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Abstract
Wecharacterize the evolution of a dynamical systemby combining twowell-known complex systems’
tools, namely, symbolic ordinal analysis and networks. From the ordinal representation of a time ser-
ies we construct a network inwhich every nodeweight represents the probability of an ordinal pattern
(OP) to appear in the symbolic sequence and each edgeʼs weight represents the probability of transi-
tions between two consecutiveOPs. Several network-based diagnostics are then proposed to char-
acterize the dynamics of different systems: logistic, tent, and circlemaps.We show that these
diagnostics are able to capture changes produced in the dynamics as a control parameter is varied.We
also apply our newmeasures to empirical data from semiconductor lasers and show that they are able
to anticipate the polarization switchings, thus providing early warning signals of abrupt transitions.

1. Introduction

Symbolic time series analysis is a powerful technique able to extract hidden features such as the presence of
frequent recurrent patterns [1–5], or the existence ofmissing/forbidden patterns [6–8] from stochastic, high-
dimensional signals. Symbolic analysis has also proven to be useful for classifying different types of signals [9–
12] and, in bivariate analysis, for inferring the direction of information flow [13, 14]. The symbolic approach
involves the transformation of a time series, x(t), into a sequence of symbols, s(t), by using an appropriated
codification rule. A significant advantage of symbolization is its reduced sensitivity to observational noise.
Complexitymeasures have been proposed to characterize the resulting symbolic sequence, a very popular one
being the permutation entropy (PE) [15–21], computedwith an ordinal symbolization rule by comparing
neighboring values in the time series.

Complex networks have also been successfully employed for time series analysis [22–27]. Correlation graphs
[28, 29], recurrence graphs [30–32], and visibility graphs [33–37] have been shown to provide relevant
information, for example, of early warning indicators of qualitative changes and abrupt transitions.

Here we characterize the evolution of a dynamical systemby combining symbolic ordinal analysis and
network representation in a hybridmethodology. Specifically, a time series x(t) (raw data) is transformed in a
sequence s(t) of symbols (ordinal patterns, OPs) that is used to construct a directed andweighted graphwhere the
different symbols that appear in s(t) constitute the network nodes. Each of these nodes has an associated
probability of occurrence. The transitions between consecutive symbols constitute the network links: any pair of
nodes, i and j, are connected by a directed link if the sequence of symbols (i, j) occurs in the symbolic sequence,
and theweight of the directed link is the probability of j occurring after i (referred to as the transition probability

→i j , TP).
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Our approach for defining the links as the TP between symbols was originally proposed byNicolis et al [22]
and the use of ordinal analysis was proposed by Sun et al [27]; however, in [27] theweights of the linkswere not
defined in terms of TPs (as in [22]), but rather, theywere defined as the number of times the pair of consecutive
symbols (i, j) occurred in the time series. Amajor advantage of the use of TPs is that they are normalized in each
node, and thus, allow for computing an entropy for each node, in the following referred to as node entropy. The
node entropies can then be used to identify changes in the network, which reflect changes in the time series when
the control parameter is varied.

Exploiting this network representationwe propose several novelmeasures to characterize a time series:

• the nodes’ entropy, which is themean entropy of the distribution of theweights of the outgoing links of a node
(in otherwords, the node entropy averaged over all the nodes of the network.);

• the links’ entropy, which is the entropy of the distribution of links’weights; and

• the asymmetry coefficient, which is computed from the difference of theweights of the links →i j and →j i,
averaged over all the links of the network.
Note that the nodes’ and the links’ entropies are computed according to the classical Shannon entropy
definition.

By analyzing numerical data generated from the logisticmap, the tentmap, the circlemap, and experimental
data, recorded from the intensity of semiconductor lasers under different operation conditions, we show that
thesemeasures are able to capture gradual and abrupt changes in a time series. A comparisonwith the PE reveals
that the entropies defined from the symbolic network vary over awider range of values and outperform the PE in
providing early warning signals of sudden changes in the time series.

This paper is organized as follows. In sections 2 and 3 themethod of network construction and the network-
basedmeasures proposed for characterizing the time series are described. In section 4 results are presented and,
finally, we provide the discussion and some conclusions in section 5.

2.Network construction

We transform a time series x(t) into a sequence of symbols s(t) by using theOP representationwith symbols of
lengthD. In this case, symbols are defined by considering groups ofD consecutive values in the time series [15].
There existD! differentOPs of lengthD. For example, forD=2 there are twoOPs: < +x t x t( ) ( 1) gives symbol
‘01’ and > +x t x t( ) ( 1) gives symbol ‘10’; forD= 3 there are six possibleOPs: < + < +x t x t x t( ) ( 1) ( 2)
gives ‘012’, + < + <x t x t x t( 2) ( 1) ( ) gives ‘210’, etc

In general, the ordinal representation of x(t) gives a sequence s(t) ofOPswithM different symbols because
depending on the system’s dynamics not all possible symbols will be present in the symbolic sequence, s(t),
because either the dynamics do not allow for some of the (the so-called ‘forbidden patterns’), or the time series x
(t) is offinite length and simply does not appear (‘missing patterns’) [6–8]. Thus, the number of nodes in the
network corresponds only to those symbols appearing in the symbolic sequence and is ⩽M D!.

Theweight of a node i is the relative number of times the symbol i occurs in the sequence s(t):

∑= =
=

p
L

n s t i
1

[ ( ) ], (1)i
t

L

1
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* for =i i* and pi=0∀ ≠i i* (only one symbol, i*, appears in

the symbolic sequence and thus the network has only one node); =s Mlogp if =p M1i ∀i (all the symbols
appear in the symbolic sequence with the same probability and thus all the nodes have the sameweight).

Theweight of a link →i j ,wij, is the relative number of times, in the sequence s(t), the symbol i is followed by
the symbol j:
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With this definition the linkweights are normalized in each node, i.e.,∑ = ∀= w i1,j
M

ij1 .We note that this

definition allows for the presence of self-loops.
It is illustrative to describe the type of networks that are generated by simple dynamics. A periodic time series

will give a regular symbolic sequence, whose periodicity will depend on the length of theOP,D. The resulting
symbolic networkwill then depend onD. To focus the ideas, let’s consider the time series shown infigure 1(a),
with period 4, generated from the logisticmap.WithD=3we obtain the following sequence of symbols

201, 021, 102, 120, 201, 021, 102, .... (4)

Because the TPs are computed fromOPs that are formed by non-superposed values (i.e., forD= 3, {x(t),
+x t( 1), +x t( 2)} define one pattern and { +x t( 3), +x t( 4), +x t( 5)} define the next one), the network

obtained has four nodes connected as follows:

→ → → →201 120, 021 201, 102 021, 120 102. (5)

If we useD=4OPs, then the sequence of symbols is

3021, 0213, 2130, 1302, 3021, 0213, 2130, ... (6)

and the resulting network has four nodes with self-loops,

→ → → →3021 3021, 0213 0213, 2130 2130, 1302 1302. (7)

It is important to note that, in the ordinal encoding scheme, depending on the value ofD, an irregular time series
can have an associated regular symbolic sequence, and thus, a regular network. Tofix the ideas, let’s consider the
time series shown infigure 1(b), also generated from the logisticmap.With values ofD equal to 2, 3, or 4, this
time series gives the same symbolic sequence as the period-4 time series shown in panel (a). This feature is a
consequence of the ordinal codification rule. Other codification choices can result in two different symbolic
sequences.

On the other hand, if the time series is fully random, the symbolic sequencewill also be fully random, and
then the networkwill have a regular, all-to-all topology, regardless of the value ofD (assuming the time series is
sufficiently long).

3.Network-based diagnostics for time series analysis

The symbolic network allows defining several novelmeasures:
1) Since∑ = ∀= w i1,j

M
ij1 , we can compute an entropy at each node,

∑= −
=

s w wlog , (8)i

j

M

ij ij

1

and then characterize the network heterogeneity in terms of the distribution of the si values.
We note that, on one hand, si=0 if and only if node i has only one outgoing link, j*: in this case, =w 1*ij and

=w 0ij ,∀ ≠j j*, and the symbol j* occurring after symbol i is always the same. In this case, in the symbolic
sequence, the symbol that follows i is fully predictable. On the other hand, if all the outgoing links of node i have
the sameweight, then =w k1ij i and =s klogi i (here ki is the out-degree of node i, = ∑ =k Ai j

M
ij1 , whereAij are

Figure 1.Time series generated from the logisticmapwith (a) r=3.5 and (b) r=3.58. In panel (a) the triangles and the squares
indicate twoOPs formed by two sets ofD=3 consecutive and non-overlapping values, which give the transition →201 120.
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the components of the adjacencymatrix, =A 1ij if ≠w 0ij , otherwise =A 0ij ). Themaximum si value is Mlog
and corresponds to a node that is connected to all the other nodes –including itself–with links that have uniform
weights. In this case, in the symbolic sequence any symbol can follow iwith the same probability.

We propose the use of thefirstmoment of the distribution of si values, the network-averaged node entropy,

∑=
=

s
M

s
1

, (9)n

i

M

i

1

as a novelmeasure for the analysis of a time series.We note that ⩽ ⩽s M0 logn . If sn=0, then si=0∀i , and all
the nodes have only one outgoing link; therefore, the symbol j that occurs after symbol i is fully predictable,∀i .
On the contrary, the largest sn value, Mlog , occurs when =s Mlogi ∀i . In this case the symbolic sequence is
fully randomand after any symbol, i, any symbol in the sequence can followwith the same probability M1 .

We note that the range of variation of the node entropies, si, and of their average, sn, is the same as that of the
PE, sp.

2) From the probability distribution function (PDF) of theweights of all the links, p(w), we define the link’s
entropy as:

∫= −s p w p w w( ) log ( )d . (10)l
0

1

Wehave estimated p(w) from an histogramof theweights of the existing links ( ≠w 0ij ). Large values of sl
indicate a heterogeneous distribution of linkweights, while small values of sl indicate a narrowdistribution of
linkweights. The delta distribution, =w wij ,∀i j, that gives sl= 0 includes two limits, one inwhich the symbolic

sequence is fully predictable (each node has only one outgoing link:∀i , =w 1*iji
and =w 0ij if ≠j ji

*) and the

other inwhich the symbolic sequence is fully unpredictable (the nodes are all-to-all connectedwith uniform
weights: =w M1ij ,∀i j, ). Thus, sl quantifies the complexity of the symbolic sequence, as sl=0 corresponds to
both, perfectly regular and fully random sequences.

3) To quantify the asymmetry in the direction of the network links, we introduce the asymmetry coefficient,
which is defined as:

=
∑ ∑ −

∑ ∑ +
≠

≠ ( )
a

w w

w w
. (11)c

i j i ij ji

i j i ij ji

ac=0 in a fully symmetric network ( =w wij ji,∀i j, ) and ac=1 in a fully directed network (either =w 0ij or
=w 0ji ∀i j, ). This asymmetry coefficient is closely related to the concept of reciprocity in graphs [38].
We note that to compute thesemeasures, only the nodes and the links that are present in the network are

taken into account.While absent nodes and links, corresponding tomissing or forbidden symbols and
transitions, could have been taken into account with zeroweights, we preferred to use thismore generic
approach because, depending on the symbolic transformation used, the complete set of symbols can be
unknownor even infinite.

4. Results

4.1. Analysis of synthetic data
We start by presenting the results of the analysis of simulated time series for the logisticmap, the tentmap and
the stochastic circlemap. The equations and parameters are

• logisticmap: = −+x rx x(1 )i i i1 ;

• tentmap: =+x rxi i1 if <x 0.5i , = −+x r x(1 )i i1 if ⩾x 0.5i ;

• stochastic circlemap:ϕ ϕ ρ πϕ π βξ= + + ++ k (sin 2 ) (2 )i i i1 . Here ξ is aGaussianwhite noise with unit
standard deviation, k is themap parameter, β is the noise strength and ρ = −0.23 is keptfixed.We analyze a
time series of ϕ ϕ= − −xi i i 1.

The analysis is performedwith a time series of length L=6000 and patterns of lengthD= 4. The results are
robust as long as L ismuch larger than the number of possible links. The value ofD is chosen because it allows
constructing symbolic networkswith 24 possible nodes and 576 possible links; in contrast,D=5 gives networks
with 120 possible nodes and 14400 possible links, and therefore, computing the links’weights with robust
statistics requires long time series.We discuss below the influence ofD and L, whenwe analyze empirical data.

4
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Regarding the logistic and tentmaps, they have similar bifurcation sequences (except for the periodic
windows in the logisticmap) and thus, assuming similar bifurcation sequences gives rise to similar dynamical
behaviors, we expect to obtain similar symbolic networks, whichwill depend on the control parameter. Indeed,
this is observed infigure 2 that displays, for the logisticmap (left column) and for the tentmap (right column),
the bifurcation diagrams (top row), the PE, sp, and the average node entropy, sn, (middle row) and the links’
entropy, sl, and the asymmetry coefficient, ac (bottom row). For bothmaps sp and sn increase in a similar way
with themap parameter (except in periodic windows). One can note that sn varies over awider range of values in
comparison to sp.We note that this difference in the actual range of variation of sn and sp can not simply be
normalized over because, as discussed in section 3, both sn and sp varywithin the same range of values. Also, sn
displaysmore abrupt variations, which can be understood in the following terms: as themap parameter
increases, the dynamics become increasingly chaotic and newOPs appear in the symbolic sequence, which
results in newnodes and links in the symbolic network; however, the frequency of occurrence of the newOPs is
initially small, and their appearance does not produce abrupt variations in the PE. But the newnodeswill not
necessarily have small entropies; therefore, they can induce abrupt variations in the average node entropy.

Both sp and sn varywith themap parameter in a qualitatively similar way as the Lyapunov exponent (LE). For
the logisticmap it has previously been shown that for chaotic parameters and lowD values, sp behaves as the LE
[15]. In addition, for piecewisemonotone intervalmaps, in the limit of → ∞D , sp tends to the topological
entropy [16]. In the visibility graph, a direct relationship between the network entropy and the LE can be
established by using the Pesin identity [36]. Therefore, these results suggest that the network entropy can indeed
be expected to capture nontrivial properties of the dynamics; however, determining a direct correspondence
between different network properties and different kinds of dynamics is not straightforward and is left for
futurework.

Figure 3 displays the results of the analysis of simulations of the stochastic circlemap, when varying the
parameter that represents the forcing amplitude (left column) or the noise strength (right column). Varying k
allows us to study the transition to locking. For very small values of k the stochastic termdominates and the
network contains all possible nodes and links, thus, sp and sn aremaximum (≃ =log 4! 3.18). As k increases the
dynamics becomemore deterministic, the number of nodes and links gradually decrease (not shown), and sp
and sn also decrease. At ≃k 1.5 the transition to locking occurs (see the bifurcation diagram infigure 3(a)) and
the presence of noise results in a symbolic sequence that is again fully random, thus, sp and sn again reach the
maximumvalue. If k is further increased, again an increase in the ‘order’ occurs and sp and sn again decrease. The

Figure 2.Analysis of the logisticmap (left column) and tentmap (right column). (a), (b) PDF of the variable x (in color scale) versus
themap parameter. (c), (d) The average node entropy, sn (red line), and the PE, sp (black line). Note that the range of variation of sn is
more than twice that of sp. (e), (f) The links’ entropy, sn (black line), and the asymmetry coefficient, ac (red line). The analysis was
performedwithD=4 and L=6000.
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right column infigure 3 reveals that sp and sn capture themonotonic increase of ‘disorder’ in the symbolic
sequence as the noise strength, β, increases.

Other networkmeasures are consistent with these observations. As seen infigures 2(e) and (f), for the
logistic and for the tentmaps, when the dynamics areweakly chaotic ( ≈r 3.6 for the logisticmap; ≈r 1.2 for the
tentmap), the symbolic network has a low link entropy and is highly asymmetric (the asymmetry coefficient is
close to one); as the parameter increases the network grows and the link’s entropy increases, accompanied by
large variations of the asymmetry coefficient; for large parameter values (strong chaos) both the asymmetry
coefficient and the links’ entropy decrease, suggesting that the network becomesmore homogeneous. These
results are consistent with a previous analysis of the complexity of the logisticmap, where the peak values of the
various complexitymeasures analyzed occurred at intermediate values of themap parameter [39]. For the
stochastic circlemap, sl and ac [figures 3(e) and (f)] reveal that the network is homogeneous (large link entropy
accompanied by small asymmetry coefficient) for ≃k 0, at the locking transition, and for strong noise.

4.2. Analysis of empirical data
Let us next present the results of the analysis of two empirical data sets. Thefirst data set was recorded from the
output of a semiconductor laser at various values of the laser bias current ranging from5.5 to 6.2 mA. The type of
laser is a vertical-cavity surface-emitting laser (VCSEL) that can emit two orthogonal polarizations and, when
varying the bias current, there is an abrupt polarization switch (PS) at about 6 mA: the dominant polarization
turns off and the orthogonal one turns on, as shown infigure 4(a). The data consist of 71 time series of the
intensity of one polarizationmode recorded atfixed values of the bias current, below and above the polarization-
switching point. Each time series containsmore than 106 data points. In order to identify clear trends, each time
series was divided in several sections, each containing Ldata points (L varying in the range −10 103 5 as discussed
below), and the network indicators were computed by averaging the values in each section.

Since the empirical data is very noisy, see figures 4(b) and(c), all possible pairs of symbols (i j, ) occur in the
symbolic sequence and the network is a regular, all-to-all graph.Nevertheless, wewill show that the network
measures adequately capture dynamical changes in the time series.

Figure 5 presents a comparison of the the network-basedmeasures, with themean value,〈 〉I , and the
standard deviation, σ, of the intensityfluctuations:〈 〉I and σ vary linearly, and thus, they don’t provide an early
warning for the sudden PS. It can also be seen that both sp and sn change the slope of the initial linear trend before
the PS, but the sn trend decreases faster, providing a better indicator of the PS.

Figure 3. Same asfigure 2 but for the stochastic circlemapwhen themap parameter, k, is varied (left column) andwhen the noise
strength, β, is varied (right column).
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While the evidence of early warning in terms of a single networkmeasure is not strong, taken together these
results provide clear early warnings of abrupt switching. This suggests that the switching involves deterministic
light–matter interactions that, despite of the highly stochastic character of the signals analyzed, the network
measures are able to capture. InVCSELs the two linear polarizations are strongly anti-correlated and the

Figure 4. (a) PDF of the intensity of the linear polarizationmode that turns on versus the laser bias current. Intensity time-traces just
before (b) and after (c) the switch.

Figure 5.Early indicators of abrupt polarization switching (PS). The data analyzed is as in figure 4. (a) Themean value and (b) the
standard deviation of the intensity fluctuations; (c) the PE, (d) the average node entropy, (e) the links entropy and (f) the asymmetry
coefficient. sp and sn are normalized to themaximumvalue, Dlog !. The analysis was performedwithD=3. The error bars indicate the
standard deviation of the distribution of values computed over 100 sectionswith L=1000 data points each (see text for details). It can
be seen that sp, sn, and ac are good indicators of the abrupt switching, as they change the linear slope before the PS; in contrast〈 〉I ,σI ,
and sl are not good indicators as they either vary linearly or fluctuate with constant amplitude. sp varies nonlinearly before the PS but in
a smaller range of values as comparedwith sn.

7
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polarization switching can be in part due to thermal effects (Joule heating) through a shift of the gainmaximum
[40]. Also, small cavity anisotropies can play a role, as theVCSEL circular transverse geometry provides no
polarization selectionmechanism. In addition,material birefringence, saturable dispersion, and amicroscopic
spin-flip relaxationmechanism can explain the PS [41]. Because various sources of noise are ubiquitous in laser
systems (spontaneous emission noise, thermal and electrical noise), it is not possible to investigate
experimentally the relative impact of stochastic and deterministicmechanisms that trigger polarization
switchings. Variousmodels suggest that several laser parameters canmodify the linear stability of the two
polarizationmodes, while small variations (deterministic or stochastic) are responsible for triggering the switch.

Figures 6 and 7 analyze the influence of the length of theOP,D, and the number of data points, L. Infigure 6
we note that the above observations are robust with respect toD, while infigure 7, we note that if L is too short,
the networkmeasures fail to provide an early warning.

To confirm these observationswe now consider a second empirical data set, inwhich the intensity of one
polarizationmodewas recordedwhile the control parameter, the laser pump current, was linearly scanned
across the switching point. The datawas recorded from the output of a different VCSEL, whichwas subject to
polarized optical feedback. In this VCSEL the polarization switching (shown infigure 8) occurred only if the
feedbackwas strong enough; without feedback no polarization switchingwas observed in this device. This setup
has therefore the advantage that, by finely tuning the feedback strength, we could record two sets of time series:
one set inwhich a PS occurs, and, by decreasing slightly the feedback strength, another set inwhich no PS occurs.

We recorded 1000 independent realizations (each time series has 20000 data points), and in each time series
the control parameter, the laser current, varied from a value below the PS to a value above the PS (see figure 8).
For comparison, a second data set (also of 1000 time series with 20000 data points) was recordedwith slightly
weaker feedback, such that no switchingswere observed.

Figure 6. Influence of the lengthD of theOP. The data analyzed is as in figure 4. The left columnpresents results forD=2, the central
column, forD=3 and the right column, forD=4. The top rowdisplays the PE, the central row displays the average node entropy, and
the bottom rowdisplays the asymmetry coefficient. For easy comparison sp and sn are normalized to themaximumvalue, Dlog !. The
error bars indicate the standard deviation of the distribution of values computed over 100 sections with L=1000 data points each (see
text for details). The behavior of the networkmeasures is robust forD=3 andD=4 and even forD=2, sn anticipates the polarization
switching.
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Wedivided each time series in non-overlapping sections and computed the networkmeasures in each
section. Aswe are interested in anticipating the switching in real time, wewant to consider sections as short as
possible, but on the other hand, they can not be too short as we need to compute theweights of the links with
good statistics.We found that using sections of L=500 data points each, andOPs ofD=3, provided a good
compromise, becausewe have 6 nodes, 36 links and their probabilities can be computed, in each section, with
sufficient statistics.

The results are presented infigure 9, which displays the distribution of sp, sn, and ac values computed over the
1000 independent realizations: the left column corresponds to the data set inwhich PS occurs, while in the right
column, no PS occurs.We observe that sn varies over awider range of values with respect to sp and, when
approaching the switching, both sn and sp increase reaching similar values. The asymmetry coefficient decreases

Figure 7.As infigure 6 but nowwe analyze the effect of the length of the time series: in the left column, L=500; in the central column,
L=1000 and in the right column, L=5000. In each panelD=3.Wenote that, as the length of the data set increases, the size of the error
bars diminishes.
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Figure 8. Second empirical data set recorded from a semiconductor laser with orthogonal optical feedback: PDF of the intensity (in
color code) of the linear polarizationmode that turns off versus time. The PDF is computed by averaging over 1000 time series.
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only slightly when approaching the PS and thus is not a good indicator of the switching ahead (this is probably
because of the short section length, see the influence of L in the analysis of the first empirical data set, figure 7).

5. Conclusions and discussion

Wehave used a hybridmethodology to characterize the evolution of a dynamical system that combines two
mathematically grounded tools for time series analysis: symbolic ordinal analysis and network representation.
Specifically, time series were transformed in sequences ofOPs that were used to construct directed andweighted
graphs. Exploiting this graph representationwe propose several novel diagnostics to characterize time series: the
averaged node entropy, the entropy of the distribution of links’weights, and the asymmetry coefficient. The
analysis of numerical data (generated from the logistic, tent, and circlemaps) and experimental data (recorded
from the output of semiconductor lasers under different external perturbations) demonstrated that these
network-basedmeasures are suitable for characterizing time series, adequately capturing the effects of
parameter changes that result in subtle or sudden transitions.

The links entropy is an interesting quantity formeasuring the complexity of the symbolic sequence
associated to a time series, because it is equal to 0when theweights of the links are delta-distributed, which
occurs when the symbolic sequence is either perfectly regular or fully stochastic. In agreement with a previous
study that foundmaximumcomplexity of the logisticmap at intermediate values of themap parameter [39],
herewe found that the links’ entropy ismaximumat intermediate values of r.

The analysis of the empirical data confirmed that network-basedmeasures provide early warning signals of
abrupt transitions, despite the highly stochastic character of the signals analyzed. These network-based networks
can thus complement other indicators, such as the standard deviation or the PE. Themethodology proposed

Figure 9.Comparison between 1000 independent realizations inwhich polarization switchings occur (left column) and 1000
independent realizations inwhich no switching occurs (right column, see text for details). Top row: the PE;middle row: the average
node entropy; bottom row: the asymmetry coefficient, ac. The analysis is performedwithD=3, and each time series is divided in 40
non-overlapping sections of L=500 data points each. sp and sn are normalized to themaximumvalue, Dlog !.While the dispersion of
values is quite large (due to the short length of each section), in the left column there is a clear trend in the distributions of sp and sn
values when approaching the switching point. In comparison the variation of ac is small and thus, acdoes not constitute a good
indicator of the PS.We observe that sn varies over a wider range of valueswith respect to sp and, when approaching the switching, both
sn and sp increase reaching similar values.
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here can be a valuable tool for the analysis of awide range of systemswhere critical transitionsmight occur,
including population extinctions, desertification, wetland degradation, and epileptic seizures, to name a few.

Our approach could allow identifying changes in the symbolic dynamics of these systems, for example, the
appearance of new symbols or the appearance of new transitions, which result in variations of the network
measures. Bifurcations from a chaotic attractor to another chaotic attractor could be identified if the two
attractors have associated symbolic dynamics that have different statistical distribution of symbols andTPs. On
the contrary, if a bifurcation does not result in changes in the symbolic dynamics of the system, the network
measures proposed herewon’t be able to capture the bifurcation (see, e.g., the two time series displayed in
figure 1, which, withD being 2, 3, or 4,OPs are encoded in the same symbolic sequence).

Another important drawback is that both, periodic and irregular time series could eventually bemapped to
the same class of regular networks. Note that thismethodology is not intended to classify between different time
series, but to detect changes in the time series as a function of the tuning parameter. Thus, thismethodology
should be only used to complement other conventional tools of time series analysis if the goal is a classification.
In spite of these drawbacks, our approach provides additional predictive power for time series analysis, as
identifying the nodes that have one (or a reduced number) outgoing linkwill allow identifying ‘predictable
symbols’ in the symbolic sequence, those forwhichwe knowwhich is the nextmost probable symbol in the
symbolic sequence. If ordinal analysis is used to construct the symbolic network, then the information gained
about the nextmost probable symbol will not allow inferring the variations of values in the time series, but it will
allow inferring the shape of the future oscillation in the time series. In this sense, the symbolic network-based
analysis proposed herewill provide complementary information to that gained by using other well-established
tools for time series analysis.
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