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We present an analytical approach for bond percolation on multiplex networks and use it to
determine the expected size of the giant connected component and the value of the critical bond
occupation probability in these networks. We advocate the relevance of these tools to the modeling of
multilayer robustness and contribute to the debate on whether any benefit is to be yielded from studying
a full multiplex structure as opposed to its monoplex projection, especially in the seemingly irrelevant
case of a bond occupation probability that does not depend on the layer. Although we find that in many
cases the predictions of our theory for multiplex networks coincide with previously derived results for
monoplex networks, we also uncover the remarkable result that for a certain class of multiplex
networks, well described by our theory, new critical phenomena occur as multiple percolation phase
transitions are present. We provide an instance of this phenomenon in a multiplex network constructed
from London rail and European air transportation data sets.
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I. INTRODUCTION

In recent years, there has been a heightened interest
within the network science community in the properties of
multilayer networks [1,2]. In this regard, after the seminal
work of Leicht and D’Souza [3], an extensive body of
literature has emerged concerning the robustness of various
subclasses of multilayer networks, most prominently inter-
dependent networks [4–14], as well as interconnected
networks [3,15–18], networks of networks [19,20], and
multiplex networks [21–30].
Significant progress has been made in understanding the

percolation properties of multilayer networks, and some
surprising features have been uncovered [4,5,8,19]. For
example, dependency links can have a dramatic impact on
cascading failure events, and as a consequence, critical
phenomena in a network formed of interdependent net-
works can be very different from those observed in
monoplex networks. In some instances, this can mean that
a network of networks as a whole will be more fragile than
its constituent parts taken in isolation [8,10,31].
Ostensibly, the questions that are of most interest

with regard to multilayer network robustness are well
established. Except for Refs. [22,26], the aforementioned

literature deals almost exclusively with site percolation and
variants thereof. Moreover, by far the most common
measure of robustness used is the expected size of the
mutually connected giant component (MCGC). However,
other existing ways of tackling the question of robustness
should not be neglected. In particular, bond percolation and
the expected size of the giant connected component (GCC)
may be especially relevant to the study of the robustness of
multiplex networks [32].
A multiplex network is a type of multilayer structure in

which a set of N nodes are interconnected by M different
sets of edges, where each set of edges exists in a unique
layer and the same set of nodes is replicated across all
layers. In the particular case in which there are no interlayer
links (or when they can be discarded), a multiplex network
reduces to an edge-colored graph in which the color of an
edge corresponds to the set to which it belongs. Thus,
layers (colors) can be used to represent distinct kinds of
interactions. For example, the network of passenger airline
routes within Europe can be represented as a multiplex
network with nodes corresponding to airports, edges to
routes, and each layer to the airline operating on a unique
subset of these routes.
From a modeling perspective, site percolation on such

a network, which begins with the removal of a fraction
1 − p of its nodes and all adjoining edges (where p is
termed the site occupation probability), corresponds to
the removal of the same fraction of airports and all
adjoining routes. This in turn can lead to the shutdown
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of airports that were once connected to those removed,
and so on from airport to airport. When this propagation
of failures ceases, the MCGC, if it exists, corresponds to
the remaining component of the network that contains
pairs of airports that are connected by all airlines, i.e., by
routes of every color. By contrast, in bond percolation, a
fraction 1 − p of edges are removed (where p is now
termed the bond occupation probability) corresponding
to the removal by a set of airlines of their services to a
set of airports. At the end of the propagation of failures
instigated by this initial removal, the GCC, if it exists,
corresponds to the remaining component of the network
that contains pairs of airports that are connected by one
or more airlines, i.e., by a route of any color. We
contend that from the point of view of passengers
navigating their way through the network, the GCC
may be a more pertinent measure of robustness as their
primary concern will generally be to get to their
destination irrespective of the airline that gets them
there. It also appears that a more likely cause of
disruption might be the closure of routes not airports.
Similar arguments can be given for studying bond
percolation and the GCC on other varieties of multiplex
transportation or communication networks.
However, a valid question may be raised as to whether it

is necessary to consider the full multiplex structure in order
to tackle such a problem [33]. After all, one could simply
project a multiplex network to a monoplex network by
ignoring the colors of edges and aggregating the layers.
One would then calculate the expected GCC size in the type
of network for which it was originally defined. In this
paper, we address this question by revealing the structural
constraints under which a multiplex network and its
projection give the same results for the expected size of
the GCC and the value of the critical bond occupation
probability pc. We find that a particular class of multiplex
networks for which the results differ also manifests
multiple percolation phase transitions reminiscent of those
observed in Refs. [34] and [35] for clustered and modular
networks, respectively.
The remainder of this paper is structured as follows.

In Sec. II, we present our analytical approach for
bond percolation on multiplex networks and show how
to calculate the expected GCC size and pc in the edge-
colored and projected versions of said networks, respec-
tively. The results for each version together constitute two
separate but overlapping theories. In Sec. III, we outline
several cases in which these two theories coincide.
Section IV describes the construction of a particular class
of multiplex networks for which the theories differ dra-
matically in their predictions as outlined above. In Sec. V,
we show that a multiplex network constructed from London
rail [25] and European air [36] transportation data sets
exhibits percolation behavior similar to that of the multi-
plex networks of Sec. IV. We conclude in Sec. VI.

II. BOND PERCOLATION ANALYSIS

The fundamental property that we use to describe a
multiplex network is its multidegree distribution P~k, which
gives the probability that a randomly chosen node in the

network has multidegree vector ~k ¼ ðk1;…; kα;…; kMÞ,
where kα is the degree of the node in layer α, i.e., the
number of edges of type α incident on the node. Let K be
the aggregated degree of the node over all layers. Then, the
degree distribution of the projected network P̄K is given by
summing P~k over all multidegrees that sum to K:

P̄K ¼
X

~kP
α
kα¼K

P~k: ð1Þ

Wewant to calculate the expected size of the GCC after a
process in which each edge of the network is occupied with
probability p irrespective of its color. This is equivalent to
calculating the probability S that a randomly chosen node is
in the GCC. As each layer of our multiplex is created by the
configuration model and is of order N → ∞, clustering is
negligible [37], and we can approximate the network as a
tree with a randomly chosen node A as its root. Let the word
active signify that a node is part of the GCC and inactive
that it is not. Then, the value of S is given by calculating the
probability of activation of A after a process of level-by-
level activations from child nodes on one level to their
parents on the next level closest to A.
Let qα be the probability that a randomly selected node

connected to its parent by an edge of type α is active given
that its parent is not; then, for all α ¼ 1;…;M, the
following equation holds:

qα ¼ 1 −X
~k

kα
hkαi

P~kð1 − pqαÞkα−1
Y
β≠α

ð1 − pqβÞkβ : ð2Þ

The term ðkα=hkαiÞP~k (where h·i denotes the mean) is the
probability that the node at the end of an edge of type α has
multidegree P~k and the remaining terms in the summation
express the probability that the children of this node are all
inactive. Solving Eq. (2) for qα, we find q�α, the probability
that a child of A connected to it by an edge of type α is
active. We then have the following equation:

S ¼ 1 −X
~k

P~k

YM
α¼1

ð1 − pq�αÞkα : ð3Þ

The differences between Eqs. (3) and (2) follow from the
fact that the root has no parent.
Let us label the right-hand side of Eq. (2) as

Qα ≡Qαð~qÞ. To find an expression for pc, we must
linearize Qα and examine the eigenvalues of the matrix
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����
�∂Qα

∂qβ
�
− ð1þ λÞI

���� ¼ 0; ð4Þ

where

∂Qα

∂qβ
����
~q¼0

¼ p

�hkαkβi
hkαi

− δαβ

�
: ð5Þ

The expected size of the GCC is nonzero when the largest
eigenvalue of this matrix is positive, λmax > 0. One can
define the matrix

Bαβ ¼
hkαkβi
hkαi

; ð6Þ

and it is easy to see that the largest eigenvalue μmax of B is
related to λmax as λmax ¼ pμmax − p − 1. Therefore, the
critical bond occupation probability in the edge-colored
network can be expressed as

pc ¼
1

μmax − 1
: ð7Þ

The authors of Refs. [38,39] have applied a similar
approach to find the critical bond occupation probability
in a class of coupled networks, different from the multiplex
networks of this paper, which they used to study overlaying
social-physical networks.
Next, suppose that we ignore the colors of edges and

aggregate the layers of the multiplex network, thereby
obtaining its monoplex projection. By similar arguments as
before, the probability that a randomly selected node in the
projected network is active given that its parent is inactive is
given by

q̄ ¼ 1 −X
K

K
hKi P̄Kð1 − pq̄ÞK−1; ð8Þ

and the expected size of the GCC is

S̄ ¼ 1 −X
K

P̄Kð1 − pq̄�ÞK; ð9Þ

where q̄� is found by solving Eq. (8) for q̄. This result was
previously derived in Ref. [40].
The critical bond occupation probability in the projected

network may be obtained by labeling the right-hand side of
Eq. (9) as Q̄≡ Q̄ðq̄Þ and solving the condition Q̄ð0Þ ¼ 1
for p [40]. By doing this, we obtain

p̄c ¼
hKi

hK2i − hKi : ð10Þ

This is a well-known result for percolation on monoplex
networks [41].

III. COMPARISON OF THEORIES

We now examine several cases where the results we have
derived for bond percolation on the edge-colored and
projected versions of a multiplex network coincide.

A. Uncorrelated layers

To begin with, let us consider some particular cases
where the layers of the multiplex network are uncorrelated,
i.e., where there is no correlation between the degrees of the
different types of edges incident on each node.
Case 1.—For a two-layer multiplex network in which

hk1k2i ¼ hk1ihk2i, hk21i < ∞, and hk22i < ∞, the critical
bond occupation probabilities of the edge-colored and
projected networks are equal, pc ¼ p̄c, provided

hk21i − hk1i2
hk1i

¼ hk22i − hk2i2
hk2i

: ð11Þ

Note that we are not imposing equal mean degrees in each
layer. In the particular case where the multiplex consists of
two Poisson random networks, Eq. (11) is trivially satisfied
as both sides equal 1.
The derivation of Eq. (11) is as follows. The critical bond

occupation probability pc in the edge-colored version of
the multiplex is given by Eq. (7), where μmax is the positive
root of aμ2 þ bμþ c ¼ 0 with a ¼ −1,

b ¼ hk21i
hk1i

þ hk22i
hk2i

; ð12Þ

and

c ¼ hk1k2i2 − hk21ihk22i
hk1ihk2i

: ð13Þ

According to Eq. (10), the critical bond occupation
probability in the monoplex projection of the multiplex is

p̄c ¼
hk1i þ hk2i

hðk1 þ k2Þ2i − hk1i − hk2i
: ð14Þ

By setting pc ¼ p̄c and then applying hk1k2i ¼ hk1ihk2i,
we recover Eq. (11).
Case 2.—For an M-layer multiplex network in which

hkαkβi ¼ hkαihkβi, hkαi ¼ hkβi, hk2αi ¼ hk2βi, and hk2αi <
∞ for all α; β ¼ 1;…;M, we also have that the critical
bond occupation probabilities of the edge-colored and
projected networks are equal.
For the derivation of this property, we first define z ¼

hkαi and σ ¼ hk2αi for all α ¼ 1;…;M. Then, from Eq. (6),
we obtain

det ðB − μIÞ ¼ ½f þMz − μ�ðf − μÞM−1; ð15Þ

where f ≡ fðσ; zÞ ¼ ðσ=zÞ − z. This gives us μmax ¼
f þMz, and therefore, from Eq. (7), we have
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pc ¼
1

f þMz − 1
: ð16Þ

For the monoplex projection, we have p̄c ¼
1=ðf þMz − 1Þ directly from Eq. (10); thus, pc ¼ p̄c.

B. Correlated layers

Next, let us consider multiplex networks with positively
correlated layers. There is a straightforward way to define a
two-layer multiplex network with this attribute. Let ρk1 and
ρk2 be the degree distributions of each layer, respectively.
Then, the multidegree distribution Pk1;k2 of the multiplex
network can be defined as

Pk1;k2 ¼ νρk1δk1;k2 þ ð1 − νÞρk1ρk2 ; ð17Þ

where ν ∈ ½0; 1� is a parameter governing the correlation
between the two layers. We can measure this correlation
with the Pearson correlation coefficient r, which is related
to ν by the following formula:

r ¼ ν
hk21i − hk1ihk2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hk21i − hk1i2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hk22i − hk2i2
p : ð18Þ

Note that each average in this formula is calculated on a
single layer. Therefore, this expression can be used to create
a multiplex network with a desired correlation between k1
and k2.
From the linearity of the multidegree distribution in

Eq. (17), it is easy to see that if pc ¼ p̄c in the uncorrelated
case (ν ¼ 0), then the only possibility for pc and p̄c to be
different is the maximally correlated case (ν ¼ 1).
Case 3.—If we have an M-layer multiplex network,

where (i) the layers of the multiplex are maximally
correlated, P~k ¼ ρk1δk1¼k2¼…¼kM , and (ii) hk2αi < ∞ for all
α ¼ 1;…;M, then pc ¼ p̄c.
From condition (i), we have hkαi ¼ hk1i for all

α ¼ 1;…;M, so the elements of matrix B in Eq. (6) are
all Bαβ ¼ hk21i=hk1i. Therefore, μmax ¼ Mhk21i=hk1i, and
from Eq. (7), we obtain

pc ¼
1

M hk2
1
i

hk1i − 1
: ð19Þ

From Eq. (10), we directly have p̄c ¼ 1=ðMhk21i=
hk1i − 1Þ; thus, pc ¼ p̄c.
So far, we have only looked at the value of the critical

bond occupation probability in the edge-colored and
projected networks. However, there is a remarkable result
for multiplex networks made of layers that are Poisson
random networks. To wit, it cannot only be proved that
pc ¼ p̄c but also that S ¼ S̄ for all values of p ∈ ½0; 1�.
Case 4.—Suppose we have a two-layer multiplex net-

work, where each layer α ∈ f1; 2g is defined by a Poisson

degree distribution ρkα ¼ e−zαzkαα =kα, with zα ¼ hkαi. Then,
S ¼ S̄ for all p ∈ ½0; 1� if (i) the layers of the network are
uncorrelated, with Pk1;k2 ¼ ρk1ρk2 , or (ii) the layers are
maximally correlated, with Pk1;k2 ¼ ρk1δk1;k2 .
We first consider the networks defined by condition (i).

From Eq. (2), we have

qα ¼ 1 − e−ðz1þz2Þpqα ; ð20Þ
for α ∈ f1; 2g. Similarly, from Eq. (8), we have

q̄ ¼ 1 − e−ðz1þz2Þpq̄: ð21Þ

Thus, q1 ¼ q2 ¼ q̄ ¼ q, and so solving either Eq. (20) or
(21) for q and substituting this solution into Eqs. (3) and
(9), respectively, we obtain S ¼ S̄ for any p.
Next, applying condition (ii), Eq. (2) gives us

qα ¼ 1 − ð1 − pqαÞezpqαðpqα−2Þ; ð22Þ

for α ∈ f1; 2g, and Eq. (8) gives us

q̄ ¼ 1 − ð1 − pq̄Þezpq̄ðpq̄−2Þ: ð23Þ

Thus, as for condition (i), we have q1 ¼ q2 ¼ q̄ ¼ q, and in
the same manner as before, we obtain S ¼ S̄ for any p.
From Case 4, we can also deduce that any linear

combination of two Poisson layers with positive correla-
tions yields S ¼ S̄ for all p ∈ ½0; 1�.
The results of this section have shown that, in many

cases of interest, the predictions of the edge-colored and
projected theories will coincide. We illustrate this fact in
Fig. 1, where we compare the predictions of both theories
for the value of S against the results of numerical
simulations of bond percolation on synthetic multiplex
networks with two layers [Fig. 1(a)] and three layers
[Fig. 1(b)]. In both figures, we include plots of the expected
size of the second largest connected component (SLCC) to
indicate the location of the percolation transitions [42]. In
Fig. 1(a), the multiplex network consists of two Poisson
random networks, one with mean degree z ¼ 3 and the
other with z ¼ 8. The layers are maximally correlated
(ν ¼ 1). In Fig. 1(b), the multiplex network consists of one
Poisson random network with z ¼ 3 and two scale-free
networks, one with exponent γ ¼ 2.7 and the other with
γ ¼ 3. The degree distribution for each of these layers is
given by the following power law:

ρkα ¼
kα−γ

ζðγ; kmin
α Þ ; ð24Þ

where ζðγ; kmin
α Þ ¼ P∞

i¼0ðiþ kmin
α Þ−γ is the Hurwitz zeta

function and kmin
α is the minimum degree in the layer [43].

We set kmin
α ¼ 1 for both scale-free layers (α ∈ f2; 3g). All

layers are uncorrelated (ν ¼ 0).
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IV. MULTIPLE PERCOLATION PHASE
TRANSITIONS

The results of Sec. III are for multiplex networks with
layers that are either uncorrelated or correlated with each
other. In this section, we consider a class of multiplex
networks with layers that are highly anticorrelated. In these
networks, if a randomly chosen node is incident on an edge
of a particular color, then it is highly unlikely that it is also
incident on edges of any other color. We can construct such
multiplex networks as follows. For simplicity, we describe
only the two-layer case.
We begin with a maximally anticorrelated multiplex

network with multidegree distribution

Pk1;k2 ¼
1

2
ρk1δk2;0 þ

1

2
ρk2δk1;0: ð25Þ

This network consists of two completely separate layers,
with half of the edges of type 1 and the other half of type 2.
To allow the GCC to span both layers, we then connect
them by allowing several nodes to be incident on edges of
both types. We ensure that the relative number of these
nodes is small in order to maintain high anticorrelation.
The results of bond percolation on this type of multiplex

network are illustrated in Fig. 2. The multiplex network in
Fig. 2(a) consists of two Poisson random networks, one
with mean degree z ¼ 3 and the other with z ¼ 9. In
Fig. 2(b), the multiplex network consists of three Poisson
random networks with z ¼ 3, z ¼ 6, and z ¼ 18, respec-
tively. In both multiplex networks, only 100 nodes out of a

total of N ¼ 105 are incident on edges of every color. We
refer to this subset of nodes as the overlap between layers
[44]. Each of the remaining nodes is incident on edges of
one color only. Therefore, both networks have highly
anticorrelated layers. We see from Fig. 2 that these
anticorrelated multiplex networks exhibit multiple perco-
lation phase transitions and that the number of these
transitions corresponds to the number of layers. The theory
for bond percolation based on the monoplex projection of
the multiplex network is no longer accurate, but our edge-
colored theory of Sec. II accurately matches the numerical
simulation results. The mechanism behind this phenome-
non is that the most fragile (in terms of bond percolation)
layer induces the degradation of the multiplex even though
the other layer can still be perfectly operative, and because
the way in which this happens is nonlinear, it cannot be
described simply by the superposition of layers.
Note that if we relax the anticorrelation constraint, the

above phenomenon can still be observed (see Fig. 3). In this
example, the multiplex network consists of three Poisson
random networks, each with N ¼ 104 and z ¼ 50, z ¼ 8,
and z ¼ 6, respectively. The overlap between the first and
second layers is 103 nodes, and the overlap between the
second and third layers is also 103 nodes; however, these
two overlapping sets are distinct. Although this multiplex
can be viewed as being formed of five clearly differentiated
subsets of nodes, Fig. 3 displays only a double percolation
transition, which is perfectly captured by the edge-colored
theory but not by the theory based on the monoplex
projection of the multiplex.
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FIG. 2. Expected size of the GCC as a function of p for (a) a
two-layer multiplex network made of two Poisson random
networks and (b) a three-layer multiplex network made of three
Poisson random networks. Both networks are highly anticorre-
lated. Numerical simulations are averaged over 100 realizations,
N ¼ 105, and the overlap has 100 nodes. Peaks in the expected
size of the SLCC indicate percolation transitions.
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FIG. 1. Expected size of the GCC as a function of p for (a) a
maximally correlated two-layer multiplex network made of two
Poisson random networks and (b) an uncorrelated three-layer
multiplex network made of one Poisson random network and two
scale-free networks. Numerical simulations are averaged over
100 realizations, and N ¼ 105. Peaks in the expected size of the
SLCC indicate percolation transitions.
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We posit that the reason we observe these multiple
percolation transitions is as follows. When each layer of the
multiplex network is designed to support a different
dynamical process from those occurring on the other layers,
as happens in multiplex transportation networks where
layers can correspond, for example, to subway, road, train,
etc., different connectivity patterns can be expected to
emerge (e.g., different degree distributions, or the same
degree distribution with different average degrees, etc.),
and often these connectivity patterns will be anticorrelated
(e.g., in geographic space, covering different areas). The
emergence of multiple transitions is a consequence of these
different connectivity patterns. This effect is similar to that
observed in modular networks, where in essence, each
module is separable from the other by deleting a few links,
but not equivalent. The differences are subtle but important.
In the case of multiplex networks, the construction of
anticorrelated layers is responsible for the emergence of
distinct structural patterns, not necessarily modules but
with similar properties. In the multiplex case, there is a set
of nodes that are common to both layers; this intersection
forms a new structural pattern that can differ from the
original distributions of each layer, and indeed it usually
does.

V. REAL-WORLD ANTICORRELATED
MULTIPLEX NETWORKS

In this section, we provide an example of the phenome-
non of multiple percolation phase transitions in a real-
world anticorrelated multiplex network. The network in
question is a two-layer multiplex constructed from the
London rail transportation network [25] and the European
air transportation network [36].
The data set used to construct the London rail trans-

portation layer is itself a three-layer multiplex network of
order 369, where nodes are train stations and edges are
undirected routes between them. The three types of routes
in this network are underground, overground, and DLR. To
construct the first layer of our multiplex network, we
aggregate the layers of this rail transportation network

and make the resulting monoplex network unweighted. The
data set used to construct the EU air transportation layer is a
37-layer multiplex network of order 450, where nodes are
airports and edges are undirected routes between them.
Each of the 37 different types of routes corresponds to a
nonoverlapping subset of routes operated by a unique
airline. Once again, to construct the second layer of our
multiplex network, we aggregate the layers of this air
transportation network and make the resulting monoplex
network unweighted.
At this point in the construction of our multiplex net-

work, the layers are completely separate. We connect the
layers by observing that several of the stations in the
London rail network are located at or within walking
distance of the airports in the EU air transportation net-
work. For example, there are five stops in the underground
network at various terminals within Heathrow airport. If we
define the walking distance as no more than 30 minutes,
then there are 10 nodes that are incident on both rail routes
and air routes. Taking account of this fact gives us a
connected but still highly anticorrelated multiplex network.
In Fig. 4, we show the results of bond percolation on this

network. It is clear from this figure that multiple percolation
phase transitions are present. Note that as our approach is
derived for multiplex networks with layers that are each
internally unclustered, uncorrelated by degree, and of order
N → ∞, its accuracy in this case is affected by the
network’s complexity and finite size.
The significance of the network construction we have

described is that it informs us of the ability of a traveler to
traverse the London rail transportation system, reach a
London airport, and connect to various destinations in
Europe in the event of random failures within either layer.
Reading Fig. 4 from right to left, we see that, as p
decreases, the depletion of the multiplex network is
induced by the depletion of the rail transportation layer
(which is the last layer to be incorporated into the GCC as
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FIG. 3. Expected size of the GCC as a function of p for a three-
layer multiplex network made of three Poisson random networks.
Each layer contains N ¼ 104 nodes. Layers 1 and 2 have an
overlap of 103 nodes, as do layers 2 and 3. Peaks in the expected
size of the SLCC indicate percolation transitions.
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the occupation probability p increases). Findings like this
could have novel implications for the European air trans-
portation system, as it highlights the fact that the robustness
of this system, at least with respect to connections between
London and the rest of Europe, is influenced by the fragility
of the rail network, which is localized entirely within
London. Obviously, this result does not take into account
other redundant connections like the bus transportation
system or the road network; however, it is an illustration of
how the interconnectivity of networked structures may
suffer from fragilities induced by the most vulnerable layer.
From the evidencewe have provided in this section and the

previous one, we can expect that other anticorrelated
multiplex networks, which may exist within real-world
complex systems,may exhibit similar percolation properties.

VI. CONCLUSION

In this paper, we have examined the process of bond
percolation on multiplex networks. We have described an
analytical approach to determine the expected size of the
GCC and the value of the critical bond occupation
probability. We have discussed why it is interesting to
study these properties and addressed questions concerning
the differences between bond percolation on a multiplex
network and its monoplex projection. We have found that if
the layers of the multiplex are uncorrelated or correlated
with each other, then the bond percolation threshold can be
the same in the monoplex projection as in the fully edge-
colored multiplex. In fact, for multiplex networks com-
posed of two layers that are uncorrelated or maximally
correlated with each other and that both have Poisson
degree distributions, the expected GCC size is the same in
the edge-colored multiplex and its monoplex projection for
all values of the bond occupation probability.
These results would seem to suggest that, for the process

of bond percolation at least, the monoplex projection of a
multiplex network tells us all we need to know about its
phase-transition picture. However, when we considered
multiplex networks with highly anticorrelated layers, we
observed multiple percolation phase transitions. Our theory
for edge-colored networks was able to capture this phe-
nomenon, but the theory for the monoplex projection was
no longer accurate. We have shown how multiple perco-
lation transitions can occur in a real-world complex system,
namely, a transportation system composed of the rail
transportation network of London and the EU air trans-
portation network. We anticipate that this phenomenon can
be observed in other multiplex networks with anticorrelated
layers across a diverse range of complex systems and
scientific domains.
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