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Unsupervised clustering, also known as natural clustering, stands for the classification of data
according to their similarities. Here we study this problem from the perspective of complex
networks. Mapping the description of data similarities to graphs, we propose to extend two
multiresolution modularity based algorithms to the finding of modules (clusters) in general data
sets producing a multiscales’ solution. We show the performance of these reported algorithms
to the classification of a standard benchmark of data clustering and compare their performance.
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1. Introduction

The problem of unsupervised data clustering
consists in classifying elements so that two data
points belonging to the same cluster are more sim-
ilar between them than with elements in a differ-
ent cluster. An element, or pattern, is a vector of
features (usually understood as a point in a mul-
tidimensional space) that describes the item we
wish to classify. The goal of the process of data
clustering is to organize these patterns, finding a
partition of the sample according to the natural
classes that are present in it. Data clustering has
been the subject of interest in many disciplines
where the mining of raw information is crucial to
understand some phenomenon or gain insight into
a system. It has applications in several fields such
as pattern recognition, astronomic classification,
biological taxonomy, marketing, and more [Gan
et al., 2008].

The methodology used to obtain the clusters
from the raw data is as follows: First of all, a

representation of the patterns has to be chosen, and
also a feature selection or extraction is performed.
Feature selection means choosing, from all the avail-
able features, those that will make easier the pro-
cess of clustering, leaving the redundant, correlated
and less informative features out of the analysis.
On the other hand, feature extraction consists in
transforming the original data set to a new one
containing only the most relevant information. This
preprocessing of the data is very important, as the
result of the clustering often depends directly on
the quality of this first step. Secondly, the similar-
ity or dissimilarity between each pair of patterns
has to be computed, which is often done by defin-
ing a measure of distance. The result of this step
is the similarity matrix which, using the mapping
to complex networks, can be understood as a graph
where each node is a pattern and the links are the
similarities between them. Finally, the main step
of the process, the grouping (or clustering) algo-
rithm, which will decompose the similarity matrix
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and return the groups of data [Jain et al., 1999;
Xu & Wunsch, 2005].

The problem of clustering is inherently ill-
posed, i.e. any data set can be clustered in dras-
tically different ways, with no clear criterion for
preferring one clustering over another. In particu-
lar, in the case of unsupervised approaches, a satis-
factory clustering of data depends on the desired
resolution which determines the number of clus-
ters and their size. For example, k-means cluster-
ing fixes a priori the number of groups (k), which
implies indeed a certain resolution of the cluster-
ing. Other algorithms such as hierarchical clustering
[Kaufman & Rousseeuw, 2005] group the patterns
extending the measure of distance between them to
distances between clusters of patterns. This process
generates a complete dendrogram. Cutting the den-
drogram at different heights we obtain different par-
titions of the data, all of them hierarchically nested.
In this situation, the following question arises: To
what resolution should one look at the data to find
a scientific meaning in the classification? We claim
that the answer to this question is totally depen-
dent on the final purpose of the classification pro-
cess, and that the concept of best solution should
be reconsidered. Different partitions will be repre-
sentative of properties of the data at different scales
and then all of them are worth to be studied.

In this work, we perform a comparison between
two different multiresolution algorithms, used in
the field of complex networks to detect community
structure, applied to the problem of data cluster-
ing. We also compare our results with a hierarchical
clustering (HC) algorithm. In contrast with hierar-
chical clustering, the multiresolution methods are
not necessarily hierarchical. The first algorithm is
the multiresolution static screening of the topol-
ogy of the network, based on the introduction of
a control parameter in the resolution of modular-
ity [Arenas et al., 2008] (AFG method), proposed
by the authors. The second one is a multiresolution
dynamic screening of the network structure using
a method, inspired in the Potts model, proposed
by Reichardt and Bornholdt [2004] (RB method).
Both algorithms remain competitive with classical
clustering methods in the classification of the Iris
data set.

2. Data Clustering Preprocessing

Here we briefly review the two stages of the data
clustering process before performing the clustering,

for an extended revision see [Hall et al., 2009]. Basi-
cally, it consists of two stages concerning the data
representation and the definition of similarity mea-
sures between data points.

The first stage of data clustering is to represent
the data to which we perform the clustering anal-
ysis. These data are usually obtained experimen-
tally, and our first task is to prepare them properly
to give the best possible result when applying the
clustering algorithm. A good representation of the
patterns will result in a simple and easy cluster-
ing process, while a poor representation can lead
to complex groups whose structure is difficult or
impossible to ascertain. It is worth then to invest
some time analyzing the original data to see if one
can make a proper pretreatment.

Given that any clustering process will try to
find regularities among the data, a good pretreat-
ment should facilitate the process by filtering noisy
or redundant information, and reducing the data
dimensionality to simplify its computational han-
dling. Usually data are represented as vectors of fea-
tures, being categorical or numerical. Without loss
of generality, in what follows we will assume that
the clustering is intended on vectors of numerical
features.

One of the techniques to preprocess the data
is feature selection. It will be necessary to apply a
feature selection algorithm when some of the fea-
tures are correlated with each other. In this case,
these variables provide redundancy into the system
and can introduce a bias towards the final classifi-
cation based on differences in other not-correlated
features. Another scenario where this is useful con-
sists of cases where we have an excessive num-
ber of variables and a discriminatory elimination
could enhance the handling of them. Among the
different methods for feature selection, we have for
example, forward selection/backward elimination:
In forward selection, we grow subsets of features
depending on the classification obtained, while in
backward elimination, we start with all the vari-
ables and we eliminate those less promising also
according with the classification obtained. Another
technique is the decision tree, where we consider the
problem of variable selection as a decision problem.
Once this analogy is assumed, the decision consists
in finding out which subset of variables is more
appropriate. As in any decision problem based on
trees, the result of the selection will depend on the
utility functions used. Another alternative is the
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naive Bayes classifier, which is a simple probabilis-
tic classifier based on the application of Bayes’ theo-
rem. In the context of variable selection this method
can involve certain assumptions about dependence
or independence of variables and compute their
conditional probabilities. Finally, the neural net-
works approaches are worth mentioning, e.g. self-
organized Kohonen maps, in which the c-plane map
of variables is analyzed in order to determine which
of those variables can offer better differentiation
groups.

There may be some cases in which all fea-
tures are significant and the elimination of any of
them would cause a significant loss of information.
In these situations, a feature extraction method is
more adequate than any feature selection. A fea-
ture extraction algorithm is a method that takes
as input the original features and mixes and/or
merges them producing a set of new categories
that can be filtered and analyzed in the same way
as the original data. Examples of feature extrac-
tion algorithms are: Principal Component Analysis
(PCA) [Jolliffe, 2005], a method aimed to perform
a linear transformation of the data converting a
set of correlated variables into a new set of less
correlated variables called principal components.
The first principal component recovers the maxi-
mum variance, the second component retrieves the
second highest variance and so on, until all have
described the variability of the original data. Alge-
braically, the process involves finding a basis of
orthogonal vectors (the principal components) in
the n-dimensional space of the original variables,
such that the length of the components provides
information on the volume and distribution of the
data in different directions of the space. In this way,
not using all the original features but only the main
components can capture most of the information in
a reduced set of variables. Other alternatives apart
from PCA include nonlinear projections such as
self-supervised backpropagation in neural networks
or Independent Component Analysis (ICA).

The second stage of the process of clustering is
to calculate the similarity (or dissimilarity) between
patterns according to a similarity measure, which is
usually based on a distance function. The represen-
tation of these similarities form a square matrix of
size N × N , where N is the number of patterns
we have. The similarity matrix can be understood
as a complete weighted graph where each node is
regarded as one of the patterns and the weight of

the link between them informs about their similar-
ity. Please note that if the similarity measure used is
not symmetric, then the graph should be directed.
Once the similarity matrix is obtained, one can
apply graph-based community analysis algorithms
to perform the clustering of the data.

3. The Complex Networks
Approach

Complex networks are graphs representative of the
intricate connections between elements in many
natural and artificial systems [Strogatz, 2001; Song
et al., 2005; Barabási, 2005], whose description
in terms of statistical properties has been largely
developed in the quest for a universal classification
of them. However, when the networks are locally
analyzed, some characteristics that become par-
tially hidden in the statistical description emerge.
The most relevant perhaps is the discovery in many
of them of community structure, meaning the exis-
tence of densely (or strongly) connected groups of
nodes, with sparse (or weak) connections between
them [Girvan & Newman, 2002].

The study of the community structure helps
to elucidate the organization of the networks and,
eventually, could be related to the functionality
of groups of nodes [Guimerà & Amaral, 2005b].
The most successful solutions to the community
detection problem, in terms of accuracy, are those
based on the optimization of a quality function
called modularity, proposed by Newman and Gir-
van [2004], that allows the comparison of different
partitioning of the network. Given a network par-
titioned into communities, Ci being the community
to which node i is assigned, the mathematical defi-
nition of modularity is

Q =
1

2w

∑
i

∑
j

(
wij − wiwj

2w

)
δ(Ci, Cj), (1)

where wij is the weight of the link between nodes i
and j (zero if no link exists), wi =

∑
j wij is the

strength of node i and 2w =
∑

i wi is the total
strength of the network [Newman, 2004a]. The Kro-
necker delta function δ(Ci, Cj) takes the value 1 if
nodes i and j are in the same community and 0
otherwise. The modularity of a given partition is
then the probability of having edges falling within
groups in the network minus the expected prob-
ability in an equivalent (null-case) network. This
null-case network has the same number of nodes as
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the original network and the edges placed at ran-
dom preserving the nodes’ strengths. Having a large
modularity value means a higher deviation from the
null case, and therefore, a better partitioning of the
network. Note that the optimization of the mod-
ularity cannot be performed by exhaustive search
since the number of different partitions is equal
to the Bell or exponential numbers [Bell, 1934],
which grow at least exponentially in the number
of nodes N . Indeed, optimization of modularity is a
NP-hard (Nondeterministic Polynomial-time hard)
problem [Brandes et al., 2008]. Several authors have
attacked the problem, with considerable success,
by proposing different optimization heuristics [New-
man, 2004b; Clauset et al., 2004; Guimerà & Ama-
ral, 2005a; Duch & Arenas, 2005; Pujol et al.,
2006; Newman, 2006], see [Fortunato, 2010] for a
review.

Maximizing modularity, one obtains the “best”
partition of the network into communities. This par-
tition represents an intermediate topological scale
of organization, or mesoscale, that in many cases
has been shown to coincide with known information
about subdivisions in the network [Newman & Gir-
van, 2004; Danon et al., 2005]. However, recently,
it has been pointed out that the optimization of
the modularity has a characteristic scale related to
the number of links in the network, which delim-
its the resolution beyond which no separation into
smaller groups can be obtained when optimizing
modularity, even though these smaller partitions,
and then different levels of description, are plausi-
ble to exist from direct observation [Fortunato &
Barthélemy, 2007]. The problem seems then that
modularity, as it has been prescribed, does not have
access to these other levels of description. The rea-
son for this is that the topological scale at which
we have access by maximizing modularity has a
topological resolution limit.

We proposed a method that allows the full
screening of the topological structure at any resolu-
tion level using the original formulation and seman-
tics of modularity, overcoming then the resolution
limit [Arenas et al., 2008]. Our aim is to take advan-
tage of this method to analyze real data sets in
terms of clustering. In contrast with the solution
proposed in [Angelini et al., 2007], in which the clus-
tering is found using modularity at the standard
Newman scale, our approach uses the multiple res-
olution method that optimizes modularity at each
level of resolution. The mathematical form of our

prescription is given by

QAFG(r) = Q[wij ← wij + rδij ], (2)

where r (resistance) is the parameter controlling the
resolution of the partitions we want to find, and
wij + rδij is the new weights’ matrix after adding a
self-loop with value r to each node. When r is zero,
we recover the standard modularity Q. The defi-
nition of QAFG does preserve the original seman-
tics of modularity. A recent approach proposed by
[Pons & Latapy, 2011] uses also a multihierarchi-
cal technique based on optimizing a class of qual-
ity functions that extend the concept of Newman’s
modularity parameterizing both terms of Eq. (1).
We do not use this approach in the current work
although it could be compared in the same way we
compare with the Reichardt and Bornholdt method
explained below.

In [Reichardt & Bornholdt, 2004], the authors
propose a method in which the graph is understood
as a dynamical system of q-states interacting spins
(usually known as Potts’ model), and the states of
the spins represent the community to which a node
is assigned. In this scenario, the partition in mod-
ules is equivalent to the ground state of the men-
tioned dynamical system. Indeed, the authors made
a very interesting connection between the statisti-
cal mechanics of the Potts model and modularity.
Moreover, although the finding of the resolution
limit was discovered later, the Reichardt and Born-
holdt (RB) method already solved this problem
by the tuning of a parameter, as pointed out in
[Kumpula et al., 2007]. The result is that the ground
state of the system corresponding to the minimum
of its Hamiltonian can be written as

QRB(γ) =
1

2w

∑
i

∑
j

(
wij − γ

wiwj

2w

)
δ(Ci, Cj),

(3)

where γ is the resolution control parameter in this
case. Note that the original Q corresponds to γ = 1
and other values of this parameter represent differ-
ent quality functions as the weight of the null model
term is modified.

To screen the whole spectrum of resolution lev-
els of the topological structure of any given net-
work, we must determine the values of rmin and
rmax for the AFG model, and the γmin and γmax

for the RB model. Assigning the minimum value to
the parameter, the network will appear as a unique
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module, while at the maximum value the network
will be divided into as many modules as nodes. The
mathematical determination of these limits is dis-
cussed in the Appendix for the most general case of
directed and signed networks. The screening of the
mesoscales is done by optimizing both modularities
QAFG(r) and QRB(γ), for the different values of r
and γ respectively.

4. Results

To show the ability of multiresolution community
detection methods to solve the problem of unsu-
pervised data clustering, we have chosen to study
the classical benchmark of the Iris data set. This
dataset, presented by Sir R. A. Fisher in 1936, con-
sists of 50 samples from each of the three species
of Iris flowers (Iris setosa, Iris versicolor and Iris
virginica). We know the petal length, petal width,
sepal length and sepal width from each sample. For
the moment, we will ignore the species information
and we will cluster the data using only the raw mea-
surements as in [Fisher, 1936]. When this is done, a
comparison between the real classification and the
obtained clusters can be made, in order to evaluate
its quality.

Following the steps of data clustering explained
above, we first perform a principal component anal-
ysis of the four features that form each pattern, and
choose to work with the two principal components
corresponding to the largest part of the data vari-
ance. In Fig. 1, a representation of these two com-
ponents is shown. Based on these two variables, we

-0,2 -0,1 0 0,1 0,2
1st PCA component

-0,1

-0,08

-0,06

2n
d 

PC
A

 c
om

po
ne

nt

Fig. 1. Two principal components of the PCA analysis on
the Iris data set. Colors correspond to setosa-blue, versicolor-
red, and virginica-green. While setosa is clearly linearly sep-
arable, the other two species are not.

build a similarity matrix from the Euclidean dis-
tances between pattern components with respect
to the average distance in this space. For any
pair of flowers i and j, we define the similarity
sij = d − ‖xi − xj‖, where d stands for the aver-
age distance of the set, and ‖ · ‖ is the Euclidean
distance between the feature vectors of each flower.
The resulting similarity matrix is interpreted as a
weighted network whose communities will, in princi-
ple, reproduce the right clustering of the data. Note
that this matrix has positive and negative links,
and that modularity should account for these signed
values, see Appendix.

We present the comparison of the results
obtained using the algorithms described above, and
also compare with the solution obtained apply-
ing a classical hierarchical clustering technique,
see Fig. 2.

In particular, we have constructed the hier-
archical clustering using complete linkage, where
the distance between groups is defined as the dis-
tance between the most distant pair of individu-
als, one from each group. In other words, the dis-
tance between two clusters is given by the value
of the longest link between the clusters. At each
stage of hierarchical clustering, the clusters at min-
imum distance are merged. Moreover, instead of
using the standard pair-group hierarchical clus-
tering approach, we take advantage of a recent
development by some of the authors [Fernández &
Gómez, 2008] that allows to solve the nonunique-
ness problem when there are tied distances dur-
ing the agglomeration process (code available at
[Gómez & Fernández, 2010]). The result, known as
a multidendrogram, is presented in Fig. 2(a). We
plot the tag number of each specimen at the leaves
of the tree. The analysis of the multidendrogram
can be performed as follows: starting from the root
of the tree, we can compute the distances between
different partitions of the data and analyze each of
them separately.

The comparison between the three methods can
be done by computing the multiple scales of the
topology in terms of community structure, screen-
ing the values of r in the AFG method, the val-
ues of γ in the RB method, and the distances in
the dendrogram. In Fig. 2(b) we present the whole
mesoscale for the AFG method, we observe the
persistence of the partition in two and three clus-
ters as the most representative of the mesoscale. In
Fig. 2(c) we present a portion of the mesoscale for
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Fig. 2. Mesoscales of the Iris data set, showing the number of clusters as a function of the resolution parameter: (a) HC
complete linkage multidendrogram; (b) AFG mesoscales; (c) RB mesoscales and (d) HC mesoscales from the previous
multidendrogram.
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Fig. 3. Comparison between the three methods used in the classification of the Iris data set. Two measures are used:
(a) the success ratio and (b) the Jaccard index. Only the partitions with highest performance and less than five clusters
are shown.

the RB method, again the last observation holds
for this method, however, the variations of γ do not
ensure a monotonic behavior of the number of clus-
ters as a function of γ (see Appendix for details).
Finally, we plot the mesoscale in terms of distances
in the dendrogram, see Fig. 2(d). The hierarchical
clustering approach defines also two main resolution
levels corresponding to two and three clusters parti-
tions, respectively. The fact that the partition that
divides the data into two communities is always the
most relevant in any of the used methods that cor-
responds to the true partition of the Iris data set in
two linearly separable sets.

We define two measures to make the compar-
ison between the different methods, centering our
attention on the most relevant partitions in terms of
the scale length, see Fig. 3. The first measure is the
success, which is the percentage of correctly classi-
fied nodes when comparing the partition obtained
with the original classification made by biologists
using more features of the flowers. In this case and
for the partition in three clusters, both HC and
AFG methods achieved a 94.67% of success, cor-
responding to a mismatch of eight flowers in total.
The RB method obtained a success of 90.67% in
this case. The second measure we contemplate is the
Jaccard index presented in [Jaccard, 1912], which is
the fraction of pairs of patterns in the same cluster
in one partition which are also in the same clus-
ter in the other partition. The larger the fraction of
same cluster co-ocurrences, the better the quality
of the agreement. In Fig. 3(b) we observe that the

best classification in three clusters is performed by
the AFG method by a slight difference (0.8194 the
AFG method versus 0.8180 for the HC).

5. Conclusions

This article has presented the adaptation and per-
formance of two multiresolution methods for the
detection of the community structure in networks
to the problem of unsupervised data clustering. A
multiresolution method, in contrast to those that
find communities at a fixed scale, is a method that
allows finding partitions at different levels of reso-
lution. We focused on the determination of groups
in the similarity matrix using modularity as the
quality function. We have analytically computed
the two limiting cases for the AFG method, from
a unique cluster to the classification of every data
point as a single cluster. The different partitions
of the set were obtained, which correspond to the
different scales of resolution. We also discussed
about the problem of finding the best partition
from the mesoscale. As all the partitions reflect
the structure of the data, we established that the
concept of choosing the “best” partition should be
translated to choosing the most persistent partition
for values of the resistance parameter. The results
obtained on the classical Iris data set are com-
petitive with classical unsupervised clustering tech-
niques. These results are encouraging, and point
out that the mapping of clustering problems to
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networks’ structural analysis is a field worthy to
be explored.
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Appendix A

Determination of AFG Mesoscales
Boundaries

The generalization of modularity Eq. (1) for undi-
rected weighted signed networks (see [Gómez et al.,
2009]) is

Q =
1

2w+ + 2w−
∑

i

∑
j

[
wij −

(
w+

i w+
j

2w+
− w−

i w−
j

2w−

)]

× δ(Ci, Cj). (A.1)

where

w+
i =

∑
j,wij>0

wij, (A.2)

w−
i =

∑
j,wij<0

|wij |, (A.3)

are the positive and negative strengths of node i,
and

2w+ =
∑

i

w+
i , (A.4)

2w− =
∑

i

w−
i , (A.5)

are the positive and negative total strengths, respec-
tively. Please note that these four strengths are
defined to be non-negative.

To simplify the notation, we make use of the
modularity matrix

Bij = wij −
(

w+
i w+

j

2w+
− w−

i w−
j

2w−

)
, (A.6)

therefore

Q =
1

2w+ + 2w−

N∑
i=1

N∑
j=1

Bijδ(Ci, Cj). (A.7)

Following [Arenas et al., 2008], the analysis of
the mesoscale is performed with the addition of
a common self-loop to all the nodes in the net-
work. The boundaries of the mesoscale are the
macroscale, a partition in which all nodes belong to
the same community, and the microscale, a parti-
tion in which each node is isolated in its own com-
munity. The determination of these boundaries is
equivalent to finding two values of the self-loops,
rmin and rmax, for which the maximum of modu-
larity QAFG(r) is achieved at the macroscale and

microscale, respectively. The solution is as follows: if
all the nondiagonal terms of the modularity matrix
are positive or zero, modularity is optimized at the
macroscale, and if they are negative, it is optimized
at the microscale. Diagonal terms are irrelevant
since δ(Ci, Ci) = 1 for all nodes.

If we introduce a positive self-loop r+, the mod-
ularity matrix becomes

BAFG
ij (r+) = wij + r+δij

−
(

(w+
i + r+)(w+

j + r+)
2w+ + Nr+

− w−
i w−

j

2w−

)
,

(A.8)

and with a negative self-loop −r−

BAFG
ij (−r−) = wij − r−δij

−
(

w+
i w+

j

2w+
− (w−

i + r−)(w−
j + r−)

2w− +Nr−

)
.

(A.9)

The existence of rmax is straightforward, since
BAFG

ij (r+) ∼ −r+ < 0 for large enough r+ and
i �= j. Its determination is just an exercise of solv-
ing the system of inequations BAFG

ij (r+) ≤ 0 for
i < j, and taking the smallest solution as rmax.
More precisely,

rmax = max
i<j

D2
ij≥4Eij

(
−Dij

2
+

1
2

√
D2

ij − 4Eij

)
,

(A.10)

where

Dij = w+
i + w+

j −N

(
wij +

w−
i w−

j

2w−

)
, (A.11)

Eij = w+
i w+

j − 2w+

(
wij +

w−
i w−

j

2w−

)
. (A.12)

In the same way, BAFG
ij (−r−) ∼ r− > 0 proves

the existence of rmin, and it is calculated by solving
BAFG

ij (−r−) ≥ 0 for i < j, and taking the largest
solution as rmin, i.e.

rmin = − max
i<j

D2
ij≥4Eij

(
−Dij

2
+

1
2

√
D2

ij − 4Eij

)
,

(A.13)
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where

Dij = w−
i + w−

j + N

(
wij −

w+
i w+

j

2w+

)
, (A.14)

Eij = w−
i w−

j + 2w−
(

wij −
w+

i w+
j

2w+

)
. (A.15)

Please note that while the value of rmax is the
exact point at which the macroscale is obtained, the
value of rmin is only a lower bound of the microscale.
This lower bound may be improved using a bisec-
tion method between the value of rmin given by
Eq. (A.13) and r = 0.

When the network is directed, the analysis of
the AFG mesoscale is exactly the same, but with
the substitutions

w±
i → w±,out

i =
∑

k,±wik>0

|wik|, (A.16)

w±
j → w±,in

j =
∑

k,±wkj>0

|wkj|, (A.17)

Dij → 1
2
(Dij + Dji), (A.18)

Eij → 1
2
(Eij + Eji). (A.19)

The code for the determination of the AFG
mesoscales is available at [Gómez et al., 2010].

Appendix B

Boundaries of RB Mesoscales

In the RB formulation of mesoscales, a parameter γ
is introduced in front of the null-case term to weight
its relative importance against the real network, i.e.

BRB
ij (γ) = wij − γ

(
w+

i w+
j

2w+
− w−

i w−
j

2w−

)
. (B.1)
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Fig. 4. Expanded Iris data set RB mesoscales analysis.

It is also possible to have different parameters for
the positive and negative null-case terms as in
[Traag & Bruggeman, 2009], however this leads to
a bidimensional analysis of the mesoscales, which is
almost unaffordable for most real networks. Thus,
we will focus on the single-parameter RB modular-
ity matrix Eq. (B.1).

Without negative weights, the macroscale is
recovered at γmin = 0, and the microscale at the
γmax which makes all modularity terms negative.
The existence of γmax is guaranteed by the fact that
all null-case terms are positive. However, the addi-
tion of negative weights makes it possible to have
both positive and negative null-case terms, which
does not allow to ensure the recovery of macro and
microscale. Therefore, RB signed modularity may
not cover the whole mesoscale. This is experimen-
tally confirmed in Fig. 4 for the Iris data set, where
a larger interval of the γ parameter has been ana-
lyzed. While Fig. 2(c) only shows the useful part of
the mesoscales range, where the number of clusters
goes from 2 to 73 (γ ∈ [0.0, 4.2]), Fig. 4 shows that
the RB is unable to find the macroscale (microscale)
for lower (larger) values of γ.
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