation23. In order to provide a quantitative estimate of
this number we consider that if individuals follow the shortest route
through the network, then the probability that a node of degree k is
visited by any individual is proportional to the average betweenness
bk of nodes of corresponding degree. This allows us to write explicitly
(as shown in the material and methods section) the branching ratio
that provides the average number of subpopulations that will be
infected by each subpopulation experiencing an outbreak, defining
the following global invasion threshold:

R�~ R0{1ð Þ la

m
�N

1
kh i

k1zgh i
kgh i §1, ð4Þ

which can also be expressed as a threshold condition for the mobility
rate l as

l �N§

kgh i
k1zgh i

kh im
a

R0{1ð Þ{1: ð5Þ

This threshold condition is extremely relevant as it links the
mobility rate and patterns of individuals to the eventual global
spreading of the disease. This allows us to relate the mobility of
individuals to the global spreading of the disease and eventually study
how behavioral changes that affect human mobility may alter the
course of epidemic outbreaks. As we have previously detailed, the
analytic calculations are based on several simplifications and
assumptions and reduce to the critical point of a simple branching
process. In order to test the robustness and reliability of the calcula-
tion we compare results from individual-based simulations in Fig. 2
with the analytic prediction expressed in Eq.(5). The individual-
based simulations are detailed in the Materials and Methods section
and are based on stochastic and discrete binomial models of trans-
mission and mobility24,25. Here we report networks of size V 5 3,500
with N 5 33106 individuals. These relatively small sizes are the most
interesting as the mean-field approximations used in the calculations
are obviously valid in the case of large-scale random graphs. The
figure shows that the mean-field framework nicely estimates the
value of the mobility threshold beyond which the movement of indi-
viduals from infected subpopulations to susceptible ones is large
enough as to seed the latter and spread the epidemic to a system-
wide scale. For the sake of completeness we report simulations in
the supplementary online material for sizes up to V 5 33104 and
N 5 33107 that confirm the analytical results.

Self-initiated behavioral changes. During the outbreak of an acute
infectious disease it is natural to expect self-initiated human
behavioral changes and variations of individuals’ mobility patterns.
Obviously the extent of behavioral change depends on the risk as
perceived by individuals that concerns the severity of the disease,
prevalence of it within the population, and the information
available on the disease. Behavioral changes have been shown7 to
modify the disease state of individuals26,27, model parameters28 and
contact structure29. In our system human responses to the presence
of a disease might have a direct impact on mobility and traveling
habits, since avoiding infected areas is a natural attitude of
individuals and more drastic reactions such as not traveling at all
may spontaneously arise, as documented in the recent epidemic. In

Figure 2 | Mobility Threshold. To compare the analytical insights with

numerical results here we represent the number of diseased subpopulations

D/V as a function of the mobility rate l. The analytical value (Eq.(5)) is

indicated by the arrow and the green triangle. Full circles are results from

numerical simulations and represent the average over at least 100 stochastic

runs (the line is a visual guide). The value of a has been approximated by

a~2 R0{1ð Þ=R2
0

19. The substrate topology is an uncorrelated scale-free

network generated according to the uncorrelated configuration model30

with c 5 2.5, V 5 3000 subpopulations and N 5 33106 individuals. Other

parameters are indicated in the figure.

www.nature.com/scientificreports
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order to model behavioral changes in our framework we consider
that individuals react to prevalence-based information and study two
mechanisms of behavioral change. The simplest one assumes that the
probability pij(t) of traveling from subpopulation i to subpopulation j
at time t is related to the level of infection at the destination
subpopulation so that the higher the incidence of the infection at
the destination, the less likely the individual will engage in traveling,
i.e., pij(t) 5 1 2 Ij(t)/Nj(t). If travel is not cancelled, then the
individual moves following the shortest path to the destination.
This mechanism is the one that has led to the decline in the
number of passengers arriving at airports in Mexico both
domestically and internationally in 2009 due to the H1N1
influenza outbreak.

The second mechanism of mobility change (see Fig. 1) models
behavioral reactions that induce changes in traveling routes.

Specifically, given an individual who is traveling from an origin
(subpopulation i) to a destination (subpopulation j), we assume that
it will try to avoid traversing infected nodes, except when the next
move leads to its destination. This process is obviously not determin-
istic and it consists of a trade-off between the risk associated with
visiting a given subpopulation and the increase of the travel path
length to the final destination. We assume that the risk perception
associated with the visit of a given subpopulation is dependent on the
prevalence of the disease in that subpopulation. However, staying
away from infected subpopulations has the associated cost of travel-
ing through alternative routes. We therefore assume that individuals
move to the neighboring subpopulation l that minimizes the cost
function cl(t) 5 hdl1(12h)Il(t)/Nl(t), where dl is the change in dis-
tance to the destination, which can only take values -1 if node l is in
the shortest path to the destination, 0 if it is at the same distance to the
destination than the actual node, and 11 otherwise. The parameter h
tunes the force of the behavioral response and for h 5 1 the shortest
path is always followed, whereas h 5 0 corresponds to a path
minimizing the risk of traversing infected areas.

Synthetic metapopulation system. As for the analysis of the global
invasion threshold, we simulate a metapopulation network of V 5

3000 nodes and N 5 33106 individuals as detailed in the Materials
and Methods section. In Figs. 3 and 4 we report the behavior of the
density of infected subpopulations D/V at the end of the global
epidemic as a function of both the basic reproductive number R0

and the traveling diffusion rate l. The curves report the baseline
case without behavioral changes and the case in which behavioral
changes are implemented. The results readily show that in all
analyzed cases the metapopulation system exhibits an invasion
threshold which is independent of human behavioral changes. This
feature of the model can be traced back to the fact that the behavioral
changes are prevalence based. Analogously to the basic reproductive
number, the invasion threshold is determined by the average number
that each infected subpopulation will generate in a fully susceptible
metapopulation system. Clearly in this regime the prevalence-based
behavioral changes are irrelevant and the threshold value is thus not
affected. As we increase the value of the parameters above the
epidemic threshold we start observing differences in the two cases
with respect to the number of subpopulations affected by the
epidemic. In particular, it is not difficult to separate the effects of

Figure 3 | Effects of behavioral changes in synthetic networks. The figure

compares the fraction of diseased subpopulations D/V when behavioral

reaction mechanisms are active with the situation in which such behavioral

responses are not taken into account (null model). (A) We show the

dependency of D/V with the mobility rate l (A) for random scale-free

networks generated according to the uncorrelated configuration model30.

Symbols represent the results obtained when individuals do not react to the

presence of the disease (error bars are smaller than symbol sizes). The rest

of the results correspond to the mechanisms of behavioral changes: ‘‘DP’’

stands for ‘‘departure probability’’ and represents the mechanism in which

individuals decide whether or not to travel; ‘‘RR’’ (rerouting) corresponds

to the case in which people travel while trying to minimize the risk of

infection avoiding subpopulations with high prevalence at the cost of long

travel paths. The results confirm that the invasion threshold is independent

of behavioral changes and that the latter has a significant impact on the

invasion dynamics of the metapopulation. The points are the averages

among at least 100 stochastic runs and we consider m 5 0.04 and h 5 0.1.

See the main text for further details. (B) we report the relative difference of

subpopulations experiencing an outbreak in the RR and baseline scenarios

as a function of l. It is possible to see the non-linear behavior that first

induces a decrease – close to the invasion threshold – and then a sharp

increase in the number of affected subpopulations.

Figure 4 | Effects of behavioral changes in data-driven scenarios.
Comparison of the fraction of diseased subpopulations D/V for the full

(behavioral reaction mechanisms are active) and null (behavioral

responses are not taken into account) limits of the metapopulation system.

We plot D/V as a function of the mobility rate l. The results confirm even

in this case that the invasion threshold is independent of behavioral

changes. Moreover, as for synthetic networks, epidemic awareness

enhances the disease spreading as given by the increase in the number of

subpopulations affected by the disease. The averages were taken over at

least 100 stochastic realizations and we fix m 5 0.04 and h 5 0.1. See the

main text for further details.
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the two mechanisms of behavioral changes. When people have the
option of deciding whether or not to engage in travel, the fraction of
diseased subpopulations at the end of the outbreak decreases with
respect to the null case, thus pointing out that this kind of response is
beneficial. The reason for the reduction in D/V is rooted in the
effective reduction of the mobility rate of individuals, which leads
to a smaller exposure of susceptible individuals to the disease both
while traveling and at home. A different scenario emerges in the case
that individuals attempt to avoid infected subpopulations. For values
of the parameter R0 and l close to the invasion threshold the
rerouting of individuals on different paths leads to a reduction of
the outbreak probability 1{R{c

0ð Þ in the subpopulations along the
origin-destination path. This leads to a final reduction of the
subpopulations experiencing an outbreak. For increasing R0 and l
this probability saturates to one and all subpopulations visited on the
original and the rerouted path experience an outbreak. In this regime
the number of subpopulations affected by the epidemic is much
larger than the case without behavioral changes. The enhancement
of the epidemic size is visible in Fig. 3 and occurs close to the invasion
threshold onward. A full discussion with analytical arguments of this
behavior is provided in the supplementary online material, and
points out the important and counter-intuitive effects that may be
generated by behavioral changes in the population.

Data-driven simulations. While the previous set of computational
studies are obtained in a synthetic and in some ways simplified
metapopulation scheme, we also carried out Monte Carlo
simulations using the Air Transportation Network (see Materials
and Methods). This network is highly heterogeneous with respect
to the number of connections between urban areas (subpopulations)
as well as the traffic wil in terms of the number of passengers and
available seats on a given direct route connecting two subpopulations
i and l. Taking into account these traffic patterns, we assume that
initially the number of individuals in subpopulation i is proportional
to its strength Ni 5 Sl wil. In this realistic setting, instead of using a
shortest-path routing we implement a traffic-based routing where
individuals follow paths to the destination proportionally to the
actual traffic to the destination. Moreover, as the travel flows are
not homogeneous, we also consider that individuals choose their
destinations proportionally to the strengths of each possible target
subpopulation and that all travelers spend a time t at their
destinations before coming back home. In this way, we preserve
the inter-city traffic patterns. The parameter t is drawn from a
uniform distribution with mean equal to the traveled distance dil.
Sensitivity analyses for these parameters and those defining the
behavioral changes are reported in the Supplementary Information
file, where we also report the simulation for a more realistic model
with the additional class of exposed individuals (the SEIR model)
added to disease natural history. In Fig. 4 we report the results
obtained for the data-driven model where all mechanisms of
behavioral changes are at work, confirming the results obtained for
the synthetic metapopulation network. We observe: i) a global
invasion threshold that does not depend on behavioral changes;
and, ii) that changes in traveling routes dominate the model
behavior by considerably enhancing the spread of epidemics
affecting a number of subpopulations compared to the case with
no behavioral changes.

Discussion
The results provided by the analysis of the effect of behavioral
changes in both synthetic and data-driven simulations make it clear
that behavioral changes inspired by the best intention of slowing
down and containing the epidemic may give rise to the opposite
effect. The numerical analysis shows that the disease spreading, as
given by the number of subpopulations with local outbreaks,
increases when travelers decide to bypass the subpopulations with

a high number of infected individuals. The behavioral change effect is
clearly observed in the data-driven simulations by plotting the inva-
sion tree in the USA with an epidemic starting in New York. The
invasion tree specifies the disease progression by defining a directed
link i R j from the infecting to the infected subpopulation, i.e. the
origin subpopulation i of the infected individuals who have started
the epidemic to the subpopulation j. Fig. 5A shows that in the absence
of behavioral changes the infection tree is heterogeneous and has
several hubs. This is not the case in the presence of behavioral
changes where the entire tree originates from the initially infected
subpopulation as shown in Fig. 5B. The rationale behind this finding
is that the increased flow of individuals going through alternative
paths brings the infection to new subpopulations that would other-
wise be infected by other subpopulations. This constitutes a very
interesting finding, as one can think of the whole process in terms
of a social dilemma; individuals adopt a sort of selfish behavior by
avoiding highly infected spots, but as a consequence, the disease
invades a larger fraction of the subpopulations in the metapopulation
system. Thus, what is beneficial at the individual level, turns out to
have a negative impact on the whole population, especially in the
cases where the epidemic has pervaded the system (large R0 and l).
As Figs. 3 and 4 show, it is also worth stressing that the effects of this
kind of behavioral change depend nontrivially on both R0 and l.
Moreover, the features observed here are emphasized by models that
take into account a natural history of the disease that allows for
exposed individuals to become infectious after a latency period.
Those individuals are subject to behavioral changes that make them
avoid subpopulations that are already infected, but they do not have
limitations to their mobility, thus providing an even more efficient
mechanism for the large-scale spreading of the infectious disease.

The present finding points out the importance and relevant effects
of behavioral changes. Other behavioral reactions may be considered
separately or in concomitance with the mechanisms studied here,
thus providing more complicated dynamic behavior. The addition of
simple behavioral models in the analysis of the geographical spread-
ing of infectious diseases opens the path to a multitude of effects that
can have a major impact in both our understanding of epidemiolo-
gical data and in the definition of public health intervention.

Methods
Invasion threshold. In order to relate the global epidemic spreading with the network
betweenness we note that the number of seeding infectious individuals for each node
of degree k is ck~

bk
btot

vn{1 where bk is the algorithmic betweenness (equal to the
topological betweenness in the case of shortest path routing) of subpopulations of
degree k, and btot is the normalization factor accounting for the betweenness of all
nodes. For reproductive numbers close to the epidemic threshold R0^1ð Þ we can
approximate the infection probability (see the SI file) and write explicitly the recursive
expression for the number of infected subpopulations with degree k at the nth
generation as

Dn
k^Vk R0{1ð Þ bk

btot

la

m

X
k0

Dn{1
k0 Nk0 : ð6Þ

It is important to remark again that this expression is obtained by assuming that the
network is random, nodes with a given degree k are statistically equivalent, and the
number of infected subpopulations is negligible with respect to the total number of
subpopulations so that 1{

P
k

Dn{1
k
Vk

� �
^1. This also allows us to consider the

branching process as uncorrelated and the seeding of each subpopulation as an
independent event. Furthermore, in this case it is possible to use the general result
bk , kg relating the node betweenness and degree in random networks. The above
expression yields the branching ratio used to calculate the invasion threshold.

Internal nodes’ dynamics. In each node an SIR dynamics takes place over a well-
mixed population of initial size Ni. As time passes, Ni(t) changes according to the
number of individuals that have been received and that have left the node. Within the
nodes, one step of an SIR process takes place. The state of every individual inside a
node i is changed according to the following probabilities: a susceptible individual

becomes infected with probability p S?Ið Þ~1{ 1{ b
Ni

� �Ii

, and an infected individual
recovers with probability p(IRR) 5 m. Specifically, the exact number of individuals that
change state is determined by a binomial distribution with the probability p(SRI) (or
p(IRR)) and the susceptible populations size Si(t) (or infected Ii(t)) as parameters. Note
that in this scenario, R0 only participates in the internal dynamics; individuals
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SCIENTIFIC REPORTS | 1 : 62 | DOI: 10.1038/srep00062 5



traveling through node i are involved in the SIR and thus can change their state while
at node i.

Synthetic networks. We consider topologically-uncorrelated random graphs
generated by an uncorrelated configuration model30. The simulations presented
here consider a degree distribution P(k) , k2c with kmin # k # kmax and c 5 2.5 and
kmin 5 2. The population of each node is assigned according to Eq. (2).

Airports network. The airport network data set is composed of passenger flights
operating in the time period November 1, 2000 to October 31, 2001 as compiled by
OAG Worldwide (Downers Grove, IL) and analyzed previously in Ref. 31. It consists
of 3,618 nodes (airports) and 14,142 links. We use a weighted network in our analysis.
Airports corresponding to a metropolitan area have been collapsed into one node in
the original database.

Computational implementation. Each simulation starts with a small number of
infected individuals. Specifically, we randomly choose a small fraction of
subpopulations (less than 1% of the nodes) and within these subpopulations only 1%
of the individuals are infected, assuring that the condition I0w

m
b is fulfilled. In the

simulations the traffic and spreading dynamics have the same time scale, so at each
time step a diffusion step is performed first and then the SIR internal dynamics is
evaluated. For the diffusion of individuals we assume that the number of individuals
starting a trip at time t is given by a binomial distribution with mobility rate l and
subpopulation size Ni(t) as parameters. Destinations are chosen according to the

strength wi of each node. To keep the nodes’ populations constant over time
(excluding transient individuals traveling through the node), once an individual
reaches its destination it starts a new trip back to its origin. Simulations run until the
stationary state I(t) 5 0 is reached. Note that in this framework only travelers are
explicitly followed and that we only keep a counter for the number of non-traveling
individuals inside each node. Individuals are labeled according to their origin
population and both the disease dynamics and the mobility process are simulated
with discrete, binomial processes (See Materials and Methods). Finally, simulations of
the behavioral changes are made more realistic by considering that infected
individuals diffuse at a lower rate, lI, than susceptible subjects. This simulates the
fact that most of the infected individuals will exhibit symptoms that prevent them
from traveling. This happens in influenza-like diseases where only a fraction of
infected individuals is asymptomatic and can continue with regular mobility habits.
Without loss of generality we assume that lI 5 l/2 and we report in the
supplementary online material the sensitivity analysis for different values of this
parameter. In synthetic networks agents select which neighbor to visit next on their
ways to their destinations, presuming that following the shortest path is the preferred
solution in an infection-free scenario. In the simulated airport network individuals
are routed proportionally to real traffic edges and individuals traveling between
subpopulations are tracked in time and the evolution of the disease is monitored. In
addition, we study the invasion dynamics and measure the number of diseased
subpopulations at time t, D(t). All numerical results reported henceforth are averages
taken over at least 100 realizations of the initial conditions and the stochastic
dynamics.

Figure 5 | Invasion tree. Invasion tree describing the air transportation network inside the USA of an epidemic starting in New York. The invasion tree

specifies the disease progression by defining a directed link i R j from the infecting to the infected subpopulation. In panel (A) we show the invasion tree

for the null model when no behavioral reactions are considered. In panel (B) we show the invasion tree starting from the same initial conditions but

consider both mechanisms of behavioral reaction to be active. In order to provide a clear representation we consider in both cases just the first 100 infected

nodes among the total 425 in a single run, respectively. The color scale is a measure of time and is the same for both cases. At the time step in which the first

subpopulation is infected from the seed it is yellow. At the time step in which the last subpopulation (among the first 100 in both cases) is infected it is red.

All the other time steps are in the gradient between these two limits. Panel (A) shows clearly that in the absence of behavioral changes the infection tree is

heterogeneous and contains several hubs that are infected first and that determine the time scale of the spreading infection to smaller airports. This is not

the case in the presence of behavioral changes where the entire tree originates and grows much faster from the initially infected subpopulation as shown in

panel (B). In both cases, we fix the parameters to R0 5 2, m 5 0.04 and l 5 1026.
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Metapolulation models are a relevant framework to model spreading of
infectious diseases between fragmented but coupled subpopulations. Each of
these subpopulations is represented as a node in a network with a certain num-
ber of connections with others. Individuals diffuse following the paths defined
by the links that connect subpopulations. Inside each subpopulation, individ-
uals are assumed to be well-mixed, so that the evolution of the epidemic is
determined by the reproductive number R0 of the disease. In metapopulation
systems this quantity is not sufficient to understand if a macroscopic fraction
of subpopulations will experience an outbreak. The diffusion and coupling be-
tween each node must be considered. Using these arguments a new quantity
is introduced: the global invasion threshold. This is in general a function of the
basic reproductive number, the connectivity patterns, diffusion rates and mo-
bility patterns. Recently, analytical solutions have been found for Markovian
diffusion processes [1]. In this paper we consider a more realistic scenario for
individuals’ mobility. People have a home, and when they travel, they also go
to a specific, not random destination [2].

In our study, we have first analytically evaluated the global invasion thresh-
old for synthetic networks considering explicitly origin and destination matri-
ces. We next added even more realism considering real networks, namely, the
worldwide air transportation network, and different mechanisms that account
for self-initiated behavioral changes that are induced by the spreading of the
epidemic among different subpopulations. In doing so, we have focused on
spontaneous behavioral changes due the evolution and awareness of the epi-
demic. For instance, when an epidemic outbreak takes place, people might
minimize their contacts as a way to reduce the risk to get sick. Besides, it has
also been documented that one of the most common risk aversion strategies
consists of staying at home, i.e., not to engage in a travel if there is the per-
ception (or certainty) that at destination the number of infected individuals is
high. Another behavioral reaction is encountered when travels are not can-
celled, but individuals decide instead to change their itinerary avoiding places
in which the epidemic incidence is perceived as high. These two possible risk
aversion scenarios are considered in our study through the implementation of
two mechanisms accounting for such behavioral changes in a metapopulation
framework. In this supplementary information, we give more details of the
results presented in the main text. In particular, we first describe in details
the synthetic and real world networks used in the analysis. Then we present
the analytical derivation of the global invasion threshold with a simple non-
markovian diffusion scheme with mobility patterns given by origins and des-
tinations. Finally, we move to the numerical details and sensitivity analysis of
the model in which real networks and behavioral changes are introduced.
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Figure 1: Degree distributions of the generated synthetic networks and cor-
relations between nodes strength and betweenness centrality in the ATN. (a)
Degree distribution P (k) of the uncorrelated scale free network made up of
N = 3 · 103 subpopulations used as a substrate in our analysis. (b) Degree
distribution P (k) of a random network generated using the Erdös and Rényi
model. The network is of the same size and average degree of that depicted in
panel (a). (c) Degree distribution P (k) of the uncorrelated scale free network
withN = 3 ·104 subpopulations used in the size dependency analysis. (d) Cor-
relation between the observed traffic strength si of each node i in the ATN and
the betweenness centrality values bi produced by a the shortest path routing
algorithm assumed in the simulations.

1 Networks analysis

Before starting our analysis let us present the networks we used as substrate
to simulate real world populations. First, we focus on synthetic uncorrelated
scale free networks that offer a controlled test-bench for the analytical treat-
ment of the model and then we move to a realistic scenario considering the so-
called Air Transportation Network (ATN). Synthetic scale free networks were
generated following the recipe in [3]. In order to resemble as much as possible
the ATN, we use a network of similar size N = 3 · 103. One might argue that
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this is a too short network size, as it is well-known that the Mean-Field approx-
imation in quenched networks is valid for very large systems sizes. For finite
networks, finite-size corrections might be needed.

Our results show that for a synthetic system of a size equivalent to that of
the ATN, the analytical results nicely fit numerical simulations. This is because
for N = 3 · 103, the differences between homogeneous and heterogeneous net-
works already manifest (see Fig. 1a and Fig.1b). However, in order to test the
effects of the network size in the results shown below, we have also built a
larger scale free network made up of N = 3 · 104 subpopulations. Figure 1c
depicts the corresponding degree distribution.

Another assumption of our model that is related to the connection between
synthetic and real networks has to do with the way individuals move through
the networks. Specifically, we assume that individuals move from their home
to the destination following the shortest path connecting them. In Fig.1d, we
compare the observed nodes’ strengths si from the ATN (i.e., real fluxes be-
tween any two given nodes) and the betweenness centrality bi of that i when
a shortest path routing algorithm is implemented. The linear association be-
tween the two sets of data doubtlessly indicate that the latter is indeed a quite
good proxy for individual mobility.

2 Global invasion threshold in metapopulation net-
works with origin-destination diffusion

Let us consider a network G(V,M) with V nodes, M links and degree distri-
bution P (k). Each node i of the network is considered a subpopulation with
Ni individuals. We set the subpopulation size proportional to its degree. Next,
assume a diffusion process in which each individual in a node i (origin) travel
to another node j (destination) of the network with a probability λ. The des-
tination choice j is selected with a probability proportional to the subpopula-
tion size Nj . Once individuals engage in a travel, the shortest path is selected
among all the possible paths connecting the origin and the destination of the
travel. Besides, we also consider that individuals come back to their home sub-
populations after they reach their destinations. A standard convenient repre-
sentation of the system is provided by quantities defined in terms of the degree
k:

Nk =
1
Vk

∑
i|ki=k

Ni. (1)

Let us consider that an individual of a subpopulation of degree k gets some in-
fectious disease characterized by a reproductive number R0 > 1. Let us define
D0
k as the number of diseased subpopulations of degree k at generation 0. In

the early stage, the number of diseased subpopulations is small, thus, we can
study the evolution of this number using a tree-like approximation (where no
correlations are considered) relatingDn

k withDn−1
k . The average number of in-

fected individuals in the class of degree k during the evolution of the epidemic
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is αNk. The parameter α depends on the specific disease. Each infected indi-
vidual stays in the infectious state for an average time µ−1. Then the number
of infected people circulating through the network after n− 1 generations is:

ωn−1 =
λα

µ

∑
k′

Dn−1
k′ Nk′ (2)

The number of infected individuals that will pass through a subpopulation of
degree k will be a fraction of Eq. (2) proportional to the topological between-
ness (in general, it is proportional to the algorithmic betweenness, but given
that individuals are following the shortest path, it coincides with the topologi-
cal one in our case). This measure is defined as:

b(i) =
∑

j,l=1,n

i 6=j 6=l

Djl(i)
Djl

, (3)

where Djl is the total number of shortest paths from j to l and Djl(i) is the
number of shortest paths from j to l that goes through i. The latter quantity
also measures the centrality of a node assuming a diffusion scenario in which
travelers go through the shortest paths. We can then write:

γn−1
k =

bk
btot

ωn−1, (4)

where btot is the sum of all the betweenness of the nodes. For the nth generation
we have:

Dn
k = Vk

(
1−

Dn−1
k

Vk

)[
1−R−γ

n−1
k

0

]
, (5)

where the second factor on the right is the probability that the subpopulation
is not already seeded by infected individuals and the last is the probability that
the new seeded subpopulation will experience an outbreak. In the early time
and for R0 ∼ 1 we can approximate the last expression considering:

Dn−1
k

Vk
<< 1, (6)

and
1−R−γ

n−1
k

0 ∼ (R0 − 1)γn−1
k , (7)

obtaining:

Dn
k = (R0 − 1)Vkγn−1

k = (R0 − 1)
λα

µ
Vk

bk
btot

∑
k′

Dn−1
k′ Nk′ . (8)

Considering at the equilibrium:

Nk =
k

〈k〉
N̄ , (9)
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where N̄ =
∑
k P (k)Nk is the average subpopulation size, we get:

Dn
k = (R0 − 1)

λα

µ
N̄Vk

bk
btot

1
〈k〉

∑
k′

Dn−1
k′ k′. (10)

Let us define now Θn =
∑
kD

n
kk, then we have:

Θn = (R0 − 1)
λα

µ
N̄

Θn−1

〈k〉
∑
k

Vkk
bk
btot

. (11)

The last term needs can be further developed as:∑
k

Vkk
bk
btot

=
V
∑
k P (k)kbk

V
∑
k′ P (k′)bk′

. (12)

Considering now bk ∼ kη one is left with:

Θn = (R0 − 1)
λα

µ
N̄

1
〈k〉
〈k1+η〉
〈kη〉

Θn−1. (13)

We finally get the global invasion threshold as:

R∗ = (R0 − 1)
λα

µ
N̄

1
〈k〉
〈k1+η〉
〈kη〉

. (14)

We can write the threshold condition for the mobility rate:

λN̄ ≥ 〈kη〉
〈k1+η〉

〈k〉µ
α

(R0 − 1)−1. (15)

These last two expressions are the crucial quantities, and give the conditions for
a global outbreak. It is important to remind that in metapopulation networks
the condition R0 > 1 for each subpopulation is not enough to infer whether a
finite number of subpopulations will be affected by the disease. The diffusion
process must be considered, and it defines the form and value of the invasion
threshold. The previous arguments are valid for the case in which:

µ−1 � l̄v−1, (16)

where l̄ is the average distance between nodes and v−1 is the traveling speed of
individuals that we set as 1 node per time step. In other words, this means that
sick individuals are infectious for a large enough time compared with the time
it takes for individuals to complete their travel. This is a necessary condition
for Eq. (4) to be valid. We can easily get an expression in the other limit:

µ−1 � l̄v−1, (17)

in this case each individual will be infectious for a time window smaller enough
as to infect only the nearest neighbors. In this case the spreading can be thought
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of as a Markovian process and all the analytics is the same reported in Ref. [1].
The expression for the number of infected nodes at the nth generation will be
then:

Dn
k =

∑
k′

Dn−1
k′ (k′ − 1)

[
1−R−λk′k

0

]
P (k|k′)

(
1−

Dn−1
k

Vk

)
, (18)

using the usual approximations (6), (7) and assuming that degree correlations
can be neglected we have:

Dn
k =

(R0 − 1)
〈k〉

kP (k)
∑
k′

Dn−1
k′ (k′ − 1)λk′k. (19)

Considering an homogeneous diffusion we can write:

λk′k =
λ

k′
αNk′

µ
, (20)

where Nk′ = k′

〈k〉N̄ . Using this expression we get:

Dn
k =

λα

µ

(R0 − 1)N̄
〈k〉2

kP (k)
∑
k′

Dn−1
k′ (k′ − 1). (21)

Let us defined Θn =
∑
kD

n
k (k− 1), after multiplying both sides for (k− 1) and

after summing over all k we get:

Θn =
λα

µ

(R0 − 1)N̄
〈k〉2

Θn−1
∑
k

k(k − 1)P (k), (22)

or

Θn =
λα

µ

(R0 − 1)N̄
〈k〉2

Θn−1(〈k2〉 − 〈k〉). (23)

We finally got an expression for the global invasion threshold:

R∗ =
λα

µ
(R0 − 1)N̄

〈k2〉 − 〈k〉
〈k〉2

, (24)

and for the mobility rate

λN̄ ≥ µ

α(R0 − 1)
〈k〉2

〈k2〉 − 〈k〉
. (25)
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2.1 Comparison with numerical results

To compare the analytical approach with the numerical results we choose as
substrate an uncorrelated scale free network generated according to the un-
correlated configuration model with γ = 2.5 and N = 3000. First of all we
tested the assumption made in Eq. (9), in which the number of individuals Nk
at nodes of degree k, at the equilibrium, is proportional to k. To do so, we start
the simulation with a population of Ni ' 1000 in each node, wait until the
traffic equilibrium has been reached, and finally we collect the values of Ni.
Fig. (2)a shows the values ofNk as function of degree k, justifying our assump-
tion. In order to calculate the critical mobility rate λc we use Eq. (15) and λc
reads as:

λc =
1
N̄

〈kη〉
〈k1+η〉

〈k〉µ
α

(R0 − 1)−1. (26)

Thus, we need to know the specific value of η in the chosen network and fix a
value for R0. To obtain an estimate for η we compute the value of the between-
ness bi for each node i and coarse grain it by degree classes k as,

bk =
1
Vk

∑
i|ki=k

bi. (27)

Note that to evaluate bi of each node we decide to make a run of the simulation
and register the number of packets that pass through a link over a very long
period of time. In this way, the values of bi are more precise and closer to the
actual dynamics. Fig. (2)b shows bk as function of the degree classes and the fit
for η gives a value of η = 1.51.

Now we have all the ingredients to calculate the critical value λc and com-
pare it with the numerical results. First we calculate the mean degree of the
network 〈k〉 = 4.0 and then the ηth moment of the degree distribution obtain-
ing 〈kη〉 = 10.93 and finally the (1+η)th moment 〈k1+η〉 = 158.60. Considering
R0 = 1.5 and that N̄ = 1000, and substituting α in Eq. (26) one gets

λc =
1
N̄

〈kη〉
〈k1+η〉

〈k〉µR2
0

2(R0 − 1)2
=

1
1000

10.93
158

4.0 · 0.04 · 1.52

2 · 0.52
= 0.0000496. (28)

In Fig. 2c we show the good agreement obtained when comparing the nu-
merical simulations of the model and the analytical prediction for the global
invasion threshold. Besides, a similar calculation but for µ = 0.5 gives the sec-
ond limit Eq. (17), which is compared in Fig. 2d with numerical simulations,
showing again a good agreement.

2.2 Size dependency analysis

As previously argued, one would expect finite size corrections to the Mean-
Field approach for small systems. In order to address this issue, we consider a
larger synthetic scale free network made up of N = 3 · 104 nodes. Also for this

8



d)

100 101 102

k
104

105

106

107

b k

Numerical Results
Best fit 20545 x1.51

10-6 10-5 10-4 10-3
0

0,2

0,4

0,6

0,8

1

D
/V

R0  = 1.5   µ = 0.04

 c predicted

10-5 10-4 10-3 10-2
0

0,1

0,2

0,3

0,4

0,5

D
/V

R0  = 2.0   µ = 0.5

 c predicted

a)

c)

b)

100 101 102

k
102

103

104

105
N

k

Numerical Results
Best fit 249 x1.0008

Figure 2: Panel (a) represents Nk as a function of the degree classes k and the
best fit, which leads to a linear scaling. In panel (b), we show bk as a function
of the degree classes k and the best estimated value for η is 1.51. In panels (c)
and (d), we show the fraction of infected subpopulations in the null model as
a function of the mobility rate λ for two different values of µ such that µ−1 �
l̄v−1 (c) and µ−1 � l̄ (d).

case we have checked the assumption made in Eq. 9 and estimated the value of
η from the relation between k and bk. In Fig. 3a we show the scaling between
the population on nodes of degree k and k. Again, the scaling turns out to be
linear. Moreover, Fig.3b represents the dependency of bk with k, from which a
value of η = 1.161 is obtained.

We have also tested the robustness of our derivation when infected individ-
uals move at a lower rate than other individuals, which is a realistic ingredient.
In this case we simply need a rescaling of Eq. 26. If, for simplicity, we assume
λI = λ/2 we obtain:

λc =
2
N̄

〈kη〉
〈k1+η〉

〈k〉µ
α

(R0 − 1)−1. (29)

Now considering the mean sub-population size N̄ = 1000 andR0 = 1.5 we can
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Figure 3: Panel (a) represents Nk as a function of the degree classes k. The best
fit leads to a linear scaling for the N = 3 · 104 uncorrelated scale free network.
In panel (b), we show bk as a function of the degree classes k, from which a
best estimate gives η = 1.51. Panels (c) and (d) depict the fraction of infected
subpopulations in the null model as a function of the mobility rate λ for two
different values of R0, R0 = 1.25 (c) and R0 = 1.5 (d).

calculate the invasion threshold value as:

λc =
2
N̄

〈kη〉
〈k1+η〉

〈k〉µR2
0

2(R0 − 1)2
=

2
1000

61.91
3817.69

8.78 · 0.04 · 1.52

2 · 0.52
= 0.0000513068.

(30)
Figures. 3c and 3d show that also in this case we get a good agreement between
numerical simulations and the analytical prediction.
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3 Behavioral changes

During the evolution of an infectious disease, one usually finds that due to risk
perception, people change their traveling habits. Individuals can decide to stay
at home, to avoid crowded places, to reschedule trips, holidays etc.. All realis-
tic epidemic models are based on structured data of human activities [5, 6, 7].
During catastrophic events the system can be driven out of equilibrium invali-
dating the predictive power of existing models. Therefore, behavioral changes
should be in principle considered in any realistic attempt to model the dy-
namics of global infectious diseases. In the recent literature, a few attempts
to model behavioral changes have been done [8, 9, 10, 11, 12, 13, 14] but any
of these tackle the effect of social disruption inside a metapopulation frame-
work. Motivated by this, we introduce different mechanisms that might model
spontaneous self-initiated behavioral responses to the presence of a disease.
In our full model with such changes incorporated, origin-destination matrices
are still considered. Furthermore, with the aim of being more realistic, we use
in our simulations the worldwide air transportation network in which each
node/subpopulation i represents an airport and for each connected pair (i, j)
a weight ωij (number of passengers in that route ) is assigned. The number of
individuals in each subpopulation is set proportional to the strength:

Ni =
∑
j

ωi,j . (31)

As we have discussed in the previous sections, each individual will chose the
destination among all possible subpopulations with a probability that is pro-
portional to the subpopulations sizes. In this way the known heterogeneity of
the traffic is explicitly considered. Let us now imagine that an individual from
node i selects as destination subpopulation j and let dij be the traveled distance
in terms of hops needed to reach the chosen destination. In the previous model
we assumed that once the destination is reached, each individual goes back
immediately. Instead in this second more realistic implementation we assume
that each traveler stay τ time steps at destination. We extract the waiting times
τ from a uniform distribution with mean dij , so that the longer the trip, the
larger the stay. Moreover, we also assume that the probability that an infected
individual will travel is half of the same quantity for healthy people, as infected
people once aware of the illness usually refrain from traveling. These elements
constitute all together the new baseline of our model. In the next sections we
describe the different mechanisms we use to model behavioral changes.

3.1 Departure probability

During the H1N1 pandemic in 2009, especially in the early stage, a big drop
in the number of travelers to (and within) Mexico was registered [15]. A first
plausible mechanism to model behavioral changes is obtained changing the
probability of departure according to the stage of the disease at a given desti-
nation. We can thus assume that individuals might decide to postpone their

11



trips. Mathematically this behavior can be modeled as:

λ→ λij = λ

[
1− Ij(t)

Nj(t)

]
. (32)

The expression above considers that the probability that each individual will
travel is not anymore constant but a function of the epidemic incidence at desti-
nation. At the beginning of the spreading process, when the number of infected
individuals is small, the mobility is given by λ for all possible destinations j,
since the second factor above is close or equal to 1. However, during the evolu-
tion of the disease, as soon as the number of infected individuals increases, the
departure probability starts to change from place to place and the mechanism
becomes effective.

3.2 Rerouting

Let us assume that a traveler from subpopulation i has as destination subpop-
ulation j, and that a node m is in the shortest path between its origin and
destination. Let us also suppose that subpopulation m is experiencing a se-
vere outbreak. The individual could decide to travel anyway but changes the
route going through another, maybe longer but less risky alternative path. We
modeled this kind of behavior by introducing a cost function:

cm(t) = hδm + (1− h)
Im(t)
Nm(t)

, (33)

where the parameter h is defined in the closed interval [0, 1] and δk can assume
three values [−1, 0, 1]. −1 is associated to the shortest path (the individual will
be one hop closer to its destination), 0 to a new path which does not change
the current distance to the destination, and 1 otherwise (the individual will be
one hop farther to its destination). At each time step, each individual that is
traveling decides the next node to move to by minimizing the cost function
Eq. (33), unless the next move leads to its destination. Other functional forms
for Eq. (33) could also be defined, however, Eq. (33) is a simple proxy for an
stochastic choice based on the minimum information available.

It is worth noticing that the parameter h, although defined in the interval
[0, 1] can take on only a small subset of meaningful values. If h is too small,
the traveler essentially moves through the network following the landscape of
epidemic incidence, as no information of its destination is taken into account
when deciding where to move. This is a highly unrealistic situation that there-
fore sets a lower bound (> 0) to h. Similarly, one can easily show that h is
also bounded from above. Although h = 1 mathematically corresponds to the
limit of shortest path, this limit is obtained well before. Admittedly, one can
show that in order for a traveler to go through a path one hop farther than the
destination the following condition must be satisfied

I−(t)
N−(t)

− I+(t)
N+(t)

>
2h

1− h
, (34)
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Figure 4: Numerical solution of the ratio between the number of diseased sub-
population with and without rerouting, Eq. (39), for different values of n, R0

and Ω as indicated in the panels. The other parameters have been set to l = 3
and ∆l = 1. The lines are a guide to the eye and mark the values of R0 and n
at which the crossover takes place.

where I−
N−

and I+
N+

are the densities of infected individuals at subpopulations
one hop closer and one hop farther from the traveler’s destination, respectively.
The same argument leads to the following condition with respect to the pos-
sibility of going through a path that does not change the current distance to
destination:

I−(t)
N−(t)

− I=(t)
N=(t)

>
h

1− h
, (35)

where I=
N=

is the density of infected individuals at a subpopulation which is at
the same distance of the traveler’s destination. We have checked that our re-
sults for the model including behavioral changes are qualitatively the same for
different values of h in the interval [0.05, 0.2] (beyond h = 1/3, no differences
with respect to the shortest path results are obtained, which means that this
limit has been reached at h = 1/3 as expected from Eq. (34)).

3.3 Subpopulations affected by an outbreak as a function of
R0 when the rerouting mechanism is active

When the h mechanism is active, the number of individuals going through a
node in the shortest path between an origin and a destination decreases due
to the rerouting of individuals induced by the risk aversion mechanism. This
implies that a smaller number of individuals goes through that node. This
mechanism defines an interesting phenomenology whose effect on the number
of diseased subpopulations is non-linear and depending on the reproductive
number R0 and the number of traveling individuals n.

Let us consider that n(λ) traveling individuals starts at subpopulation i
with destination in the subpopulation j. Besides, consider that one node r in
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the path connecting both subpopulations is infected. In the case without any
behavioral responses the shortest path is selected and let us consider its length
as l. The number of new diseased subpopulations on the way will be:

Dnew = l(1−R−n0 ), (36)

assuming for now that the l − 1 subpopulations in the shortest path are not
already diseased. Instead, in the case in which the re-routing mechanism to
avoid infected subpopulations is active, individuals may go through alterna-
tive paths. Thus, we will have that:

Dnew
RR = (l + ∆l)(1−R−nΩ

0 ) (37)

where Ω, 0 < Ω ≤ 1 represents the ratio of infected individuals that have been
rerouted. If all the k − 1 neighbors of the nodes before r are not diseased we
can evaluate

Ω ∼ 1
k − 1

(38)

Then, we take the ratio among the two quantities yielding

Dnew
RR

Dnew
=

(l + ∆l)(1−R−nΩ
0 )

l(1−R−n0 )
. (39)

By expanding both the numerator and denominator for R−n0 ∼ 1, Eq. (39) can
be written as

Dnew
RR

Dnew
∼ (1 +

∆l
l

)Ω. (40)

As Ω is of order 1/k (in the best case scenario one does not expect multiple
change of paths), and ∆l and l can be considered to be of the same order, we
can expect

Dnew
RR

Dnew
< 1, (41)

The previous expression has been obtained for R0 ∼ 1 and n relatively
small. For large R0 and n values, we are in a different regime in which the
probabilities

[
1−R−n0

]
1 and

[
1−R−nΩ

0

]
1 are independent of Ω thus defining

Dnew
RR

Dnew
> 1. (42)

Therefore, we expect a crossover from Dnew
RR /D

new < 1 to Dnew
RR /D

new > 1 in
R0 and n. As n is an increasing function of the diffusion rate λ, the crossover
is observed also for increasing values of this parameter. We plot the behavior
of Eq. (39) in Fig. 4 for different values of n, R0 and Ω, setting l = 3 and ∆l = 1
(plausible values in any random or complex networks) which confirms our
findings from mechanistic numerical simulations discussed in the main text.
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Figure 5: Comparison between the fraction of infected individuals R obtained
for the baseline model (i.e., when no behavioral changes are implemented)
with that obtained with different risk aversion mechanisms as a function of
R0 or λ. Panels (a) and (b) show the results when the departure probability
(DP) and the rerouting (RR) mechanisms are switched on separately. Panels
(c) and (d) represent the same quantity but using the full model defined in the
text. We have fixed µ = 0.04. The underlying network is the worldwide air
transportation network (see the text for further details).

3.4 Results

In this section we discuss the results obtained by implementing separately the
two proposed mechanisms and when both are combined into a single, full
model. We first notice that the critical invasion threshold λc is the same for
all the variants of the model. This critical point is independent of the behav-
ioral changes because the model dynamics does not change at low values of the
epidemic incidence, i.e., just around the global invasion threshold. In Fig. (5)
we show the ratio of infected individuals R (epidemic size) as a function of
λ (panel (a)) and R0 (panel(b)). In the main text of the paper we show the
same type of plots done instead for the ratio of diseased subpopulations D/V .
The three different implementations of the model are shown as indicated in
the legends: the baseline, the departure probability mechanism (DP) and the
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rerouting mechanism (RR).

Departure probability

This mechanism brings a smaller reduction of the epidemic size for large values
of R0. In the other case instead the mechanism is not distinguishable from the
baseline. This is due to the fact that for mild epidemics the number of infected
individuals is small and then we can consider λij ∼ λ. Our results confirm
previous findings about the inefficacy of measures like cutting down mobility
of individuals by, for instance, closing airports [16, 17, 18, 19].

Rerouting

This mechanism brings, for values of λ consistently bigger than its critical
value, a bigger epidemic size with respect to the baseline model. This is due to
the fact that, trying to minimize the risks to get sick, individuals change their
route visiting places that otherwise would have not been visited, therefore con-
tributing to a wider spread of the disease. As discussed in the preceding sec-
tion, the previous behavior is not always obtained, since for low values of R0

the number of individuals going through a node in the shortest path between
an origin and a destination decreases due to the rerouting of individuals in-
duced by the risk aversion mechanism. This is what happens, for instance, for
R0 = 1.25 and R0 = 1.5 in Fig. (5)a and Fig. (5)b.

Full model

We implemented both mechanisms together in a full version of the model. As
shown in Fig. (5)c and Fig. (5)d the effect of both risk aversion mechanisms on
the epidemic size depends on the value of R0 and λ. For R0 ≥ 2 and values
of λ larger than the global invasion threshold the full model leads to a bigger
epidemic size when compared to the baseline implementation. In these regions
of parameters, the rerouting mechanism is the dominant one and the large out-
break is due to the fact that people explore much more the network trying to
minimize their risk to get sick. This self-fish strategy gives a worst scenario
confirming how behavioral changes have a significant impact on the invasion
dynamics in a non trivial way.

4 Model’s Implementation

4.1 Internal nodes’ dynamics

In each node a SIR dynamics takes place over a well mixed population of ini-
tial size Ni(0) = wi, being wi the strength of node i. When time goes on, Ni(t)
changes according to the number of individuals that has been received and
has left the node. Within the nodes, one step of a SIR process takes place. The
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Figure 6: Comparison between the number of subpopulations affected by the
outbreak, D/V , in the full (τ = 1 and λI = λ/2) and null versions of the model
for µ = 0.02, 0.08 and 0.1 as indicated. The network is the Air Transportation
Network and destinations are chosen proportionally to nodes’ strengths.

state of every individual inside a node i is changed according to the follow-
ing probabilities: a susceptible individual becomes infected with probability
p(S→I) = 1− (1− β

Ni
)Ii , and an infected recovers with probability p(I→R) = µ.

Specifically, the exact number of individuals that changes its state is deter-
mined by a binomial distribution with the probability p(S→I) (or p(I→R)) and
the susceptible populations size Si(t) (or infected Ii(t)) as parameters. Note
that in this scenario, R0 only participates in the internal dynamics; individuals
traveling through node i are involved in the SIR and thus can change their state
while at node i.
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Parameter Range explored
µ 0.02− 0.1
τ τ/3− 3τ
λI λ/4− λ
h 0.05−1.0
γ 1/4− 1

Table 1: Summary of the sensitivity analysis performed.

4.2 Numerical simulations

The model is implemented as follows. Each simulation starts with a small
number of infected individuals (1% of the individuals is infected within a ran-
domly chosen subpopulation). In the simulations the traffic and spreading
dynamics have the same time scale so, at each time step, first a diffusion step is
performed and then the SIR internal dynamics is evaluated. For the diffusion
of the individuals, we assume that the number of individuals starting a trip at
time t is given by a binomial distribution with the mobility rate λ and the sub-
population size Ni(t) as parameters. Destinations are chosen according to the
population wi of each node. To keep the nodes’ population constant over time
(excluding transient individuals traveling through the node), once an individ-
ual reaches its destination it starts a new trip back to its origin. Simulations run
until I(t) = 0 for all subpopulations. Note that in this framework only travel-
ers are explicitly followed and that we only keep a counter for the number of
non-traveling individuals inside each node.

5 Sensitivity Analysis

To test the sensitivity of our main results to different choices of the model
parameters, we have performed further numerical simulations varying them.
Namely, the dependency of the results presented throughout this work with
the following parameters was explored: the recovery rate µ, the time spent at
destination before travelling back home τ , the mobility rate of the individu-
als λI and the re-routing intensity h. As an additional test we also extend our
model including a further class of exposed individuals in which the transition
from exposed to infected is governed by the transition rate γ. Table 1 sum-
marizes the sensitivity results shown in the following subsections. Up to the
range explored, the conclusions of our study remain the same. We note that
given the large number of parameters involved and the large computational
times required by the simulations, the sensitivity analysis has been restricted
to values of the parameters within the typical ranges of epidemiological mod-
els or reasonable assumptions as given by the phenomenology of the models
discussed.
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5.1 Effects of recovery rate µ

We have studied the model behavior for other three different values of µ. In
Fig. 6 we compare the results of the full model with τ = 1 and λI = λ/2 for
µ = 0.02(a), 0.08(b) and 0.1(c) and four different values of R0 = 2, 4, 6, 8. The
results show that the behavior of the full model with respect to the baseline
case is qualitatively the same regardless of the specific value of µ.

5.2 Effects of the parameter τ accounting for the time spent at
destination

In Fig. 7 we compare the results of the full model using three different values
of τ : τ ′ = τ/2 (a), τ ′ = 2 · τ (b) and τ ′ = 3 · τ (c), respectively, with the baseline
case. No qualitative change of behavior is observed with respect to the results
in the main text.

5.3 Effects of the mobility rate of infected individuals λI

Fig. 8 shows the results of the full model for three different values of the mo-
bility rate of infected individuals λI = λ/4 (a),λI = λ/3 (b) and λI = λ (c).
Results corresponding to λI = λ/2 are presented in the main text. Note that
although the value of λI determines a variation on the global invasion thresh-
old no qualitative change of behavior is observed with respect to the previous
results. The network is the Air Transportation Network and destinations are
chosen proportionally to nodes’ strengths.

5.4 Effects of rerouting intensity h

We have studied the model behavior for a family of h values. As shown in
Fig. 9, the full model always performs worse than the null case, provided that
h < 1/3. When h is above this value, all the curves collapse into a single family,
whose behavior is nearly the one observed when individuals move following
the shortest path.

5.5 Effects of latency rate γ in SEIR model

Here we simulate an SEIR model assuming that individuals go from suscep-
tible to exposed and then to the infected class at a rate γ. The latter is set to
three different values γ = 0.25, 0.33 and 0.5 respectively. Fig. 10 shows that the
addition of this new compartment does not alter the qualitative behavior of the
model without such a class.
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Figure 7: Comparison between the full and null versions of the model for µ =
0.04 and three choices for the time spent at destination before traveling back
home τ ′ = τ/2, 2 · τ and 3 · τ . D/V is the number of subpopulations affected by
the outbreak. The network is the Air Transportation Network and destinations
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