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Abstract—The existence of certain comorbidities, the co-
occurrence of different diseases in the same individual, is well-
known in the medical community. However, finding temporal
cause-effect relations between those diseases constitutes a big
challenge. Clinical records can be used to extract the required
information, but their analysis is elusive due to the vast and het-
erogeneous amount of data. We propose a new methodology for
time-preserving tensor networks decomposition to be applied in
the analysis of big data problems where the temporal dimension
of the key factual fields must not be modified. This methodology
will also allow the creation of a new process mining modeling
which can capture the cause-effect relations as low-order tensors
associated to the transitions of the mined processes, and whose
structure takes the form of a multilayer complex network. All
these theoretical and methodological advances will allow their
application to real biomedical data to analyze comorbidities.

Index Terms—tensor decomposition, process mining, comor-
bidities, network science

I. INTRODUCTION

The wide adoption of information systems in companies,
research institutions and administrations has opened the door
to the collection and storage of massive amounts of data. In
particular, many problems in biology, medicine and health
care, generate huge amounts of high dimensional data to be
analyzed. Institutions and companies (e.g., hospitals, banks,
ISPs or accounting firms) are progressively adopting events-
logging policies that lead to the generation of data in the
form of log files containing detailed lists of events/actions
performed on their information systems (e.g., patient-related
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events in hospitals, access control events in critical infrastruc-
tures, resources use in chemical companies, etc.). In the health
care domain, this trend is specially relevant and it is fostered
by the adoption of the concept of Smart Health [1].

In general, event-driven data are stored in (semi-)structured
files such as plain texts, CSV files, and relational and non-
relational databases. By analyzing these data the correctness
and suitability of processes and company’s policies could be
determined, and the identification of hidden dependencies and
correlations is also possible. However, the analysis of big
event-driven data requires novel methodologies to efficiently
process them in tolerable computational times while maintain-
ing accuracy and precision.

A commonly accepted, compact, mathematical represen-
tation for this massive multidimensional data are tensors.
Tensors are organized multidimensional arrays with multiple
indices. The order of a tensor is the dimension of the array
needed to represent it, or equivalently, the number of indices
needed to label a component of that mathematical object. A
challenge in big data analysis consists in using linear algebra
machinery to reduce the dimensionality of tensors and, thus, of
the data to investigate. Mathematically well-grounded lower-
order approximations are then a subject of intense research
in the area [2]–[5]. The mathematical approximations used to
reduce tensors have started to attract attention in the context
of big data analysis [6]. In particular, tensor networks (TN),
a countable collection of tensors connected by contractions,
promise to be a very useful approach to big data analysis in
distributed computing. The first breakthroughs on the analysis
of tensors decomposition were provided by Hitchcock [7]
and Tucker [8], with the Canonical Polyadic and Tucker
decompositions, respectively. However, only recently a few
scalable tensor decomposition strategies have been proposed,978-1-5386-8161-9/18/$31.00 ©2018 IEEE



e.g., the Memory-Efficient Tucker in [9].
The main problem to face in tensor networks decomposition

is that of interpreting the resulting low-rank projections. For
many applications, this is not a drawback given that the main
objective is to deal with a dimensionality reduction of the
multi-dimensional data with no restrictions. However, in some
cases, the data is time-stamped and proper analysis requires to
preserve this particular dimension (time) in the data. This is the
case of process mining analyses, a young research discipline
(initial studies date back to the late 1990s) aiming at discov-
ering, monitoring and improving real processes by extracting
knowledge from event log files. Process mining promises to be
particularly important in highly dynamic environments such as
health care [10].

In health care, time-stamped/time-dependant data records
convey longitudinal meaning on the evolution of patients and
the set of diseases that they have suffered throughout their
lives. The analysis of these data can reveal the presence of one
or more concurrent diseases, the so-called comorbidities [11],
and might help to explain the reasons for a given patient to
develop them, which is the objective of this work.

This paper is organized as follows. In section II, we describe
the background methodology that we need to tackle the causal-
effect relations in comorbidities, namely, tensor decomposition
and tensor networks, process mining, and comorbidities. Then,
in section III we detail our proposed methodology. Finally, in
section IV we discuss the main breakthroughs of this new
approach and future perspectives.

II. BACKGROUND

A. Tensors, tensor decomposition and tensor networks

In the last few years tensors have been found to be useful
in a completely different field: data analysis. With the pos-
sibility to collect huge amounts of information, beyond the
traditional relational databases, new approaches have emerged
to try to understand the structure and relations between data.
For example, suppose we are interested in the relationships
between people (or companies, products, diseases, etc.). We
could use a matrix A to represent these relations, e.g. with
component Aij accounting for the number of interactions
between individuals i and j. If the interactions can be of
different types, a matrix is not enough: either you start using
sets of independent matrices (one for each kind of interaction),
or you proceed to replace them with a 3rd-order tensor T
with components Ti,j,k, where the new index k is used to
identify the kind of interaction. If the persons can also be
classified in different categories, then we could end up with
a 5th-order tensor, Ti1,c1,i2,c2,k, where c1 is the category of
individual i1, and the same for person 2. We realize from
this example that the restriction of using just two indices (i.e.,
matrices) to describe data is rather arbitrary, and that there
are situations in which using tensors instead of matrices is
more convenient, since it has more expressive power, and the
relation between the mathematical object (the tensor) and the
reality it describes is much closer. This approach has been used
in [12] to establish a tensorial mathematical formulation of

multilayer networks, which has become the natural framework
for the study of pairwise interactions of diverse types between
elements. See Figure 1 for a visual representation of ordinary
linear objects, tensors, and some standard operations on them.

From all the theory of tensor algebra, the part which has
received more attention in relation to its application to data
analysis is that of tensor decomposition. The objective of
tensor decomposition consists in finding a set of (usually lower
order) tensors which, when combined using standard tensor
operations, recover the original one. A couple of examples
for the case of matrices (2nd-order tensors) are the well-
known Principal Components Analysis (PCA) and Singular
Value Decomposition (SVD). When the rank of the matrix is
not maximum, both PCA and SVD allow for loseless dimen-
sionality reduction. Otherwise, the dimensionality reduction is
accomplished with a controlled information loss. In the same
way, generalizations of SVD exist for higher order tensors,
such as the Canonical Polyadic [7] and Tucker [8] decom-
positions. More recently, new decomposition schemes have
appeared, e.g., the Hierarchical Tensor decompositions [13],
[14] and the Tensor Trains [15], [16], which can be considered
as belonging to the emerging class of Tensor Networks. The
main idea of Tensor Networks is to have distributed collections
of tensors, each one of low order (between 1 and 6), which
are combined in pairs using index contractions, thus enabling
the reconstruction of tensors of arbitrarily high order.

Among the many benefits of using tensor network decom-
position for large-scale data analysis we should highlight the
following: efficient compressed formats for large multidimen-
sional data; distributed data representation; numerical stability
and robustness to noise of lower-order tensor approximations;
unified framework for all data operations; natural multidimen-
sional extensions of commonly used data analysis algorithms;
availability of graphical representations of tensor networks,
which simplify tensor manipulation; existence of efficient
software libraries for full and sparse tensor representations
and their operations.

B. Process mining

The continuous monitoring of the alignment between event
data generated by business and functioning processes and their
intended design was unusual and was mainly performed man-
ually by human experts since very recently. From these initial
experiences, it has been proven that monitoring and analyzing
process events is highly beneficial both economically and
organizationally. However, the cost and difficulty of manual
analysis prevents many organizations from putting these tech-
niques in place; specially when these analyses require huge
amounts of multifaceted data.

With the aim to ease the analysis of events, the process
mining discipline emerged, combining machine learning and
data mining techniques on the one hand, and process modeling
and analysis on the other. Its main goal is to “discover, monitor
and improve real processes by extracting knowledge from event
logs readily available in today’s information systems” [17].
The processes obtained from process mining techniques are
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Fig. 1: Tensor network diagrams notation. (a) The basic buildings blocks for tensor network diagrams, from left to right:
scalar, vector, matrix, and tensor representations. (b) Algebraic operations using tensor diagrams: matrix-vector multiplication,
matrix by matrix multiplication, and contraction of two tensors.

represented as process models in some common notation,
such as BPMN, UML or Petri nets. According to such
notations, processes are represented as a group of activities
(i.e. each activity is a defined step in the process), whose
ordering/relationship is described as causal dependencies.

Most organizations typically associate the use of process
mining techniques to the characterization of process models,
but the scope of process mining is much broader. Although
process mining is an emerging research field whose attention
has increased within the research community in the last
decade, its beginnings date back to the 1990s. Agrawal et
al. [18] introduced the idea of modeling business processes
from log data as activity graphs in the context of work flow
management systems. Similarly, Datta [19] proposed a method
to discover business process models using variants of finite
state machines combined with probabilistic approaches in
the context of work flow management and business process
redesign. Cook and Wolf [20] proposed three methods for
discovering software engineering processes from event data:
(i) using neural networks, (ii) using finite state machines,
and (iii) using Markov models. More concretely, the authors
identified the last two methods as the most promising ones,
whilst the neural-network-based was not sufficiently mature.
Herbst [21] was one of the first in addressing the discovery of
more complicated (and realistic) processes, which may contain
duplicated tasks, in the context of work flow management by
using inductive approaches.

C. Comorbidities analysis

Some chronic diseases (e.g., diabetes, hypertension) can
appear with different degrees of aggressiveness on the same
subject and might evolve in a variety of ways. Each of these
pathological processes do not follow a predefined course, in-
dependent from the other concurrent processes. These chronic
pathologies can be exacerbated; or other acute disease may
appear in an independent manner. In clinical practice, several
indices are used to evaluate the immediate prognosis of the

concomitance of chronic processes and the burden of diseases,
such as: the Charlson index, the Comorbidity-polypharmacy
score, Elixhauser comobidity measure, or the diagnosis-related
group. These indexes help mainly to predict the risk of death.
Depending on the country, between 30% and 60% of the
population over 70 years old have comorbidities. However,
knowledge about the combination of multiple complex chronic
diseases is yet scarce.

Clinical practice reveals that the secondary prevention of
a pathology can act as the inducer of a new comorbidity, or
on the contrary the primary prevention of another. To under-
stand this complexity, in the last decade, complex analyses
have been carried out on a number of data sets resulting
from different levels of studies of diseases (e.g., data on
genetics, transcriptomics, intracellular-signals, protein-protein
interaction, metabolomics, epidemiological data, drugs design,
cell cultures models, animal models, clinical expression, etc);
and the term network medicine has been introduced. Due to
the huge amount and diversity of the collected data, it has
proven to be very difficult to obtain a global perspective on
the problem and most of the times, narrower and more specific
studies are performed.

Diseases can be represented as nodes that are intercon-
nected by means of edges (like process mining techniques
do), which represent transitions from one disease to another
or, alternatively, the addition of one disease on the previous
ones. As a result, extensive maps of interconnections between
different pathologies can be obtained. Note that these nodes
could represent other features such as syndromes, phenotypes
or biomarkers; and the links between them represent their par-
ticular relationship; until now, extensive analyses of genomic
associations have been carried out, but other crucial factors
such as metabolic pathways, intracellular signaling pathways,
transcriptomics and the interaction of various molecules in the
cellular cytosol are progressively incorporated to the studies.

Analyzing these maps or their equivalent process-like coun-
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Fig. 2: From data to knowledge: Conceptual scheme of the methodological approach of the proposal.

terparts (also known as diseasome maps) of interactions is an
important step towards the understanding of the association,
relation and evolution of comorbidities and will give physi-
cians greater predictive and preventive capabilities; However,
current interaction maps are fairly limited and do not consider
fundamental constraints related to time. Hence, there is a
clear need for the development of interaction maps with
time-constraints (i.e., processes) that enable the analysis of
comorbidities from a multidimensional perspective but, at the
same time, considering the influence and importance of time
(i.e., concepts such as past, present, concurrency and future
have to be fully considered).

III. OUR PROPOSAL

The detection of cause-effect relations among diseases is
the main objective of this proposal. However, the discovery
process requires the analysis of huge volumes of data. Thanks
to the use of tensor decompositions, transitions between nodes
can be augmented with low-order tensors that help explain the
cause-effect relations behind those transitions. Decomposed
tensors and tensor networks can be fed to properly tuned
process mining algorithms, and once transitions are identified,
each of them can be associated with an aggregation of lower
rank features that form a low-order tensor, able to represent
the cause-effect relations hidden in the transitions/edges of the
mined processes.

Current clinical practice considers diseasome maps with
a static vision, which could be of great help when they
are incorporated into medical knowledge, and are likely to
provide new diagnostics. However, we approach comorbidities
from a process mining perspective with time constraints that
incorporates time-related concepts into diseasome maps, and
allows the modeling and detection of inducers or protectors
associated with the features, described by lower-order tensors
in the links/edges representing transitions between nodes. By

approaching the problem from this perspective, it is possible
to show that interactomes can present distant associations
with other nodes, the epigenetic effects of diseasomes, in-
teractomes, and the heritability of the diseasome map itself.
Nevertheless, process mining is not possible if the time dimen-
sion of the key factual fields is not respected. Unfortunately,
the approximations involved in tensor network decomposition
may break this temporal constraint. Thus, new tensor network
decompositions must be developed, preserving time for the
key fields and respecting also the controlled error and efficient
computability requirements. Additionally, we take advantage
of the connection between tensors and multilayer networks to
select optimal unsupervised dimensionality reduction of tensor
modes [22].

We show in Fig. 2 the scheme of the whole process. We
create the proper theory to transform a multidimensional data
warehouse into tensors (which is a natural representation for
this kind of data), and we provide the theoretical means for
the decomposition of those tensors into tensor networks that
preserve important dimensions such as the time. Next, we
apply novel process mining techniques on the aforementioned
tensor networks to discover hidden processes within the data.
In addition, we create low-order tensors to model the cause-
effect relations that explain the transitions between nodes of
the identified processes. By using this low-order tensors we
are able to represent cause-effect relations with a multilayered
structure inspired in complex-networks theory. Finally, we
apply them to the analysis of comorbidities by using real
biomedical data.

IV. DISCUSSION AND CONCLUSIONS

The present proposal leads to important breakthroughs in the
three different fields involved. With respect to comorbidities
analysis, it contributes by providing new information on the re-
lation/interaction of comorbidities in diseasome maps by using



process mining models built upon tensor decompositions with
time preservation. This opens the door to the discovery of new
paths for prevention, early detection and intervention. Also, it
makes possible to show the epigenetic effects of diseasomes,
and the heritability of the diseasome map itself. Additionally,
the current state of knowledge on tensor decomposition and
tensor networks requires the design of new mathematically
grounded and computationally efficient tensor network decom-
position algorithms, capable of preserving unaltered both the
time dimension and the additional fields required for process
mining. At the same time, process mining must be extended
to be properly applied on tensor decompositions and tensor
networks. Moreover, the transitions information, augmented
with novel low-order-based tensor structure, allows to explain
the cause-effect relations hidden within the transitions of the
identified processes from multiple perspectives (i.e., following
a multilayered, complex-networks-inspired approach).

We expect to use this new approach with real multidimen-
sional data provided by the Sant Pau i Santa Tecla Hospital
in Tarragona, Spain, whose data warehouse contains more
than 30 years of biomedical data from thousands of patients
organized in more than 200 million heterogeneous records,
totalling hundreds of terabytes of data. Thanks to the help of
medical doctors and biologist we will be able to select the
most relevant information related to comorbidities and create
multidimensional data marts focused on the topic.
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