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Effective approach to epidemic containment
using link equations in complex networks
Joan T. Matamalas*, Alex Arenas*, Sergio Gómez*

Epidemic containment is a major concern when confronting large-scale infections in complex networks. Many studies
have been devoted to analytically understand how to restructure the network to minimize the impact of major out-
breaks of infections at large scale. In many cases, the strategies are based on isolating certain nodes, while less atten-
tion has been paid to interventions on the links. In epidemic spreading, links inform about the probability of carrying
the contagion of the disease from infected to susceptible individuals. Note that these states depend on the full struc-
ture of the network, and its determination is not straightforward from the knowledge of nodes’ states. Here, we con-
front this challenge andpropose a set of discrete-timegoverning equations that canbe closed and analyzed, assessing
the contribution of links to spreading processes in complex networks. Our approach allows a scheme for the contain-
ment of epidemics based on deactivating themost important links in transmitting the disease. Themodel is validated in
synthetic and real networks, yielding an accurate determination of epidemic incidence and critical thresholds. Epidemic
containment based on link deactivation promises to be an effective tool to maintain functionality of networks while
controlling the spread of diseases, such as disease spread through air transportation networks.
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INTRODUCTION
The problem ofmodeling the spread of a disease among individuals has
been studied in depth overmany years (1–4). The development of com-
partmental models, models that divide the individuals among a set of
possible states, has given rise to a new collection of techniques that en-
able, for instance, analysis of the onset of epidemics (5–15) or study of
the impact of a vaccination campaign (16–20). Previous studies have
relied heavily on a mathematical approach to the study of epidemic
spreading (21), andwe follow a similar approach here in the same spirit.

The design of effective containment strategies constitutes a major
challenge.Measures such as vaccination, improved hygiene, biosecurity,
cattle culling, or education to prevent contagions operate on the bio-
logical aspects of the disease. On the other hand, isolation or mobility
restrictions act on the physical routes or patterns of disease spread, which
may transform a local event into a pandemic. Here, we concentrate on the
role of the links of the spreading network. For example, if we identify the
edges that are more involved in the propagation of a disease, then it is
possible to design targeted countermeasures that affect only specific links
instead of whole nodes while being more effective. This approach can be
illustrated by a hypothetical pandemic disease propagated using the air
transportation network: The isolation of one airport is a dramaticmeasure
that is socially and politically difficult to accept and put into practice, but the
suspensionof only a fewconnectionsbetween selected airports couldbemore
easily assumed and could also achieve a better containment of the disease.

Previous studies have directed their attentionmostly toward schemes
based on the actuation on single nodes, either randomly or according to
node properties such as their degree, betweenness, PageRank, or eigen-
vector centrality (22–25). Following the same idea, some authors have
introduced link removal using properties of the adjacent nodes (degrees
or centralities) or of the link itself (edge betweenness) (22, 26, 27). A
model of coevolution of epidemics with permanent and temporal link
removals was proposed in (28), and methods from optimization and
control have been applied to minimize the impact of the epidemics
(29–31). The core of what is currently considered to be the optimal ap-
proach is built upon finding theminimum set of edges whose removal
leads to a maximumdecrease in the spectral radius of the network, that
is, the largest eigenvalue of the adjacencymatrix (27, 32, 33). Because the
epidemic threshold is, at first-order approximation of a susceptible-
infected-susceptible (SIS) epidemic dynamics, inverse to the spectral
radius, it seems the best andmoremathematically grounded option. Un-
fortunately, it turns out to be an NP-complete problem; thus, only heu-
ristics are available for large networks (27).

It must be emphasized that all the previous approaches make
use only of the structural characteristics of the network to decide
which nodes or edges have to be removed; the characteristics or
parameters of the epidemic process are ignored. Even the spectral
radius, which is closely related to the epidemic threshold, does not
depend on the infection or recovery rates, the expected number of
infected neighbors around a certain node, or any other local or
global information of the spreading process.

Our proposal concentrates on the role of the links in the spreading of
the epidemics, quantifying the importance of each link (34) and thus
enabling containment strategies based on their removal. To this end,
we first define the epidemic importance of a link as its capacity to infect
other individuals once this link has been used to propagate the disease.
The determination of this link epidemic importance requires the devel-
opment of a mathematical model that is able to cope with the infection
propagation at the level of links in complex networks.Wewill show that
the proposedmodel facilitates the determination of the epidemics in-
cidence and threshold with high accuracy.Moreover, the quantification
of the epidemic importance of the edges leads to a link removal strategy
that, in many cases, outperforms the previous approaches, even those
based on minimizing the spectral radius, and also preserves most of the
connectivity of the network.

The contributed model is built upon the relationships between the
states of nodes connected by links, thus being related to pairwise ap-
proximations (35–41). However, our model is microscopic, at the level
of individual links as in (40), thus allowing a clear identification of max-
imally infectious links, butwith the additional advantage of being able to
easily calculate not only the epidemic threshold but also the incidence of
the epidemics and the importance of the links.
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RESULTS
Link epidemic importance
Let us consider a discrete-time SIS dynamics that runs on top of a
complex network of N nodes and L edges, with adjacency matrix A,
and where each node i can be in one of two different states si, either
susceptible (S) or infected (I), that is, si ∈ {S, I}. We can say that a link
(i, j) between nodes i and j is in state SI if si = S and sj = I. The param-
eters of the SIS dynamics are the infection and recovery probabilities,
b and m, respectively.

Our objective is to find an effective strategy to contain the SIS epi-
demic process through bond percolation. To determine which link
should be removed first, we need a measure of the importance of each
link in the spreading of the epidemics. A possible optionwould be to use
the edge importance defined in (34), which accounts for the relative
change of the spectral radius when the edge is removed. However, this
constitutes an indirect way of containment, because we aim at lowering
the incidence of the epidemics as much as possible, whereas the actua-
tion on the spectral radius is directed to increase the epidemic threshold;
both are different targets. In addition, the spectral radius only depends
on the structure of the network, but not on the epidemic parameters
of the process or the participation of the link in the spreading of the
disease.

We assume that the system has reached the stationary state, which
does not mean that the nodes remain in a certain fixed state, only that
the average incidence of the epidemics is basically constant; thus, there
is still margin for applying a containment strategy to minimize this in-
cidence. In this regime, we can measure the probabilities of nodes and
links in each of the epidemic states, for example, the probabilityP(si= I)
of node i being infected or the joint probability P(si = I, sj = S) of link
(i, j) being in state IS.

Consider we have a link in state SS or II. In both cases, the next step
of the epidemic dynamics is not going to use this link because, in the
former, there is no infected node to propagate the disease and, in the
latter, both nodes are already infected. Thus, to propagate the epidemics,
a linkmust be in an either SI or IS state. Let us suppose we have a link
(i, j) in state IS. First, with probability b, node i can infect node j through
this link, changing to state II. Next, infected node j may transmit the
disease to some of its neighbors. Thus, if we had removed link (i, j), then
we would have cut this path of infections initiated at node i. This means
that the larger the expected number of infected neighbors of node j, the
largest the impact of removing link (i, j) for the spreading of the epi-
demics. Note that the degree of j, as well as the probability of its
neighbors being susceptible when j is infected, is relevant, because you
cannot infect nodes that are already infected. For example, if j is sur-
rounded by many infected nodes, then cutting link (i, j) is not going
to have toomuch effect on the overall incidence of the epidemics. The ex-
pected number of infected nodes produced in thisway can be expressed as

�nij ¼ bPðsj ¼ S; si ¼ IÞ∑
N

r¼1
AjrbPðsr ¼ S sj ¼ IÞ�� ð1Þ

where P(sr = S|sj = I) is the conditional probability that node r is suscep-
tible when its neighbor j is infected. Because this measure is asymmetric,
and removing an edge affects the propagation of the disease in both
directions, we define the link epidemic importance of a link, Iij, as

Iij ¼ �nij þ �nji ð2Þ
Matamalas et al., Sci. Adv. 2018;4 : eaau4212 5 December 2018
Now, the problem reduces to finding the joint and conditional
probabilities for each link, and this is accomplished using our epi-
demic link equations (ELE). It can be shown that this definition of
link epidemic importance has the property of trying to preserve the
connectivity of the network (see section S1 and fig. S1), unlike other
options such as edge betweenness, which quickly tend to produce a large
number of disconnected components, thus hindering the functionality
of the network.

Epidemic link equations
To simplify the notation, we first denote the previous joint probability
asFij = P(si = S, sj = I); the higher theFij, the larger the likelihood that
the disease propagates fromnode j to node i. It is worthmentioning that
this feature is generally asymmetrical, meaning that the propagation of
the illness can be more probable from j to i than the other way around.
In the sameway, the epidemic is restrained by edgeswhere the nodes are
in the same state; thus, it is convenient to define the probabilitiesQS

ij ¼
Pðsi ¼ sj ¼ SÞ and QI

ij ¼ Pðsi ¼ sj ¼ IÞ for all pairs of neighboring
nodes.

The evolution of the joint probabilityFij of one link depends on the
probabilities F, QI, and QS to the rest of the neighboring links and on
the infection rules of the SIS dynamics. Thus, we canwrite the following
equation for each link

Fijðtþ1Þ ¼QS
ijðtÞqijðtÞð1� qjiðtÞÞ þ FijðtÞðð1� bÞqijðtÞÞð1� mÞþ

FjiðtÞmð1� ð1� bÞqjiðtÞÞþ QI
ijðtÞmð1� mÞ ð3Þ

where qij(t) stands for the probability that a susceptible node i is not
infected by any of its neighbors (excluding node j). We have taken
into account all the possible changes of state of the nodes i and j. The
first term considers the probability that both nodes are in a susceptible
state; then, node i remains susceptible, while node j is infected by any of
its other neighbors. The second termaccounts for both nodes remaining
in the same state; node i is not infected by any of its neighbors, and node
j is not recovered from the infection. Then, the third term represents the
transition in which node i is infected and recovers, while node j is sus-
ceptible and is infected by any of its other neighbors. Last, in the fourth
term, both nodes are infected, but node i recovers, while node j does not.
The asymmetry of probabilityFijmultiplies the number of equations by
two, because, for each link between nodes i and j, we need an equation
for Fij(t + 1) and another for Fji(t + 1).

Similarly, we can obtain an expression for probability QI
ij

ΘI
ijðt þ 1Þ ¼ ΘS

ijðtÞð1−qijðtÞÞð1−qjiðtÞÞþ

ΦijðtÞð1−ð1−βÞqijðtÞÞð1−μÞþ

ΦjiðtÞð1−μÞð1−ð1−βÞqjiðtÞÞ þ ΘI
ijðtÞð1−μÞ2 ð4Þ

In this case, we have only L equations, one per link, because
of its symmetry. There is no need for extra equations for prob-
ability QS

ij , because the normalization leads to QS
ij ¼ 1� Fij �

Fji � QI
ij.
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qij(t) in Eqs. 3 and 4 can be expressed as

qijðtÞ ¼∏
N

r¼1
r≠j

ð1−βArihirÞ ð5Þ

where hij defines the hostility of j against i, that is, the probability that
node j is infected when node i is susceptible, hij = P(sj = I|si = S). The
hostility can be obtained in terms of QS

ij and Fij as

hij ¼ Fij

Fij þ QS
ij

ð6Þ

Note that the denominator in Eq. 6 is a property of node i, given that
Fij þ QS

ij ¼ Pðsi ¼ SÞ for all neighboring nodes j of vertex i.
We call this system of 3L equations and unknowns our ELE model.

It can be solved by iteration, starting from any meaningful initial con-
dition, for example,QI

ijð0Þ ¼ r20 andFij(0) =Fji(0) = r0(1− r0) (for any
0 < r0≤ 1), until a fixed point is found. Apart from the solution where
all nodes are susceptible, QS

ij ¼ 1 for all the links, a nontrivial one
appears when the system is above the critical value of the epidemic
spreading (see Methods for the analytic derivation of the epidemic
threshold from ELE model). Last, the incidence of the epidemic pro-
cess, the average number of infected nodes in the whole system, can be
computed as

r ¼ 1
N
∑
N

i¼1

1
ki
∑
N

j¼1
Aji Fji þ QI

ij

� �
ð7Þ

where ki is the degree of node i.
Matamalas et al., Sci. Adv. 2018;4 : eaau4212 5 December 2018
To test the agreement between our approach and empirical simula-
tions, we have analyzed the incidence of the epidemics, r, in different
synthetic and real network structures, covering the full range of infec-
tion probabilities, b (see Fig. 1). The results show a marked agreement
between our ELE model and the Monte Carlo simulations and a good
prediction of the epidemic threshold for all synthetic and real networks,
pointing out the validity of our model to describe the global impact of
the epidemics. Note that all networks, except the first one, have a large
clustering coefficient, making the determination of the incidence diffi-
cult for standard mean field methods because of the effect of dynamical
correlations.

Epidemic containment
Our approach for effective epidemic containment is based on removing
the linkswith the largest link epidemic importance. This is possible once
we have solved the ELE model, computing the Iij for all the links in the
network using Eq. 2, which can be expressed as

Iij ¼ b2 Fji ∑
N

r¼1
Ajr

Frj

Frj þ QI
rj

þFij ∑
N

r¼1
Air

Fri

Fri þ QI
ri

 !
ð8Þ

Note that the value of b does not affect the ranking of the links, but we
do not remove it from Eq. 8 to preserve the semantics of Iij. Because the
structure of the network changes after each link removal, it is convenient
to recalculate the solution of the ELE model to ensure that we really re-
move the current link with the largest link epidemic importance.

We show the results of our approach for epidemic containment in
Fig. 2. For comparison purposes, we also test four additional contain-
ment strategies. First, we consider two strategies that only make use of
the structure of the network: removal based on maximum edge be-
tweenness (22) and targeting the link with the highest eigenscore, that
 on D
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Fig. 1. Incidence of the epidemic process r as a function of the infection probability b. We show the incidence level for the ELE model (solid lines) and for Monte Carlo (MC)
simulations (circles). The theoretical epidemic threshold calculatedusing Eq. 19 ismarkedwith a vertical line.Wehavemadeuseof two synthetic and two real networks: two scale-free
networks (top) with an exponent of 3, one of them with high clustering coefficient; the world air transportation network; and the network of scientific collaborations in the field of
general relativity (GR). We have set the recovery rate for all the networks to m = 0.5 (see Methods for the description of the networks and the details of the MC simulations).
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is, the product of the eigenvector centralities of the nodes connected by
the link (27). Then, we consider a measure based on the epidemic pro-
cess at the level of nodes, the removal of all the links of the node that has
themaximumprobability of being infected. Last, we carried out a simple
random edge removal. As in the case of our strategy, we recalculate all
the measures after each removal (see Methods for further details). We
have also checked a promising approach based on communicability
distances (42); however, the computational costs involved in computing
communicability angles and distances for large networks preclude this
approach to be used in large networks. For this reason, we have not in-
cluded results on this one.

We observe in Fig. 2 that link epidemic importance leads to the
fastest extinction of the epidemics for the four considered networks,
and it is the only method that preserves their connectivity (thus, func-
tionality). Note that the strategy based on node infectivity, though
better than the random removal, performs poorly for all the net-
works despite having information about the epidemic process. This
means that the use of information at the level of links is crucial to
contain the epidemics.
Matamalas et al., Sci. Adv. 2018;4 : eaau4212 5 December 2018
For the power-law network, our approach using link epidemic im-
portance yields the best performance, but the results are very similar to
the those obtained using eigenscore and edge betweenness strategies
[equivalent results hold for Erdős-Rényi (ER) networks; see fig. S6].
However, when the transitivity of the network is increased, we can
see the benefits of using link epidemic importance, both in epidemic
containment and on preservation of the connectivity of the network
(see figs. S2 and S3 formore details on the containment process for each
method).

The effect of the clustering coefficient is also present when we
look at the epidemic containment results for the two empirical networks
in Fig. 2. Moreover, as in most real networks, the air transportation and
the scientific collaboration networks have a significant modular struc-
ture. This plays an important role on the epidemic containment process.
Here, we can see how the strategy based on edge betweenness apparently
performs better when few links are removed because of the fact that links
with higher edge betweenness are those connecting different modules
(43). When the bond percolation process isolates modules, each module
may sustain its own epidemic process, and thus, itmay happen that some
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Fig. 2. Targetedbondpercolation.We show the incidence of the epidemics, (r), and the number of connected components, (Cr), as functions of the occupation probability,
(Lr/L0), where L0 is the number of links of the network and Lr is the number of removededges in the bondpercolation process.Wecompare five different epidemic containment
strategies: removing the edges of the node with the highest probability of being infected, P(si = I) (orange dash-dash lines); a random edge removal (yellow dash-dot lines);
removing the edge with the highest edge betweenness (light orange dotted lines); targeting the edge with the highest eigenscore (red dashed line); and, last, removing the
edge that has the largest link epidemic importance (blue solid line).We apply these processes to the same networks as in Fig. 1 (seeMethods). Wehave set the recovery rate to
m = 0.5 and have chosen the infection probability b such that the stationary incidence of the epidemics is about rini ≈ 0.2 for all the networks, that is, b = 0.1 for both power-law
networks, b = 0.06 for air transportation network, and b = 0.11 for the collaboration network. The dots mark the achievement of total containment.
4 of 9

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E
of the modules are subcritical for the given infection probability b. This
will lead to a decrease of the global prevalence of the epidemics at the
expense of losing the connectivity of the network. Furthermore, if we look
at the prevalence on the giant connected component, an important in-
crease above the initial average number of infected individuals is revealed
(see figs. S4 and S5). A consequence of this fragmentation process is the
appearance of multiple isolated supercritical components, for which the
removal of a link in one of themdoes not affect the incidence on the other
components. As a result, the edge betweenness procedure needs to re-
move more links to arrive to the total epidemic extinction than any of
Matamalas et al., Sci. Adv. 2018;4 : eaau4212 5 December 2018
the other methods, even the random one. For the sake of completeness,
we have analyzed two benchmark networks with community structure,
obtaining similar results (see figs. S7 and S8).

In Fig. 3 (top), we illustrate the survival links in the air transportation
network after 33.3% of the edges have been removed according to our
epidemic containment strategy proposal (see fig. S9 for the original
network before the containment process). As it is observed, the global
connectivity, and thus functionality, of the worldwide connections is
preserved (links of the same color are part of the same connected
component). In Fig. 3 (bottom), we plot the network after deactivating
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Link epidemic importance

Edge betweenness

P I 0.0 0.2 0.4 0.6

Fig. 3. Epidemic containment on the air transportation network. We show the networks after 33.3% of the links have been removed using link epidemic impor-
tance (top) and edge betweenness (bottom). Nodes and edges with the same color belong to the same connected component, with subcritical components in gray
scale and using darker gray for larger components. The area of the nodes is proportional to their probability of being infected P(si = I) from 0.0 to 0.6. We have set the
epidemic probabilities to m = 0.5 and b = 0.06.
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the same fraction of links (33.3%) using the recursive deactivation of
links according to edge betweenness. The edge betweenness contain-
ment method, in contrast with our proposal, generates two kinds of
components: small or sparsely connected subcritical modules such as
the ones in Australia, Africa, or South America, where the epidemics
vanishes, and large supercritical communities in Europe, North America,
and East Asia, with a large prevalence of the epidemics. This means that,
for instance, there is no path to go from London to New York, or from
Tokyo to LosAngeles, thus disconnecting theworld by air transportation.

For a better assessment of the performance of the different contain-
ment strategies, we show in Fig. 4 their comparison in terms of the re-
quired fraction of removed links to attain total containment, LTC/L0,
when applied to a large set of synthetic networks and epidemic param-
eters. The results point to a clear advantage of the link epidemic im-
portancemethod over the node infectivity and randomapproaches, and
better or equal results with respect to edge betweenness and eigenscore.
Only eigenscore achieves results comparable to link epidemic impor-
tance, with a slight advantage for our method. When applied to a set
Matamalas et al., Sci. Adv. 2018;4 : eaau4212 5 December 2018
of 27 real networks (see Methods), the differences between link ep-
idemic importance and eigenscore become more evident, showing
again the effectiveness of our approach, but with some exceptions
in which eigenscore performs better (see Fig. 5). In addition, we plot
in figs. S10 and S11 the comparison of the number of connected com-
ponents between the different containment strategies, which show the
better performance of link epidemic importance to keep the number of
components low, with only a few exceptions.
DISCUSSION
We have presented a methodology for assessing epidemic spreading
based on links instead of nodes. The model, named ELE, allows
the determinationof the epidemic importance of each link in transmitting
the disease. The method accounts for the first-order correlations be-
tween links, although it could be extended to higher orders, assuming
a larger analytical and computational cost. The results are used to de-
velop an epidemic containment strategy built on deactivating recursively
 on D
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6 of 9

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on D
ecem

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

the links with the largest link epidemic importance while preserving the
connectivity of the full network, that is, avoiding fragmentation.We have
validated our proposal in synthetic and empirical networks, comparing
with other alternative containment strategies, which show its better
performance, with few exceptions. In the empirical case of the worldwide
air transportation network, we identify the most important connections
between airports for the spreading of epidemics and evaluate the epidem-
ic incidence after its deactivation, considering an SIS epidemic spreading
dynamics. Our results open the door to new approaches in the analysis of
dynamical diffusive-likemodels on complex networks at the level of links
instead of nodes.
ber 6, 2018
METHODS
Epidemic threshold
The determination of the epidemic threshold was performed by consid-
ering a state of the system in which the epidemic incidence is very small
(Fij;Fji;QI

ij≪1, for all links); thus, the system of equations can be lin-
earized (see section S2 for full details), resulting in

QI
ij ¼ bð1� mÞFij þ bð1� mÞFji þ ð1� mÞ2QI

ij ð9Þ

Φij ¼ β∑
r
ðArj−ð1−μÞδriÞΦjr þ ð1−βÞð1−μÞΦij þ μð1−μÞΘI

ij ð10Þ

Here, we removed the dependence on time to emphasize that we are
considering the steady state. From Eq. 9, we can write

QI
ij ¼

bð1� mÞ
mð2� mÞ ðFij þFjiÞ ð11Þ
Matamalas et al., Sci. Adv. 2018;4 : eaau4212 5 December 2018
Now, calling ei ¼ Fji þ QI
ij≪1, which does not depend on node j

because P(si = I, sj = S) + P(si = I, sj = I) = P(si = I), we made the
following ansatz

QI
ij ¼ Υðei þ ejÞ ð12Þ

Fij ¼ Xei þ Zej ð13Þ

where U, X, and Z are constants independent of the link. These ansatz
include the assumptions of symmetry of QI

ij and asymmetry of Fij, re-
spectively. We can determine the constants by substitution in Eq. 11 and
using the definition of ei, which leads to

Υ ¼ bð1� mÞ
mð2� mÞ þ 2bð1� mÞ ð14Þ

X ¼ �Υ ð15Þ

Z ¼ 1�Υ ð16Þ

Last, we built equations for ei by substituting Eqs. 9 and 10 in ei ¼
Fji þ QI

ij and using the ansatz. The result is

m
b
ei ¼ ∑

j
Bjiej ð17Þ

where B is a matrix whose elements depend on the adjacency matrix of
the network, on U, and on the degrees ki of the nodes

Bij ¼ ð1�ΥÞAij �Υkidij ð18Þ
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Fig. 5. Fraction of links removed for total epidemic containment on real networks.We compare the link epidemic importance and eigenscore methods on a set of
27 real networks selected from the Network Repository (49) (see Methods), with sizes ranging from 410 to 404,719 nodes. The epidemic parameters are the same as in
Fig. 4, thus amounting to 324 different configurations.
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dij stands for the Kronecker delta function, which is 1 if i = j and 0
otherwise. If m/b is an eigenvalue of matrix B, then Eq. 17 has nontrivial
solutions. Hence, the onset of the epidemics bc, the lowest value of b that
yields nontrivial solutions of Eq. 17, is given by

bc ¼
m

LmaxðBÞ ð19Þ

where Lmax(B) is the largest eigenvalue of matrix B. Note that matrix
B depends on b and m; thus, Eq. 19 is implicit for bc, which can be
solved by iteration (see section S3 for a discussion on the determination
of the epidemic threshold).

Estimation of the incidence of the epidemic from
numerical simulations
The numerical incidence of the epidemics, r, is calculated using
discrete-time and synchronous Monte Carlo simulations. We made
use of the quasistationary (QS) approach (44, 45) to avoid the effect
that a large number of realizations end up in the absorbing state with no
infected individuals in the system. Basically, the QS method focuses the
simulation on active configurations, that is, with one or more infected
individuals. Every time the system reaches the absorbing state, this state
is replaced by one of the previously stored active states of the system.We
kept 50 active configurations with an update probability of 0.20. We
gave the systems a transient time of 105 time steps and then calculated
r as an average over a relaxation time of 2 × 104 time steps.

Networks
In this work, we evaluated ourmethodology on synthetic and empirical
networks. We built a network with power-law degree distribution
P(k) ~ k−g with exponent g = 3 and 〈k〉 = 6 using the configuration
model. To evaluate the impact of transitivity, we also built another
network with the same characteristics of the previous one but with
a clustering coefficient of 0.6 using the algorithm of Holme and
Kim (46) with a parameter p = 0.8.

We considered also two empirical networks: the air transportation
network and the network of scientific collaborations in the field of gen-
eral relativity. The air transportation network was constructed using
data from the website openflights.org, which has information about
the traffic between airports updated to 2012. This network accounts
for the largest connected component, with 3154 nodes and 18,592 edges
(see data file S1). The network of scientific collaborations was obtained
from (47); it is composed of 5242 nodes linked by 14,496 edges.

The synthetic networks in Fig. 4 were generated with the model in
(48), which interpolates between ER and Barabási-Albert (BA) net-
works. In this way, we were able to evaluate the performance of the con-
tainment strategies on networks with degree distributions that range
from Poisson (ER) to power-law (BA). By construction, these networks
have no community structure and low transitivity.

The 27 real networks in Fig. 5 were obtained from the Network Re-
pository (49), selecting only the largest connected component. They
cover wide ranges of number of nodes (from 410 to 404,719), number
of links (from 1043 to 713,319), average degree (between 2.04 and
84.82), average clustering coefficient (from 0.0023 to 0.1105), and assort-
ativity (between −0.88 and 0.64) (see section S4).

Containment process
To perform the deactivation of links, we imposed an adiabatic process:
After each removal step, we let the system converge to the meta-stable
Matamalas et al., Sci. Adv. 2018;4 : eaau4212 5 December 2018
equilibrium before removing any other link. For a fair comparison be-
tween different containment strategies, we removed on each deactivation
step as many edges as we have removed using the node infectivity
strategy. In the case of the real networks in Fig. 5, we set the maximum
number of adiabatic processes to 1000 because of its large computational
cost on the largest networks. This means that, if the network has 20,000
links, we removed 20 links at each deactivation step. We considered that
we reached total containment when the incidence of the epidemics
becomes lower than 1/N. The computational cost of calculating the links
to remove for each containment strategy is shown in fig. S13.
SUPPLEMENTARY MATERIALS
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content/full/4/12/eaau4212/DC1
Section S1. Link epidemic importance and connected components
Section S2. Linearization of the ELE model
Section S3. Epidemic threshold
Section S4. Data description
Fig. S1. Ratio between the link epidemic importance I A of a link in a subnetwork A and the link
epidemic importance I AB of a link that acts as the only bridge between subnetworks A and B.
Fig. S2. Epidemic containment for a network with 5000 nodes, power-law degree distribution
of exponent 3, and average degree 〈k〉 ¼ 6.
Fig. S3. Epidemic containment for a network with 5000 nodes, power-law degree distribution
of exponent 3, high clustering coefficient, and average degree 〈k〉 ¼ 6.
Fig. S4. Epidemic containment for the air transportation network.
Fig. S5. Epidemic containment for the general relativity collaborations network.
Fig. S6. Epidemic containment for an ER network with 5000 nodes and average degree 〈k〉 ¼ 6.
Fig. S7. Epidemic containment for a network with 5000 nodes generated with a stochastic
block model, with four blocks of 250 nodes, two blocks of 1000 nodes, and one block of 2000
nodes, average degree of 5, and mixing probability of 0.3.
Fig. S8. Epidemic containment for a network with 5000 nodes generated using the LFR
algorithm, with average degree of 6, exponent of 3, and mixing probability of 0.1.
Fig. S9. Original air transportation network (top) and the results after a removal of 33.3% of the
links using link epidemic importance (middle) and edge betweenness (bottom).
Fig. S10. Comparison of the number of connected components after total containment
between the link epidemic importance strategy and the other four methods, calculated for the
synthetic networks and parameters as in Fig. 4.
Fig. S11. Comparison of the number of connected components after total containment
between the link epidemic importance and eigenscore strategies, calculated for the real
networks and parameters as in Fig. 5.
Fig. S12. Graphical representation of the determination of the epidemic threshold.
Fig. S13. Computational time invested for each method to perform a single ranking and
removal for BA networks ranging from 100 to 400,000 nodes, averaged over 36 repetitions.
Table S1. Structural characteristics of the 27 real networks obtained from the Network
Repository (http://networkrepository.com) and used in Fig. 6 and fig. S11.
Data file S1. Air transportation network data.
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