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Probabilistic Discrete-Time Models for Spreading Processes
in Complex Networks: A Review

Clara Granell, Sergio Gómez, Jesús Gómez-Gardeñes, and Alex Arenas*

Research into network dynamics of spreading processes typically employs
both discrete and continuous time methodologies. Although each approach
offers distinct insights, integrating them can be challenging, particularly when
maintaining coherence across different time scales. This review focuses on
the Microscopic Markov Chain Approach (MMCA), a probabilistic f ramework
originally designed for epidemic modeling. MMCA uses discrete dynamics to
compute the probabilities of individuals transitioning between
epidemiological states. By treating each time step—usually a day—as a
discrete event, the approach captures multiple concurrent changes within this
time frame. The approach allows to estimate the likelihood of individuals or
populations being in specific states, which correspond to distinct
epidemiological compartments. This review synthesizes key findings from the
application of this approach, providing a comprehensive overview of its utility
in understanding epidemic spread.

1. Introduction

The interplay between network structures and spreading dynam-
ics has played a pivotal role in advancing the field of network sci-
ence. On one hand, understanding epidemic spreading within
networks has been crucial to capture the influence that complex
interaction patterns have on the functioning of complex systems,
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as highlighted by seminal works in the
field such as ref. [1–3] and the refer-
ences therein. On the other hand, dy-
namical network models have been in-
strumental to provide formal frameworks
to simulate and predict the spread of
diseases.[4] In contrast to traditional ap-
proaches, which often oversimplify these
interactions, network epidemic models
capture the nuances of spreading pro-
cesses in general which, in the case of dis-
ease transmission, facilitates the explo-
ration of intervention strategies.
Compartmental models, dividing pop-

ulations into distinct epidemiological
states, form the foundation of mathe-
matical epidemiological models to con-
ceptualize disease evolution. These mod-
els underpin more complex frameworks.
Epidemic models vary widely, being

either deterministic or stochastic,[5] to reflect transmission pre-
dictability or randomness. They differ in assumptions of ho-
mogeneous versus heterogeneous mixing,[6] spatial[7] versus
individual-level networks, and static versus dynamic networks.[8]

Furthermore, models can focus on single or multiple dynamics,
including co-evolving diseases[9] or coupled social and epidemi-
ological processes.[10]

A key aspect of mathematical modeling in epidemics, and
generally speaking in spreading processes, is choosing between
continuous or discrete time approaches to describe spread. Ini-
tially, epidemiological models predominantly used differential
equations to represent how the proportion of individuals in
each compartment changes over time. However, discrete mod-
els emerged,[11] challenging this approach by emphasizing that
epidemic processes often unfold in discrete time intervals. This
perspective is supported by the reality that data collection in real-
world scenarios typically occurs on a daily basis, at best.
In this review, we examine the Microscopic Markov Chain

Approach (MMCA),[12] a discrete-time probabilistic framework
for modeling the dynamics of spreading processes, such as epi-
demics, on complex networks. MMCA is based on the princi-
ples of Markov chains, which are mathematical systems under-
going transitions from one state to another within a state space
in amemoryless manner; this implies that the next state depends
solely on the current state, irrespective of the sequence of events
that preceded it. Initially proposed for epidemic modeling, the
applicability of MMCA extends to various other spreading phe-
nomena, leveraging the same formalism.
This review systematically discusses the Microscopic Markov

Chain Approach (MMCA) for modeling spreading processes

Ann. Phys. (Berlin) 2024, 2400078 2400078 (1 of 20) © 2024 The Author(s). Annalen der Physik published by Wiley-VCH GmbH

http://www.ann-phys.org
mailto:alexandre.arenas@urv.cat
https://doi.org/10.1002/andp.202400078
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fandp.202400078&domain=pdf&date_stamp=2024-07-24


www.advancedsciencenews.com www.ann-phys.org

on networks in discrete time. Section 2 revisits the fundamen-
tals of epidemic spreading in networks. Subsequently, Section 3
elucidates the principal differences between discrete-time and
continuous-time descriptions of epidemicmodeling in networks.
Section 4 is dedicated to detailing the MMCA approach, which
describes epidemics at the individual node level, at the link level,
accounts for beyond pairwise interactions, and incorporates time-
dependent network aspects. In Section 5, we explore applications
involving different layers of interactions, specifically within mul-
tilayer networks. Section 6 demonstrates the framework’s appli-
cability to tracking real-world epidemics. Finally, we present con-
clusions and future perspectives on the approach.

2. Epidemics Spreading in Networks: The Basics

Complex networks are interconnected systems characterized by
non-trivial topological features’ patterns of connection between
elements that are neither purely regular nor completely random.
These networks are distinguished by properties such as scale-
free degree distributions, where some nodes act as highly con-
nected hubs; small-world phenomena, where paths between any
two nodes are surprisingly short; and clustering, indicating a ten-
dency for nodes to form tightly-knit groups. Complex networks
are ubiquitous in nature and society, underpinning the struc-
ture and dynamics of systems ranging from biological entities
and ecosystems to social networks, technological infrastructures,
and beyond.
The study of complex networks[13] has advanced our under-

standing of contagion dynamics. Particularly important is the
ubiquity of the so-called Scale-free (SF) networks in social in-
teractions, characterized by a degree distribution that follows a
power law, P(k) ∼ k−𝛾 , where k represents the number of connec-
tions an individual has. A key mathematical framework to un-
derstand epidemic outbreaks in SF networks is the so-called Het-
erogeneous Mean Field (HMF) approach,[14–18] which aggregates
vertices within degree classes, assuming homogeneity in dynam-
ical properties within each class and neglecting fluctuations.
In the simplest epidemic models consisting on just two com-

partments, susceptible (S) and infectious (I), the spreading of a
disease on a network can be conceptualized as the evolution of
a set of variables {𝜌k(t)} each capturing the relative density of in-
fected nodes with given connectivity k at time t. Once these vari-
ables are defined we can write the HMF equations that govern
their evolution under a certain set of transition rules. In the case
of a SIS epidemic two transitions are at work: the transmission
S → I and the recovery I → S, each having transition rates 𝛽 and
𝜇 respectively. Thus, the dynamicalmean–field (MF) reaction rate
equations can be expressed as:

d
dt
𝜌k(t) = −𝜇𝜌k(t) + 𝛽k(1 − 𝜌k(t))Q(𝛽) (1)

where Q(𝛽) is the probability that any given link points to an in-
fected node. The term −𝜇𝜌k(t) represents the annihilation term,
i.e., those infected nodes that recover, and correspondingly, the
term 𝛽k(1 − 𝜌k(t))Q(𝛽) represents the creation term, accounting
for the probability that a node with k links is healthy and becomes
infected through a connected node.

The mean-field character of this equation arises from neglect-
ing density correlations among different nodes, albeit relaxing
the homogeneity assumption on node connectivity typically ap-
plied in regular networks. By setting d

dt
𝜌k(t) = 0, the stationary

densities are found:

𝜌k =
𝛽kQ(𝛽)

𝜇 + 𝛽kQ(𝛽)
(2)

indicating that higher node connectivity increases the probability
of infection. This inhomogeneity is crucial for the self-consistent
calculation of Q(𝛽). The probability that a link points to a node
with s links is proportional to sP(s), implying that a randomly cho-
sen link is more likely to connect to a high-connectivity node:

Q(𝛽) = 1⟨k⟩ ∑
k

kP(k)𝜌k (3)

Given that Q(𝛽) is a function of 𝜌k, a consistency equation can
be obtained, enabling the determination of the solution, {𝜌k} of
Equation (2). The resulting values are encapsulated in the order
parameter, which expresses the average density of infected nodes
in the system, which can be calculated as

𝜌 =
∑
k

P(k)𝜌k (4)

This approach effectively describes the critical properties of epi-
demic spreading in heterogeneous networks, especially in scale-
free (SF) networks. A simple analysis yields 𝜌 ≈ 2e−𝜇∕𝛽 , aligning
with numerical findings and highlighting the absence of an epi-
demic threshold (𝛽c) or critical point in the model, i.e., 𝛽c ≈ 0
(see Figure 1). However, capturing the temporal evolution of epi-
demics is challenging with this method, as it neglects the specific
routes of infection. The approach does not consider a particular
realization of the network but concentrates solely on the degree
distribution P(k), making it challenging to explore the detailed
network structure beyond this statistical descriptor. While incor-
porating degree correlations[19] has improved the mathematical
analysis of the critical point, it still falls short of capturing the
time evolution within a specific network topology.

3. Discrete-Time and Continuous-Time Epidemic
Models in Networks

The analysis of epidemic-spreading models in networks has
some of the same difficulties that are found for well-mixed pop-
ulations (equivalent to complete graphs). These difficulties are
intrinsic to the discrete-time or continuous-time formulation of
the governing equations, and the methods used to solve each
of them. Continuous approximations have been more popular
in epidemic modeling because of their mathematical tractabil-
ity, and the avoidance of chaotic behaviors that can arise in their
discrete counterparts.[11] For the sake of clarity, we henceforth fix
our attention on the study of a family of SIS models. In a SIS
model, individuals that are cured do not develop permanent im-
munity but are immediately susceptible to the disease again. In
well-mixed populations, the differential equations governing the
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Figure 1. Absence of epidemic threshold in scale-free networks. a) Degree distributions of an Erdős–Rényi graph (blue) and a scale-free network (yellow)
with identical mean degree ⟨k⟩. The large variance of the scale-free network is highlighted by the presence of large degree nodes (the hubs). In panel (b)
we show the expected epidemic diagram I(𝜆) for the SIS compartmental model in ER and SF graphs. Panel (c) shows the effect of introducing a pathogen
with an infectivity 𝛽 in the range shown in panel (b). While the introduction of the pathogen in the ER graph leads to the disease-free equilibrium (I = 0),
the same pathogen yields an endemic equilibrium in SF networks.

number of susceptible (S) and infected (I) individuals are

dS
dt

= −𝛽S I
N

+ �̃�I

dI
dt

= 𝛽S I
N

− �̃�I (5)

whereN = S(t) + I(t) is the (constant) size of the population. The
term I∕N accounts for the probability of contacting an infected
individual in a well-mixed population of sizeN, 𝛽 is the infectivity
rate (probability per unit time) for each contact, and �̃� is the rate
at which one infected individual recovers. Their corresponding
difference equations are

S(t + Δt) = S(t)
(
1 − 𝛽Δt

I(t)
N

)
+ �̃�ΔtI(t)

I(t + Δt) = I(t)
[
1 − �̃�Δt + 𝛽Δt

I(t)
N

S(t)
]

(6)

or equivalently

I(t + Δt) = I(t) − �̃�ΔtI(t) + 𝛽Δt
I(t)
N

[N − I(t)] (7)

Defining 𝜌(t) = I(t)∕N as the fraction of infected individuals in
the population, Equation (7) is written as

𝜌(t + Δt) = 𝜌(t) − �̃�Δt 𝜌(t) + 𝛽Δt 𝜌(t)[1 − 𝜌(t)] (8)

Note that while the system of Equation (5) always converges to a
solution,[11,20] Equation (8) can be mapped to a logistic function
when the reproductive ratio = 𝛽∕�̃� > 1, thus giving rise to ba-
sic periodicity, bifurcations and chaotic behavior depending on
the parameters.[11] Although both descriptions are equivalent in
the limit Δt → 0, differences arise when considering a finite Δt.

Particularly interesting is what happens when considering a
numerical scheme iterating Equation (8). In many cases Δt is
usually assimilated to the stochastic simulation time unit and
set to 1. Consequently, the numerical differences with the con-
tinuous case are substantial. It is also important to distinguish
between rates and probabilities, 𝛽Δt = 𝛽 is a probability, and the
same holds for �̃�Δt = 𝜇. Again, by setting Δt = 1, one can mix
up rate and probabilities because both will have the same values,
even though their units are different.
The mapping of the above SIS equations to the case of hetero-

geneous networks is not straightforward and has its critical step
in the redefinition of the probability of contacts. In a network,
the number of contacts is restricted to a fixed neighborhood, then
each individual (node) can potentially contact only its neighbors.
In the seminal work by Pastor–Satorras and Vespignani,[21] these
authors proposed the direct use of Equation (8) for classes of
nodes based on their degree k. This is the root of the HMF ap-
proach in complex networks and the hypothesis of homogeneity
is here postulated at the level of classes of nodes. The rationale
behind this assumption is that the dynamical behavior of any two
nodes with the same degree k will be essentially the same. Then,
a system of equations for each class k is written as

𝜌k(t + Δt) = 𝜌k(t) − �̃�Δt 𝜌k(t) + 𝛽ΔtΘk(t)[1 − 𝜌k(t)] (9)

where now 𝜌k(t) stands for the fraction of infected individuals of
degree k, and the probability of contacting an infected node is en-
coded in the new functionΘk(t). For the general case of correlated
networks, the function Θk(t) takes the form

Θk(t) =
∑
k′
P(k′|k)𝜌k′ (10)

where P(k′|k) is the probability that a node of degree k connects
to a node of degree k′. Equation (9) is used to find the stationary
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value of the incidence for given values of 𝛽 and 𝜇. Indeed, for
the stationary state, it is true that the only dependence to take
into account is the ratio 𝜆 = 𝛽∕𝜇 because the equations can be
rescaled without modifying their solutions. However, this is not
anymore the case during the transient. The critical value 𝜆c for
the epidemic threshold was found in ref. [22] to be

𝜆c =
1

Λmax(C)
(11)

being Λmax(C) the largest eigenvalue of the connectivity matrix
of classes of nodes C, whose components are given by Ckk′ =
kP(k′|k), i.e., the expected number of links from a node of de-
gree k to nodes of degree k′. Recently, several authors have con-
ducted extensive research to uncover the differences in accuracy
between continuous and discrete models for the SIS dynamics
on networks.[23] This analysis includes examining the epidemic
threshold and the localization of epidemic prevalence near the
transition. The findings indicate that discrete-time approaches
exhibit dependence on the size of the time-step, whereas the dif-
ferences between discrete and continuous models diminish as
the time-step approaches zero. It is important to highlight that
this result is applicable to the discretization of continuous equa-
tions but may not extend to discrete models developed ab initio.
In such models, specific aspects, such as the possibility of recov-
ery and reinfection within the same time step, can be explicitly
considered or omitted. Note that, even if discrete-time models
can recover the continuous-time dynamics in the limit of vanish-
ing time-steps, there are implicit differences that can yield a few
distinct results. For instance, in the most standard discrete-time
models, a node can be infected or recovered only once per time
step whereas, in the same time span, a continuous-time dynamic
allows several changes of state. These nuances can significantly
influence the comparison between both modeling approaches.

4. Microscopic Markov Chain Approach to
Epidemic Spreading

The approach to describing epidemic spreading using HMF in
networks has been very successful in ascertaining the critical
properties of the dynamics. However, it has been noted that these
methods are unable to track the specific evolution of an epidemic
outbreak, as such evolution is entirely dependent on the particu-
lar structure of a network.
To describe epidemic spreading at the microscopic level (indi-

vidual nodes), several researchers have identified that the state
of the system in the SIS model can be precisely defined by a set
of Bernoulli random variables xi(t) ∈ {0, 1}, where xi(t) = 0 rep-
resents a healthy, susceptible node, and xi(t) = 1 denotes an in-
fected node. The expectation of this variable, x̄i(t) = 𝜌Ii (t), repre-
sents the probability of node i being infected. It is feasible to con-
struct a 2N Markov chain [24–26], accurately delineating the time
evolution of the SIS model. This enables the formulation of pre-
cise equations for the expectation of infection for each node i in
the SIS model:

d𝜌Ii (t)

dt
= −𝜇𝜌Ii (t) + 𝛽

N∑
j=1

aij
[
𝜌Ii (t) − ⟨xi(t)xj(t)⟩] (12)

where ⟨⋯⟩ denotes the expected value. However, this equation re-
quires knowledge of the history of individual states or the joint
probability distribution of all pairs of nodes i, j. A workaround is
found in the mean-field approximation, assuming independence
of the states of nodes, ⟨xixj⟩ = 𝜌Ii𝜌

I
j , the equation simplifies[27,28]:

d𝜌Ii (t)

dt
= −𝜇𝜌Ii (t) + 𝛽

[
1 − 𝜌Ii (t)

] N∑
j=1

aij𝜌
I
j (t) (13)

4.1. Microscopic Markov Chain Approach for Individual Nodes in
Networks

TheMicroscopicMarkov ChainApproach (MMCA) introduced in
ref. [12] offers a compatible yet distinct perspective. It describes
the discrete-time nature of epidemic data evolution from scratch
and does not correspond to a discretization of previous contin-
uous models. Simply put, the MMCA cannot be derived from
a discretization of continuous equations; rather, the continuous
equations can be derived from the MMCA description.
Let us describe the basics of the MMCA. Consider a network

of N nodes represented by an N × N adjacency matrix A. In
cases where the network is weighted, {𝜔ij} denote the connec-
tionweights, withwi =

∑
j 𝜔ij representing node i’s total strength.

This framework, incorporating a discrete two-state (S and I)
contact-based process, precisely maps the dynamics of infection
spread across the network. At each timestep, an infected node
i attempts ci times to transmit the disease to its neighbors with
probability 𝛽, forming aMarkov chainwhere infection probability
depends solely on the previous timestep. After a transient period,
the system reaches a stationary state where 𝜌, the average density
of infected individuals, indicates disease prevalence.
The probability that a given node i is in contact with a node j

is denoted as rij, and captured by a matrix R, with entries indicat-
ing the transmission probabilities across network links. If nodes
i and j are unconnected, then rij = 0. Note that this matrix corre-
sponds to the usage of matrix A in the epidemic process, i.e., the
effective use of the links of the graph to transmit the epidemics at
each time step t. The recovery rate 𝜇 indicates the rate at which
infected nodes revert to susceptibility, and pi(t) is the probabil-
ity of node i being infected at time t. The evolution of node i’s
infection probability is given by:

pi(t + 1) = (1 − qi(t))(1 − pi(t)) + (1 − 𝜇)pi(t) + 𝜇(1 − qi(t))pi(t)
(14)

where qi(t) represents the probability of node i not being infected
by any neighbor:

qi(t) =
N∏
j=1
(1 − 𝛽rjipj(t)) (15)

The first term on the right-hand side of Equation (14) repre-
sents the probability that node i is susceptible, (1 − pi(t)), and be-
comes infected, (1 − qi(t)), by at least one neighbor. The second
term corresponds to the probability that node i is already infected
at time t and does not recover. Finally, the last term accounts for
the probability that an infected node recovers, 𝜇pi(t), but is sub-
sequently re-infected by at least one neighbor, (1 − qi(t)).
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This model allows for recovery and infection to occur on the
same timescale, enabling re-infection within discrete time win-
dows. Two different situations of interest are considered: 1) with-
out one-step reinfections (WOR), and 2) with one-step reinfec-
tions (WIR). The first case implies that the time scales for the
infection and cure are well separated, whereas the latter assumes
that the same time scale holds for infection and cure and there-
fore a just recovered individual might catch the disease again
within the same time step t. Note that this differentiation between
both simulation proposals (WIR and WOR) do not change the
aim of the infection dynamics, which in both cases is compatible
with the SIS class of models, not with the SIR class.
The respective equations are:

WOR:

pi(t + 1) = [1 − pi(t)][1 − qi(t)] + (1 − 𝜇)pi(t) (16)

WIR:

pi(t + 1) = [1 − qi(t)] + (1 − 𝜇)pi(t)qi(t) (17)

where the probability qi(t) of node i not being infected by any
neighbor is

qi(t) =
N∏
j=1
[1 − 𝛽rjipj(t)] (18)

Keeping in mind the separation of the two processes, namely,
contacting a node and transmitting the infection, already pre-
sented in Equation (6) for the well-mixed case, the explanation
of these equations is straightforward. The terms in the r.h.s.
of Equation (16) account respectively for the probability that a
susceptible node [1 − pi(t)] is infected by at least one neighbor
[1 − qi(t)], and an infected node does not recover [(1 − 𝜇)pi(t)].
Equation (17) adds, after some algebra, a term that accounts for
the probability that an infected node recovers [𝜇pi(t)] but gets
infected again by a neighbor [1 − qi(t)] in the same time step.
Finally, in Equation (18), we represent the probabilities that in-
fected nodes [pj(t)] contact node i, and that these contacts lead to
new infections, which occur with probability 𝛽.
The MMCA approach generalizes previous models by accom-

modating the possibility of re-infections, which were not consid-
ered in earlier formulations. The formulation so far relies on the
assumption that the probabilities of being infected pi are inde-
pendent random variables. This hypothesis turns out to be valid
in the vast majority of complex networks because the inherent
topological disordermakes dynamical correlations not persistent.
The dynamical system, represented by Equations (14) and (15),
corresponds to a family of possible models, parameterized by the
explicit form of the contact probabilities rij. Without loss of gen-
erality, it is instructive to think of these probabilities as the transi-
tion probabilities of randomwalkers on the network. The general
case is represented by ci random walkers leaving node i at each
time step:

rij = 1 −
(
1 −

𝜔ij

wi

)ci

(19)

The Contact Process (CP) corresponds to a model dynamics
of one contact per unit time, ci = 1, for all i in Equation (19),
thus rij =

𝜔ij

wi
. In the Reaction Process (RP), all neighbors are con-

tacted, which corresponds, in this description, to setting the limit
ci → ∞, for all i, resulting in rij = aij regardless of whether the
network is weighted or not. Other prescriptions for ci conform
to the spectrum of models that can be obtained using this uni-
fied framework. The phase diagram of every model is simply ob-
tained by solving the system formed by Equations (17) or (16) for
i = 1,… , N at the stationary state:

WOR:

pi = (1 − pi)(1 − qi) + (1 − 𝜇)pi (20)

WIR:

pi = (1 − qi) + (1 − 𝜇)piqi (21)

These equations always have the trivial disease-free solution
pi = 0, for all i = 1,… , N. Other non-trivial solutions are reflected
as non-zero fixed points of Equations (21) or (20) and can be eas-
ily computed numerically by iteration. Themacroscopic order pa-
rameter is given by the expected infection density 𝜌, computed as:

𝜌 = 1
N

N∑
i=1

pi (22)

In Figure 2, the accuracy of the MMCA with respect to the
HMF is shown by comparing the solutions obtained by both
methods with the results of mechanistic Monte Carlo simula-
tions.

4.1.1. Mathematical Analysis of the Convergence of the MMCA

According to the MMCA Equation (14), the evolution of the dis-
crete dynamical system is dictated by iterating the map

F = (F1,… , Fn) : ℝn ←→ ℝn (23)

where, for i = 1, 2,… , n, and setting p = (p1, p2,… , pn) ∈ ℝn

Fi(p) := 1 −
(
1 − (1 − 𝜇)pi

)
qi(p) with

qi(p) :=
n∏
j=1
(1 − 𝛽rijpj)

(24)

If (p01,… , p0n) represents the vector of initial conditions, then
(pk+11 ,… , pk+1n ) = Fk(p01,… , p0n), where Fk = F◦Fk−1. Given the
problem’s physical nature, Fmaps [0, 1]n into itself, thus restrict-
ing the study of the generated discrete dynamical system to the
compact set Ω = [0, 1]n.
Numerical simulations[12] show that this kind of systems, gov-

erned by the map F, converge to an asymptotic distribution

lim
k→∞

Fk(p) = p∞ = (p∞1 ,… , p∞n ) (25)

regardless on the initial condition p ∈ Ω.

Ann. Phys. (Berlin) 2024, 2400078 2400078 (5 of 20) © 2024 The Author(s). Annalen der Physik published by Wiley-VCH GmbH
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Figure 2. Agreement between Monte Carlo simulations and theoretical approaches for the SIS dynamic. The Monte Carlo simulations (MC, circles)
are compared with the Microscopic Markov Chain Approach (MMCA, solid lines), the non-perturbative Heterogeneous Mean Field (npHMF, dashed
lines), and the standard Heterogeneous Mean Field (HMF, dotted line). Simulations and models with (WIR, in red) and without (WOR, in blue) one-step
reinfections; HMF (in green) is the same for both WIR and WOR variants of the SIS dynamic on networks. All results have been calculated for an SF
network with 104 nodes and an exponent 2.7. The recovery probability is 𝜇 = 0.5, and we have set 𝜌0 = 0.2. HMF is solved by minimization of an error
function since iteration diverges for most values of 𝛽, see ref. [29].

Therefore, a fixed point exists that acts as a global attractor
for the discrete dynamical system in question. Numerical sim-
ulations also reveal that this global attractor p∞ experiences a
bifurcation at 𝛽0 :=

𝜇

𝜌(R)
, where 𝜌(R) denotes the spectral radius

of the matrix R.t is straightforward to confirm that the origin
0 = (0,… , 0) is a fixed point of F for any 𝛽,𝜇 ∈ [0, 1]. It is proved
that for each 𝜇 ∈ (0, 1), this fixed point undergoes a transcritical
bifurcation at the epidemic threshold 𝛽0 :=

𝜇

𝜌(R)
. Indeed, the origin is

stable for 𝛽 < 𝛽0 and, as 𝛽 approaches 𝛽0, it collides with an un-
stable fixed point z0 originating from outside Ω. Consequently,
for 𝛽 > 𝛽0, the origin becomes unstable, while z0 is stable and
resides within Ω. This stability exchange due to the transcritical
bifurcation elucidates, as it has been established,[30] that 0 is a
global attractor for 𝛽 < 𝛽0 and z0 for 𝛽 > 𝛽0, i.e.,

lim
k→∞

Fk(p) =

{
0 if 𝛽 < 𝛽0,

z0 if 𝛽 > 𝛽0,
for all p ∈ Ω ⧵ {0} (26)

It was proved that the second-order phase transition toward
the endemic phase is well captured by a transcritical transition
of the dynamical system.[30] Exploiting the analysis of this transi-
tion it has been shown that the endemic state is stable and glob-
ally attracting for all values of the parameters beyond the critical
transition. This result is essential to ground mathematically the
numerical scenarios found by finite iterations of the model.

4.1.2. Recovering the Structure of the HMF Approach

As explained in Section 2, the heterogeneous mean–field (HMF)
approach assumes that all nodes of the same degree behave

equally. In terms of the MMCA formulation this means that
pi = pj if ki = kj, and the density 𝜌k of infected nodes of degree
k is given by

𝜌k =
1
Nk

∑
j∈K

pj = pi , ∀i ∈ K (27)

where K is the set of nodes with degree k, whose cardinality is
denoted by Nk. This notation allows grouping together terms ac-
cording to the degrees of the nodes. For instance, if the degree of
node i is ki = k, then∑
j

ajipj =
∑
k′

∑
j∈K′

aji𝜌k′ =
∑
k′

𝜌k′
∑
j∈K′

aij

=
∑
k′

𝜌k′Ckk′ = k
∑
k′
P(k′|k)𝜌k′ , (28)

whereCkk′ = kP(k′|k) is the expected number of links from a node
of degree k to nodes of degree k′.
Substitution of the HMF approximation, Equation (27), into

the MMCA equations leads to

WOR: 𝜌k = (1 − 𝜌k)(1 − qk) + (1 − 𝜇)𝜌k (29)

WIR: 𝜌k = (1 − qk) + (1 − 𝜇)𝜌kqk (30)

which can also be written as

WOR: 0 = −𝜇𝜌k + (1 − 𝜌k)(1 − qk) (31)

Ann. Phys. (Berlin) 2024, 2400078 2400078 (6 of 20) © 2024 The Author(s). Annalen der Physik published by Wiley-VCH GmbH
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WIR: 0 = −𝜇𝜌k + (1 − (1 − 𝜇)𝜌k)(1 − qk) (32)

These equations constitute the HMF approximations of MMCA
for the SIS model without and with reinfections, respectively.
We still need a HMF expression for qk. For unweighted net-

works the value of qi is

qi =
N∏
j=1
(1 − 𝛽rjipj) =

N∏
j=1

(
1 − 𝛽ajiR𝜂(k

−1
j )pj

)
(33)

If node i has degree ki = k, then

qi = qk =
∏
k′

∏
j∈K′

(
1 − 𝛽ajiR𝜂(k

′−1)𝜌k′
)

(34)

where we have grouped together the terms in the product by their
degrees k′ as in Equation (28). The expression within the paren-
theses is equal to 1 for all nodes of degree k′ that are not con-
nected to node i (aji = 0), and equal to [1 − 𝛽R𝜂(k

′−1)𝜌k′ ] for nodes
of degree k′ that are linked to i (aji = 1). Besides, the expected
number of such terms is Ckk′ . Hence, we obtain

qk =
∏
k′

(
1 − 𝛽R𝜂(k

′−1)𝜌k′
)Ckk′ (35)

Equations (31) and (32), together with Equation (35), form what
is called the Non-perturbative Heterogeneous Mean Field (npHMF)
equations of the SISmodel in unweighted networks.[29] Note that
in the derivation of the npHMF equations no assumption has
been made about the proximity of the system to the epidemic
threshold, where the epidemic prevalence is small, nor any linear
approximation has been invoked, hence the qualification of “non-
perturbative.”
The solution of the npHMF equations follows the same steps

as in MMCA, i.e., Equations (29), (30), and (35) are iterated until
a fixed point (WIR, WOR) or a cycle (WOR) is found. As before,
for the latter case, the average of oscillating values for the disease
prevalence can be computed. Finally, the global epidemic preva-
lence is given by

𝜌 = 1
N

∑
k

Nk𝜌k . (36)

It is easy to show that the standard HMF equations[22] are just
a linear approximation of our WOR npHMF equations. Near the
epidemic threshold 𝛽c, where 𝜌k ≪ 1, we get

qk ∼ 1 − 𝛽
∑
k′
Ckk′R𝜂(k

′−1)𝜌k′

= 1 − 𝛽k
∑
k′
P(k′|k)R𝜂(k

′−1)𝜌k′ (37)

which can be inserted into Equation (31) to give

0 = −𝜇𝜌k + 𝛽k(1 − 𝜌k)
∑
k′
P(k′|k)R𝜂(k

′−1)𝜌k′ (38)

where

R𝜂(k
′−1) =

⎧⎪⎨⎪⎩
1 for the RP,

1
k′

for the CP
(39)

4.1.3. Epidemic Threshold

To complete this analysis, we review the derivation of the criti-
cal epidemic threshold using the different approaches here dis-
cussed. In ref. [12] it is shown that MMCA allows the determina-
tion of the epidemic threshold

𝛽c =
𝜇

Λmax(R)
(40)

where Λmax(R) is the maximum eigenvalue of the matrix R of the
contact probabilities rij. In particular,

𝛽c =
⎧⎪⎨⎪⎩

𝜇

Λmax(A)
for the RP,

𝜇 for the CP
(41)

These results are valid with and without reinfections, since at
first order, Equations (16) and (17) coincide. In the same way,
the critical points from npHMF Equations (31) and (32) are the
same as in standard HMF, where the matrix H with elements
hkk′ = Ckk′R𝜂(k

′−1) replaces matrix R,

𝛽HMF
c = 𝜇

Λmax(H)
, (42)

with the well-known particular cases

𝛽HMF
c =

⎧⎪⎨⎪⎩
𝜇

Λmax(C)
for the RP,

𝜇 for the CP
(43)

A comparison with Monte Carlo (MC) simulations reveals that
MMCA yields a more accurate approximation of the epidemic
threshold than HMF, preserving the integrity of the original net-
work structure. Moreover, given the definition of contact prob-
abilities, MMCA is adaptable to weighted and directed networks
without necessitating adjustments to the equations, unlikeHMF,
which is constrained to networks that are neither weighted nor di-
rected.

4.2. Microscopic Markov Chain Approach for Individual Links in
Networks

So far we concentrated on introducing the MMCA to the mod-
eling of epidemic spreading considering the states of nodes.
A more accurate approach should consider the conditional
probabilities of these states depending on the states of the
neighbors.[31]

Let us introduce some notation to simplify the analysis. Denot-
ing the previous joint probability as Φij = P(𝜎i = S, 𝜎j = I); the

Ann. Phys. (Berlin) 2024, 2400078 2400078 (7 of 20) © 2024 The Author(s). Annalen der Physik published by Wiley-VCH GmbH
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higher the Φij, the larger the likelihood that the disease propa-
gates from node j to node i. It is worth mentioning that this fea-
ture is in general asymmetrical, meaning that the propagation
of the illness can be more probable from j to i than the other
way around. In the same way, the epidemic is restrained by edges
where the nodes are in the same state, thus it is convenient to de-
fine the probabilitiesΘS

ij = P(𝜎i = 𝜎j = S) andΘI
ij = P(𝜎i = 𝜎j = I)

for all pairs of neighboring nodes.
The evolution of the joint probability Φij of one link depends

onΦ,ΘI andΘS to the rest of the neighboring links, and the infec-
tion rules of the SIS dynamics. Thus, the following equation for
each link can be written:

Φij(t + 1) = ΘS
ij(t) qij(t) (1 − qji(t))

+ Φij(t) ((1 − 𝛽)qij(t)) (1 − 𝜇)

+ Φji(t)𝜇 (1 − (1 − 𝛽)qji(t))

+ ΘI
ij(t)𝜇(1 − 𝜇) (44)

where all the possible changes of state of the nodes i and j are
taken into account. The first term considers the probability that
both nodes are in a susceptible state, and then node i remains
susceptible while node j is infected by any of its other neighbors.
The second term accounts for both nodes remaining in the same
state, node i is not infected by any of its neighbors and node j is
not recovered from the infection. Then, the third term represents
the transition in which node i is infected and recovers while node
j is susceptible and it is infected by any of its other neighbors.
Finally, in the fourth term, both nodes are infected but node i
recovers while node j does not. The asymmetry of probability Φij
multiplies the number of equations by two, since for each link
between nodes i and j an equation for Φij(t + 1) and another for
Φji(t + 1) are needed.
Similarly an expression for probability ΘI

ij can be obtained as:

ΘI
ij(t + 1) = ΘS

ij(t) (1 − qij(t)) (1 − qji(t))

+ Φij(t) (1 − (1 − 𝛽)qij(t)) (1 − 𝜇)

+ Φji(t) (1 − 𝜇) (1 − (1 − 𝛽)qji(t))

+ ΘI
ij(t) (1 − 𝜇)2 (45)

In this case there are only L equations, one per link, due to its
symmetry. There is no need of extra equations for probability ΘS

ij

since the normalization leads to ΘS
ij = 1 − Φij − Φji − ΘI

ij.
The qij(t) in Equations (44) and (45) stands for the probability

that a susceptible node i is not infected by any of its neighbors
(excluding node j):

qij(t) =
N∏
r=1
r≠j

(
1 − 𝛽Arihir

)
(46)

where hij defines the hostility of j against i, i.e., the probability that
node j is infected when node i is susceptible, hij = P(𝜎j = I|𝜎i =
S). The hostility can be obtained in terms of ΘS

ij and Φij as:

hij =
Φij

Φij + ΘS
ij

(47)

Note that the denominator in Equation (47) is a property of node
i given that Φij + ΘS

ij = P(𝜎i = S) for all neighboring nodes j of
vertex i.
This system of 3L equations and unknowns is called the Epi-

demic Link Equations (ELE) model. It can be solved by iteration,
starting from any meaningful initial condition, e.g., ΘI

ij(0) = 𝜌20
and Φij(0) = Φji(0) = 𝜌0(1 − 𝜌0) (for any 0 < 𝜌0 ≤ 1), until fixed
values are found. Apart from the solution where all nodes are sus-
ceptible, ΘS

ij = 1 for all the links, a non-trivial one appears when
the system is above the critical value of the epidemic spreading
(seeMethods for the analytic derivation of the epidemic threshold
from ELE model). Finally, the incidence of the epidemic process,
the average number of infected nodes in the whole system, can
be computed as:

𝜌 = 1
N

N∑
i=1

1
ki

N∑
j=1

Aji(Φji + ΘI
ij) (48)

4.3. Microscopic Markov Chain Approach Beyond Pairwise
Interactions

The interest in considering interactions beyond pairwise is a re-
sponse to an actual necessity observed in complex systems. Be-
haviors, strategies, and conventions often require some form of
reinforcement for their adoption.[32–37] The diffusion of these ele-
ments among individuals through learning and imitation can be
studied as a contagion process.[38–41]

The MMCA’s adaptation to accommodate interactions beyond
pairwise focuses on analyzing triads, the simplest higher-order
structure beyond pairs.[42] Let us start with the closure approx-
imation applied to the exact microscopic equations on hyper-
graphs. Tracking the state evolution of subsets of nodes which
form maximal cliques (i.e., cliques that are not subsets of larger
ones) in the projection graph constructed by associating cliques
to edges of the hypergraph. Accordingly, considering up to three-
body interactions, the authors[42] account for the evolution of the
state probability P𝜎i

i for node i to be in state 𝜎i, P
𝜎i𝜎j

ij for the maxi-

mal link ij to be in state 𝜎i𝜎j, P
𝜎i𝜎j𝜎l

ijl for the (maximal) 3-clique ijl
to be in state 𝜎i𝜎j𝜎l. Notice that a 3-clique, when projected back
to the hypergraph, comes in one of three flavors: a length-3 cy-
cle (or 3-cycle), conveying three two-body interactions, a 3-egde,
conveying a three-body interaction, or a 2-simplex (or triangle),
conveying all of them.
The state probability of other local structures is approximated

in terms of the maximal cliques composing it. Considering ran-
dom hypergraphs that are sparse to the extent that the probability
for twomaximal cliques to share more than one node vanishes in
the infinite-size limit.[43] It thus needs a closure only for the fol-
lowing local structures: two connected maximal links, a maximal

Ann. Phys. (Berlin) 2024, 2400078 2400078 (8 of 20) © 2024 The Author(s). Annalen der Physik published by Wiley-VCH GmbH
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link connected to a 3-clique, and two connected 3-cliques. Their
state can be approximated as follows[42]:

P
𝜎i𝜎j𝜎l

ijl ≈
P
𝜎i𝜎j

ij P
𝜎j𝜎l

jl

P
𝜎j

j

(49)

P
𝜎i𝜎j𝜎l𝜎h

ijlh ≈
P
𝜎i𝜎j

ij P
𝜎j𝜎l𝜎h

jlh

P
𝜎j

j

(50)

P
𝜎i𝜎j𝜎l𝜎h𝜎k

ijlhk ≈
P
𝜎i𝜎j𝜎l

ijl P𝜎l𝜎h𝜎k

lhk

P𝜎l

l

(51)

where the underline indicates the shared node. Equations (46)
are called a triadic approximation[44].
Introducing these closures in the MMCA equations gives a

system that is difficult to analyze mathematically. To make the
model analytically tractable, the authors[45] perform a mean-field
approximation by regarding all the nodes and cliques as equiv-
alent to their average counterparts. Accordingly, every node is
assumed to be part of the same number of maximal links, k(1),
3-cliques, k(1,0), 3-edges, k(0,1), and triangles, k(1,1); and thus par-
ticipates in 𝜅(1) = k(1) + 2(k(1,0) + k(1,1)) two-body interactions and
𝜅(2) = k(0,1) + k(1,1) three-body interactions. The state probabilities
P𝜎

i , P
𝜎𝜎′

ij and P𝜎𝜎′𝜎′′

ijl , with 𝜎, 𝜎′, 𝜎′′ ∈ {S, I}, are taken equal to their
respective averages,

P𝜎 = 1
N

∑
i

P𝜎

i (52)

P𝜎𝜎′ = 1
Nk(1)

∑
i,j

A(1)
ij P

𝜎𝜎′

ij (53)

and

P𝜎𝜎′𝜎′′

x = 1
2Nkx

∑
i,j,l

Ax
ijlP

𝜎𝜎′𝜎′′

ijl (54)

the index x ∈ {(1, 0), (0, 1), (1, 1)} indicating the type of the con-
sidered 3-clique.[46]

Using the indicator function 𝟙p, giving 1 if condition p is ful-
filled and 0 otherwise, the reduced system reads

ṖI = −PI + 𝛽 (1)k(1)PSI + 2𝛽 (1)
[
k(1,0)(PSSI

(1,0) + PSII
(1,0))

+ k(1,1)(PSSI
(1,1) + PSII

(1,1))
]
+ 𝛽 (2)

[
k(0,1)PSII

(0,1) + k(1,1)PSII
(1,1)

]
(55)

ṖSI = −(1 + 𝛽 (1))PSI + PII − 𝛽 (1)(k(1) − 1)PSI PSI − PSS

PS

−
{
2𝛽 (1)

[
k(1,0)(PSSI

(1,0) + PSII
(1,0)) + k(1,1)(PSSI

(1,1) + PSII
(1,1))

]
+ 𝛽 (2)

[
k(0,1)PSII

(0,1) + k(1,1)PSII
(1,1)

]}PSI − PSS

PS
(56)

ṖSSI
x = −2(1 + 𝛽 (1)𝟙x≠(0,1))PSSI

x + 2PSII
x − 𝛽 (1)k(1)PSI

2PSSI
x − PSSS

x

PS

− 2𝛽 (1)
[
(k(1,0) − 𝟙x=(1,0))(PSSI

(1,0) + PSII
(1,0))

+ (k(1,1) − 𝟙x=(1,1))(PSSI
(1,1) + PSII

(1,1))
]2PSSI

x − PSSS
x

PS

− 𝛽 (2)
[
(k(0,1) − 𝟙x=(0,1))PSII

(0,1) + (k(1,1) − 𝟙x=(1,1))PSII
(1,1)

]
×
2PSSI

x − PSSS
x

PS
(57)

ṖSII
x = −(2 + 2𝛽 (1)𝟙x≠(0,1) + 𝛽 (2)𝟙x≠(1,0))PSII

x + 2𝛽 (1)𝟙x≠(0,1)PSSI
x + PIII

x

− 𝛽 (1)k(1)PSI
PSII
x − 2PSSI

x

PS
− 2𝛽 (1)

[
(k(1,0) − 𝟙x=(1,0))

× (PSSI
(1,0) + PSII

(1,0)) + (k(1,1) − 𝟙x=(1,1))(PSSI
(1,1) + PSII

(1,1))
]

×
PSII
x − 2PSSI

x

PS

− 𝛽 (2)
[
(k(0,1) − 𝟙x=(0,1))PSII

(0,1) + (k(1,1) − 𝟙x=(1,1))PSII
(1,1)

]
×

PSII
x − 2PSSI

x

PS
(58)

wherePS = 1 − PI,PSS = 1 − PI − PSI,PII = PI − PSI,PSSS = 1 −
PI − PSII − 2PSSI, PIII = PI − PSSI − 2PSII.
This set of mean–field equations can be used to analytically de-

termine the phase space of the system, and how the different pa-
rameters influence the corresponding transitions.[45] For a more
accurate description of the system, the authors also introduce a
Microscopic Epidemic Clique Equations (MECLE) model, which
considers the state probabilities of the cliques in which the net-
work can be decomposed.[42]

In Figure 3, we show a comparison between the prevalence
𝜌 obtained using Monte Carlo (MC) simulations, the Micro-
scopic Epidemic Clique Equations (MECLE)model, and the other
discrete-time Markovian models, i.e., the simplicial ELE[47] and
the original MMCA models. The generalization to larger struc-
tures is mathematically cumbersome, however, it is still possible
to have a well-defined framework for groups, restricted to cliques
of any size.

4.4. Microscopic Markov Chain Approach for Temporal Networks

Many phenomena emerge from the intricate interaction between
the dynamics of spreading and the structural as well as tempo-
ral attributes of networks, posing challenges to their comprehen-
sive understanding.
When analyzing spreading processes whose underlying topol-

ogy is a complex network of human interactions, considering the
potential changes in the network over time is crucial. Further-
more, in the case of epidemics, some containment strategies are
specifically aimed at altering the network to reduce the spread.

Ann. Phys. (Berlin) 2024, 2400078 2400078 (9 of 20) © 2024 The Author(s). Annalen der Physik published by Wiley-VCH GmbH
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Figure 3. Comparison of pairwise and higher-order methods. Epidemic prevalence 𝜌 as a function of the edge infection probability 𝛽(1) on different 2D
simplicial complexes (SCs). Results obtained from Monte Carlo (MC) simulations are depicted by dots, while lines represent the analytically computed
prevalence using the indicated models. MMCA andMMCA(MECLE) refer to the Microscopic Markov Chain approximation of, respectively, the simplicial
Epidemic Link Equations (ELE)model and theMicroscopic Epidemic Clique Equations (MECLE)model, as obtained by considering the state probabilities
of the nodes as uncorrelated; while MF and MF(MECLE) refer to their homogeneous mean–field approximations. Note that MF and MF(MECLE) are
indistinguishable at the used scale. The value of the epidemic threshold, as computed in the MECLE is marked with a vertical dotted line. The recovery
probability is fixed to 𝜇 = 0.2. a) Periodic triangular SC with k̄(0,1) = 0.00, k̄(0,2) = 0.00, and k̄(1,2) = 3.00, being k̄(g,r) the mean number of (g, n + 1)-
cliques incident on a node, and triangle infection probability 𝛽(2) = 0.25; the relative error in locating the epidemic threshold is 𝜀𝛽(1) ≈ 0.08 for MECLE

and 𝜀𝛽(1) ≈ 0.12 for ELE. b) Random SC with k̄(0,1) = 4.10, k̄(0,2) = 0.00 and k̄(1,2) = 3.95, and 𝛽(2) = 0.15; 𝜀𝛽(1) ≈ 0.06 for MECLE and 𝜀𝛽(1) ≈ 0.09 for ELE.

c) Dorogovtsev–Mendes SC with k̄(0,1) = 1.10, k̄(0,2) = 0.00 and k̄(1,2) = 1.45, and 𝛽(2) = 0.25; 𝜀𝛽(1) ≈ 0.07 for MECLE and 𝜀𝛽(1) ≈ 0.16 for ELE. d) Same
as (c) but with 𝛽(2) = 0.50; 𝜀𝛽(1) ≈ 0.23 for MECLE and 𝜀𝛽(1) ≈ 0.50 for ELE. Reprinted with permission from Network clique cover approximation to
analyze complex contagions through group interactions, by G. Burgio, A. Arenas, S. Gómez and J.T. Matamalas, Communications Physics 4, 111 (2021),
see ref. [42].

The question that then arises is: how to adapt the MMCA
framework to deal with a time-varying network structure? In
ref. [48], the authors proposed a beautiful approach to address
this challenge. The authors use a simple SIS propagation on a
generic network with N nodes and adjacency matrix A given by
the MMCA equations:

p(t)i = 1 −
[
1 − (1 − 𝜇)p(t−1)i

]∏
j

[
1 − 𝛽Ajip

(t−1)
j

]
(59)

where p(t)i is the probability for the node i to be in the infectious
state at time t. They extend this paradigm to a temporal network
by letting the adjacency matrix in Equation (59) depend on time:

p(t)i = 1 −
[
1 − (1 − 𝜇)p(t−1)i

]∏
j

[
1 − 𝛽A(t−1)

ji p(t−1)j

]
(60)

Here A(t) is the adjacency matrix associated with the t-the snap-
shot of the evolving network. In order to ensure the asymptotic
solution of the SIS process in a generic temporal network as-
suming periodic boundary conditions for the network dynam-
ics. Being T the total number of network time snapshots, the
authors impose a closure, equivalent to periodic time bound-
ary conditions, A(T+1) ≡ A(1) that allows computation. As a con-
sequence of the assumed periodic temporal dynamics of A(t),
the asymptotic solution of Equation (60) is in principle peri-
odic, with period T . Using a more convenient representation
of the coupled dynamics the authors adopted the multi-layer
approach introduced in ref. [49] Mapping the temporal net-
work to a series of time snapshots (layers), that can be math-
ematically represented as a tensor space ℝN ⊗ℝT , where each
node is identified by the pair of indices (i, t), corresponding to
the node label, i, and the time frame, t, respectively. The ten-
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sor representation of the obtained multilayer network is the
following:

Att′

ij = 𝛿t,t
′+1

[
𝛿ij + A(t)

ij

]
(61)

Analogously to the definition of A, one can also write in this rep-
resentation the tensor associated to the SIS dynamics of Equa-
tion (60), coupling together contagion and network dynamics:

Mtt′

ij = 𝛿t,t
′+1

[
(1 − 𝜇)𝛿ij + 𝛽A(t)

ij

]
(62)

The multi-layer representation and the definition of the tensor
M introduces a simplified expression for Equation (60). The ten-
sor space can be represented in single index notation through the
isomorphismℝN ⊗ℝT ≃ ℝNT . In other words, similar to the def-
inition of the supra-adjacency matrix in ref. [49] it is possible to
map (i, t) → 𝛼 = Nt + i, with 𝛼 running in {1,… , NT}, allowing
us to write the network tensorM in matrix form

M =
⎛⎜⎜⎝

0 1−𝜇+𝛽A(1) 0 ⋯ 0
0 0 1−𝜇+𝛽A(2) ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ 1−𝜇+𝛽A(T−1)

1−𝜇+𝛽A(T) 0 0 ⋯ 0

⎞⎟⎟⎠ (63)

M provides a network representation of the topological and tem-
poral dimensions underlying the dynamics of Equation (60), that
here are interrelated and flattened. Its directed nature preserves
the causality of the process, while its weights account for the SIS
transition probabilities. The Markov process is now described by
a trajectory in ℝNT where the state vector p̂𝛼(𝜏) represents the
probability of each node to be infected at each time step t included
in the interval

[
𝜏T, (𝜏 + 1)T

]
. Consistently, Equation (60) becomes

p̂𝛼(𝜏) = 1 −
∏
𝛽

[
1 −M𝛽𝛼 p̂𝛽

(
𝜏 − 1)] (64)

Given that vector p̂ encodes a 1-period configuration, the T-
periodic asymptotic state of the SIS process is now mapped into
the steady state p̂𝛼(𝜏) = p̂𝛼(𝜏 − 1). The latter can be recovered as
the solution of the equilibrium equation:

p̂𝛼 = 1 −
∏
𝛽

(
1 −M𝛽𝛼 p̂𝛽

)
(65)

that is formally the same as the stationary condition imposed on
Equation (59) for the static network case, and is similar to the
Markov chain approaches used to solve contagion processes in
multiplex and interconnected networks.[10,50,51]

5. Microscopic Markov Chain Approach of
Interacting Spreading Processes

Frequently, various dynamical processes operate concurrently
within a system of interacting agents, necessitating considera-
tion of these interactions when determining the system’s state.
For instance, the outcome of an epidemic is not isolated from
other processes, such as information diffusion. Human behav-
ior plays a pivotal role in accurately predicting the outcome of
an epidemic, particularly in diseases transmitted directly. To ad-
dress this critical issue within the existing framework, we will
explore various contributions in this area. Throughout this sec-
tion, we will employ the theory of multilayer networks to guide
our discussion.[49,52,53]

Intertwined dynamical processes represent a category of dy-
namics where the multilayer structure plays a pivotal role. To
date, the most extensively examined instances include coupled
spreading processes, which are fundamental to comprehending
phenomena like the concurrent spreading of two diseases within
networks[50,54–57] and the intertwined spread of disease with the
dissemination of information or behaviors.[10,58–61] We highlight
two primary effects: 1) two spreading processes can mutually en-
hance each other (for example, one disease facilitating the infec-
tion by another,[55]) and 2) one process can impede the spread
of the other (for instance, one disease can prevent infection by
another disease,[55] or the spread of awareness about a disease
can limit the disease’s transmission.[10]) Interacting spreading
processes also manifest other intriguing dynamics, with multi-
layer networks offering a fitting framework to investigate these
phenomena.[58]

5.1. Spreading of Information and Epidemics

Let us start by defining the specific setup analyzed in ref. [10, 61]
Using amultiplex, with different connectivity at each layer, corre-
sponding to the layer of physical persistent social contacts (those
that can infect you), and to the layer of virtual contacts (those that
communicate with you but are not necessarily in physical contact,
e.g., Facebook friends, etc.). Note that the actors in both layers are
the same. However, as observed in interdependent networks[62]

the interrelation between two different structures is responsible
for the emergence of new physical effects on the epidemic onset
and prevalence of the epidemics.
On top of the virtual network where the UAU process takes

place, nodes spread awareness of the epidemics. The states in
this process are unaware (U), and aware (A) of the existence of the
epidemics and their prevention. Unaware individuals do not have
information about how to prevent infection, while aware individ-
uals reduce their risk to be infected. Awareness can come from
two sources, communication with aware neighbors (becoming
aware with a probability 𝜆) or because the individual is already
infected. Since the awareness corresponds to cycles parallel to
the seasonality of the epidemics, there is a certain probability of
an individual to forget the awareness or not to care about it, and
become again, at all effects, unaware (with a probability 𝛿). See
Figure 4 for a sketch of this process.
In the physical layer, the nodes are susceptible (S) or infected

(I). The infection propagates from certain infected individuals to
their neighbors with a probability 𝛽, and infected nodes eventu-
ally recover with probability 𝜇. After an individual gets infected
it is automatically aware of the infection and changes its state
in the virtual contact layer. On the other hand, if an individ-
ual is aware of the virtual layer and is susceptible to the physi-
cal layer, it reduces its own infectivity by a factor 𝛾 . Here, it is
worth distinguishing between the original unaware infectivity 𝛽U

and the subsequent infectivity after being aware of the infection
𝛽A = 𝛾𝛽U . In the particular case of 𝛾 = 0, the aware individuals
are completely immune to the infection.
According to this scheme, an individual can be in three differ-

ent states: unaware and susceptible (US), aware and susceptible
(AS) or aware and infected (AI). Note that the state unaware and
infected (UI) is spurious because, according to the definition of
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Figure 4. Sketch of two types of intertwined dynamical processes. a) Represents the interplay of information and epidemic spreading in a multiplex layer.
The visual contact layer, where information diffuses, and the physical contact layer, where the epidemics evolve), are depicted. In the former, states are
represented as U (Unaware) and A (Aware). For the physical layer, the standard states of the SIS model are presented: S (Susceptible) and I (Infected)
individuals. b) Represents the spread of two interacting viruses in a contact network. Both pathogens spread across the same contact network and nodes
can take four states: Susceptible, infectious of either virus 1 or 2, and infectious of both pathogens.

the dynamical process stated, it becomes immediately (AI). The
MMCA equations for the coupled dynamics in the multiplex are
derived using the total probability of the different states.
Let us denote aij and bij the adjacency matrices that support

the UAU and the SIS processes, respectively. Every node i has a
certain probability of being in one of the three states at time t,
denoted by pAIi (t), pASi (t), and pUSi (t) respectively. Assuming the
absence of dynamical correlations,[22] the transition probabilities
for node i not being informed by any neighbors ri(t), not being
infected by any neighbors if i was aware qAi (t), and not being in-

fected by any neighbors if i was unaware qUi (t) are

ri(t) =
∏
j

(1 − ajip
A
j (t)𝜆)

qAi (t) =
∏
j

(1 − bjip
AI
j (t)𝛽A)

qUi (t) =
∏
j

(1 − bjip
AI
j (t)𝛽U) (66)

where pAj = pAIj + pASj . Using Equation (66) one can develop the
Microscopic Markov Chains for the coupled processes for each
node i as

pUSi (t + 1) = pAIi (t)𝛿𝜇 + pUSi (t)ri(t)q
U
i (t) + pASi 𝛿qUi (t) (67)

pASi (t + 1) = pAIi (t)(1 − 𝛿)𝜇 + pUSi (1 − ri(t))q
A
i (t)

+ pASi (t)(1 − 𝛿)qAi (t) (68)

pAIi (t + 1) = pAIi (t)(1 − 𝜇) + pUSi

[
(1 − ri(t))(1 − qAi (t))

+ ri(t)(1 − qUi (t))
]

+ pASi (t)
[
𝛿(1 − qUi (t)) + (1 − 𝛿)(1 − qAi (t))

]
(69)

By iteratively solving the aforementioned equations, the au-
thors demonstrate how the evolution of epidemics and the flow of
information about awareness significantly alter our understand-
ing of epidemic dynamics in more realistic settings.
A comprehensive generalization is presented in ref. [63] where

the authors’ model encompasses all transitions deemed plau-
sible for both disease contagion processes and rumor prop-
agation. The model is demonstrated to encapsulate not only
conventional spreading mechanisms but also integrates criti-
cal attributes pertinent to social dynamics, including apathy,
the phenomenon of forgetting, and the fluctuation of interest
levels.

5.2. Competing Spreading Processes

A prototypical example of competing spreading processes in-
volves the interaction between multiple pathogens spreading
across networks that connect a given set of nodes. An out-
break of a first pathogen that provides immunity to another,
subsequently spreading on a second network connecting the
same set of nodes, is most effective when the degrees of con-
nectivity in the two networks are positively correlated. Con-
versely, if the degrees are uncorrelated or negatively correlated,
increasing heterogeneity diminishes the capacity of the first
process to prevent the second one from reaching epidemic
proportions.[64]

The MMCA formulation for this novel setup is detailed in ref.
[61, 65, 66] employing a methodology similar to that outlined in
the preceding section. This formulation accommodates the state
transitions from unaware to aware, which, in the context of two
diseases, parallels the transition from susceptible to infected for
a second disease. Within this framework, the two dynamical pro-
cesses have the potential to either enhance each other’s preva-
lence or inhibit the spread of one disease by the other.[67]

Start by assuming that contagion processes are dictated by an
unweighted and undirected contact network of N nodes, each
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representing an agent, with interactions determined by the L
links of the network. The network is described by its adjacency
matrix A, whose entries are defined as Aij = 1 if nodes i and j
are connected and Aij = 0 otherwise. For the spreading dynam-
ics, each disease 𝛼 can be individually modeled by a Susceptible-
Infected-Susceptible (SIS) framework, where the contagion and
recovery probabilities are denoted by p𝛼 and r𝛼 , respectively. In
the absence of other pathogens, each disease 𝛼 spreads from an
infected agent to a susceptible one with probability p𝛼 , while in-
fected agents revert to being susceptible with probability r𝛼 . Here,
for the sake of simplicity, restricting the analysis to the case of
two interacting diseases, such that 𝛼 = 1, 2. The interaction be-
tween the two diseases requires coupling two SIS dynamics. Con-
sequently, agents subjected to a double SIS dynamic can be in one
of four possible states: susceptible to both diseases (SS), infected
by the first disease and susceptible to the second (IS), susceptible
to the first and infected by the second (SI), and infected by both
pathogens (II).
The authors describe the transitions governing the two cou-

pled SIS dynamics, i.e., defining the transition probabilities be-
tween the four epidemic states previously mentioned. Initially,
for healthy (SS) agents, it is considered that the probability of
being infected with pathogen 𝛼 is not affected by the presence of
the other. Therefore, both pathogens are transmitted to SS agents
with probabilities p1 and p2, respectively. To apply the authors’
model to mutually exclusive diseases, double contagions of fully
susceptible agents are forbidden.
The interaction between both circulating diseases is incorpo-

rated via a scaling parameter, q, affecting the probability that an
agent already infected by one disease catches the other one. Thus,
q < 1 implies that agents infected by one disease are less likely
to get the other one, encoding a competition between both dis-
eases. Conversely, q > 1 suggests that being affected by one dis-
ease boosts the contagion by the other, corresponding to a coop-
erative regime. Finally, all recovery processes are assumed to be
independent of the circulation of other pathogens, so that indi-
viduals overcome diseases 1 and 2 with probabilities r1 and r2, re-
spectively.
Mathematically, the formalism developed by the authors com-

prises a set of interdependent Markovian equations enabling the
tracking of the temporal evolution of the dynamical state of each
agent i. Since there are four possible epidemic states for each of
the N agents, 3N equations are required to completely charac-
terize the evolution of the network. Given an agent, say i, the au-
thors denote as [𝜌𝛾 ]ti the probability that this agent belongs to each
of the following states 𝛾 (𝛾 = IS, SI, II) at time t. Under the mi-
croscopical rules defined above, the temporal evolution of these
probabilities is as follows:

[𝜌II]t+1i = [𝜌SI]ti(1 − r2)

(
1 −

N∏
j

[
1 − Aijp1q

(
[𝜌IS]tj + [𝜌II]tj

)])

+ [𝜌IS]ti(1 − r1)

(
1 −

N∏
j

[
1 − Aijp2q

(
[𝜌SI]tj + [𝜌II]tj

)])

+ [𝜌II]ti
(
1 − r1

)(
1 − r2

)
(70)

[
𝜌IS

]t+1
i

= [𝜌SI]ti

[
r2

(
1 −

N∏
j

[
1 − Aijp1q([𝜌

IS]tj + [𝜌II]tj)
])]

+ [𝜌IS]ti
(
1 − r1

) N∏
j

[
1 − Aijp2q([𝜌

SI]tj + [𝜌II]tj)
]

+ [𝜌II]tir2(1 − r1)

+
[
𝜌SS

]t
i

(
1 −

N∏
j

[
1 − Aij

(
p1([𝜌

IS]tj + [𝜌II]tj) + p2([𝜌
SI]tj

+ [𝜌II]tj) − p1p2[𝜌
II]tj

)])
fIS (71)

[
𝜌SI

]t+1
i

= [𝜌IS]ti

[
r1

(
1 −

N∏
j

[
1 − Aijp2q([𝜌

SI]tj + [𝜌II]tj)
])]

+ [𝜌SI]ti
(
1 − r2

) N∏
j

[
1 − Aijp1q([𝜌

IS]tj + [𝜌II]tj)
]

+ [𝜌II]tir1(1 − r2)

+
[
𝜌SS

]t
i

(
1 −

N∏
j

[
1 − Aij

(
p1([𝜌

IS]tj + [𝜌II]tj) + p2([𝜌
SI]tj

+ [𝜌II]tj) − p1p2[𝜌
II]tj

)])
fSI (72)

For the sake of readability, the variable
[
𝜌SS

]t
i
is included,

whose value is automatically calculated as 1 −
[
𝜌IS

]t
i
−

[
𝜌SI

]t
i
−[

𝜌II
]t
i
. Note that the contagion processes involving totally suscep-

tible (SS) agents are influenced by fIS and fSI. These factors rep-
resent the probability of contracting one disease when exposed
to the other pathogen. To define this probability, a rule is estab-
lished for the scenario in which a fully susceptible agent is in
contact with both pathogens when interacting with its neighbors.
Here, each disease will be contracted with the same probability.
Accordingly, the probabilities fIS and fSI are defined as:

fIS =
gIS

(
1 − 0.5gSI

)
gIS

(
1 − 0.5gSI

)
+ gSI

(
1 − 0.5gIS

) (73)

fSI =
gSI

(
1 − 0.5gIS

)
gIS

(
1 − 0.5gSI

)
+ gSI

(
1 − 0.5gIS

) (74)

where gIS and gSI are the probabilities ofmaking at least one infec-
tious contact with individuals affected by the first and the second
disease, respectively. These probabilities are expressed as:

gIS = 1 −
N∏
j

[
1 − Aijp1

(
[𝜌IS]tj + [𝜌II]tj

)]
(75)
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gSI = 1 −
N∏
j

[
1 − Aijp2

(
[𝜌SI]tj + [𝜌II]tj

)]
(76)

With these equations, the authors complete the Markovian de-
scription for two interacting diseases. The extension to more in-
teracting diseases will follow the same strategy presented here,
but accounting for more parameters of interaction.

6. Microscopic Markov Chain Approach to
Metapopulation Dynamics

A critical inquiry pertains to the applicability of the MMCA
beyond contacts networks, e.g., when the mutual interactions
between agents (contacts with infected neighbors) is comple-
mented by their spatial spread (mobility) as a second driver of
the onset of epidemic outbreaks. To address the geographical
spread of diseases one should rely on metapopulation frame-
works that allow to formulate reaction-diffusionmodels in which
the MMCA can offer useful insights and, as we show below, can
be empirically validated during real epidemic scenarios.
Over the past decade, the exploration of metapopulation dy-

namics has embarked on a quest to bridge the gap toward the re-
alism of mechanistic simulations,[68] progressively embedding a
more comprehensive understanding of human behavior andmo-
bility patterns.[69,70] The pioneering efforts in this realm, marked
by the intricate analysis of human mobility networks,[71–74] have
consistently highlighted the significance of the recurrent nature
of humanmovements, especially pertinent at urban and regional
scales.[75–80] These insights have not only enhanced our grasp
of mobility’s complexity but also underscored its critical role in
shaping interactions within and across communities.[81–83]

In response to these challenges, the MMCA has been instru-
mental to tackle the analysis of a family of metapopulation mod-
els that aim at capturing human flows especially at urban or re-
gional scales. Here we summarize the main framework of these
models as well as their application to the dynamics of SARS-CoV-
2 epidemics. For a complete review on the subject we refer to ref.
[84].

6.1. The Basic MIR Model

In the context of epidemic spreading at urban or regional scales,
it is essential to consider the recurrent nature of human mobil-
ity, as it plays a critical role in shaping the patterns of interac-
tion and disease spread within and between communities. The
characterization of these mobility patterns is effectively accom-
plished through the use of Origin–Destination (OD) matrices,
which serve as a quantitative framework for understanding the
daily movements of individuals across different subpopulations
or patches within a metapopulation.
The former recurrent mobility patterns can be accurately

modeled by the so-called Movement-Interaction-Return (MIR)
model.[85] This model assigns each individual to a home subpop-
ulation and models their daily movements through a three-stage
process within each time step: diffusion, where individuals de-
cide to move to a different patch or stay in their residential patch
with probability pd; reaction, involving interactions between indi-
viduals present in the same subpopulation at time t; and return,

where individuals whomoved return to their original subpopula-
tions, incorporating household-level interactions as highlighted
by Granell andMucha.[86] This framework allows us to differenti-
ate between daytime (D) and nighttime (N) interactions, includ-
ing those with household members.
The formalism of the MIR model leverages the OD matrix to

delineate the mobility flows within a metapopulation, further en-
riched by demographic data from each subpopulation. This setup
enables the development of MMCA equations that capture the
evolution of the epidemic compartments across patches. In the
case of the SIS dynamics, the MIR model is then characterized
by the evolution of the infection probabilities across the patches
{𝜌i(t)}, encapsulated in the equations:

𝜌i(t + 1) = (1 − 𝜇)𝜌i(t) + (1 − 𝜌i(t))Πi(t) (77)

where Πi(t) is the probability that a resident of patch i becomes
infected at time t:

Πi(t) = (1 − pd)
[
PD
i (t) + (1 − PD

i (t))P
N
i (t)

]
+ pd

N∑
j=1

Rij

[
PD
j (t) + (1 − PD

j (t))P
N
i (t)

]
(78)

The former expression effectively separates the probability of in-
fection into two distinct scenarios: one where the infection oc-
curs within an individual’s home patch i, and another where the
infection takes place in a different patch j. The relative likelihood
of these events is determined by the parameters (1 − pd) and pd,
respectively. Thus, pd represents the crucial parameter for mod-
ulating the extent of spatial movement and, consequently, the
spread of the disease across patches. Moreover, the computation
of the second term in the r.h.s. leverages the R matrix in which
each element Rij signifies the probability that an individual, orig-
inally from patch i, visits patch j. This R matrix, derived from
the Origin–Destination (OD) matrix with entries Rij = nij∕

∑
l nil,

adheres to the properties of a row stochastic matrix, ensuring
that the sum of probabilities for all possible destinations from
any given patch equals one, i.e.,

∑N
j=1 Rij = 1 for all i. Thus, in

this context theMMCCA framework not only facilitates a realistic
representation of movement patterns within the population but
also enables precise modulation of the system’s spatial dynamics
through pd.
Finally, in Equation (78) the probability of infection at any

given location during the day (denoted as D) and within house-
holds at night (denoted as N) is represented by two distinct sets
of probabilities, PD

i (t) and PN
i (t). These probabilities, crucial for

understanding the spread of infection, are given by the following
equations:

PD
i (t) = 1 −

(
1 − 𝛽

Ieffi (t)

neffi

)zDfi

(79)

PN
i (t) = 1 −

(
1 − 𝛽𝜌i(t)

)zN𝜎i (80)

where, as usual in this review, 𝛽 is the disease’s transmission
probability per contact. These equations account for interactions
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that occur outside the household during the day and those within
households at night. The effective number of infected individuals
(Ieffi ) and the effective population (neffi ) in a patch after mobility
phases are factored into these probabilities, and are defined as:

neffi =
N∑
j=1

[
(1 − pd)𝛿ij + pdRji

]
nj (81)

Ieffi =
N∑
j=1

[
(1 − pd)𝛿ij + pdRji

]
nj𝜌j(t) (82)

Equipped with these two quantities one can compute the proba-
bility of finding an infectious individual in patch i as the ration
Ieffi (t)∕n

eff
i , as used in Equation (79). Finally, Equations (79) and

(80) compute the total number of contacts during daytime (zDfi)
and the number of contacts within households at night (zN𝜎i)
respectively. Here, fi relates to the density of the population in a
patch, and 𝜎i reflects the average household size in patch i. These
metrics are key for capturing the variability in contact patterns
among different patches.
Beyond the agreement of the MMCA formulation of the MIR

model withmechanistic simulations, themodel delineates an an-
alytical expression for the epidemic threshold, determined after
the linear stability analysis of the disease-free equilibrium and
with the following expression

𝜆c =
𝜇

Λmax(M)
(83)

where Λmax(M) represents the maximum eigenvalue of a matrix
M called the mixing matrix whose (i, j) entry reads:

Mij =

[(
(1 − pd)

2 z
Dfi
neffi

+
zN𝜎i
ni

)
𝛿ij

+ pd(1 − pd)

(
Rji

zDfi
neffi

+ Rij

zDfj

neffj

)

+ p2d

N∑
l=1

RilRjl

zDfl
neffl

]
nj (84)

The mixing matrix is a central object since it encapsulates the
three fundamental interactions through which individuals from
patches i and j engage with one another, each being modulated
by the mobility parameter pd. In this regard, a particularly inno-
vative aspect of this approach emerges in the analysis of how the
epidemic threshold is influenced by the mobility parameter pd.
Contrary to initial expectations, it is observed that higher mobil-
ity can actually contribute to reducing the overall prevalence of
the epidemic, thereby elevating the threshold required for an epi-
demic to sustain itself. This intriguing outcome, called epidemic
detriment by mobility,[85,87] arises from the model’s ability to ac-
curately reflect the diverse demographic structures of real-world
urban and regional settings, along with the specific patterns of
commuting that characterize human mobility.
The model reviewed here is the simplest version of a fam-

ily of models to capture different ingredients that are not in-
cluded in the original formulation. The generalization to mul-

tiplex metapopulations,[88] the inclusion of heterogeneous visit
times[89] and contact patterns[90] at destinations, or the ability to
distinguish residents of each metapopulation according to their
usual destination.[91] These and other refinements to the MMCA
of the MIRmetapopulation model can be consulted in the recent
review.[84]

6.2. Application to Real-World Epidemics

Among the insights that the MIRmodel offers to disentangle the
influence of mobility to the onset of the epidemic, the analytical
expression of the epidemic threshold provided by the MMCA is
essential for identifying the conditions under which an epidemic
can propagate through ametapopulation, thereby guiding the de-
velopment of strategic interventions and containment measures.
The direct application of the MMCA to MIR models, specially

tailored for particular communicable diseases and epidemic in-
terventions, has proven useful and informative to health au-
thorities. Importantly, the Markovian framework adapted to the
unique transmission dynamics of the disease in question, has
been instrumental in assessing the progression and impact of
epidemics, including COVID-19 across various countries[92–94]

and dengue.[95,96] Likewise, the MIRmodel has been leveraged to
enhance the efficiency of resource distribution in epidemic con-
trol efforts,[97] such as employingWolbachia-infectedmosquitoes
to combat dengue,[98] and in evaluating the significant role of
individual[99] and collective[100] awareness in disease mitigation.
To illustrate how the basic MMCA formulation of the MIR

model can be adapted to study specific diseases, let’s consider
its application to SARS-CoV-2 transmission analysis.[92] In terms
of transmission, the model accounted for the significant role of
asymptomatic infections, which constitute ≈ 40%[101] of cases, in
the concealed spread of the disease during its early stages. This
covert spread leads to a delayed enactment of containment mea-
sures, which are traditionally based on the observed incidence of
symptomatic cases. From a clinical perspective, the model con-
siders the extended hospitalization durations required by severe
cases, particularly those necessitating intensive care unit (ICU)
admission, as the saturation of these facilities poses a major po-
litical and healthcare challenge during COVID-19 epidemics.
To synthesize this knowledge within a unified framework, the

authors develop an epidemiological model featuring ten com-
partments that delineate the epidemiological and clinical sta-
tuses of individuals across different patches within the metapop-
ulation. Moreover, the model segregates these compartments
into three age strata—youth, adults, and older adults—to reflect
the epidemiological, clinical, and behavioral disparities among
these groups. Importation and exportation events of SARS-CoV-
2 between patches are predominantly attributed to the mobility
of the active population. Conversely, the clinical progression of
COVID-19 varies significantly across age groups,[102–104] with in-
fections in younger individuals often resulting in negligible or
mild symptoms,[105] whereas older individuals tend to develop se-
vere symptoms necessitating hospitalization.
The intricate structure of the metapopulation model enables

the authors to design and assess the efficacy of containment
strategies aimed at halting the spread of SARS-CoV-2. Specifi-
cally, the model concentrates on policies that employ global or
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Figure 5. Compartments of the COVID-19 epidemic model. a) We show the compartments and the corresponding transitions between them of the
model developed to capture the epidemiological and clinical evolution of COVID-19 cases. The acronyms correspond to: susceptible (S), exposed (E),
asymptomatic infectious (A), symptomatic infectious (I), pre-hospitalized in ICU (PH), pre-deceased (PD), in ICU before recovery (HR), in ICU before
death (HD), deceased (D), and recovered (R). The arrows indicate the transition probabilities. The model takes into account three different groups:
young (0–25 years old), adults (26–65 years old), and elderly (> 65 years old). In panel (b) we show the connectivity matrix among age groups and in
(c) we highlight the most visited compartments for each of the groups, pinpointing that the epidemiological and clinical evolution is age-specific.

targeted quarantine measures, given their critical importance in
influencing the pandemic’s trajectory. The model facilitates the
incorporation of the temporal evolution of the confined popula-
tion fraction and the evaluation of lockdown policies to curtail
the pandemic. Leveraging this feature, the authors examine vari-
ous epidemic scenarios influenced by distinct containment mea-
sures, assessing their effects on reducing epidemic prevalence
and alleviating the strain on Spain’s healthcare system during
March, April, and May 2020. Notably, the model allows for the
determination of the minimal confinement level required to pre-
vent a healthcare system collapse while minimizing disruptions
to the country’s economic structure.
Suppose a population of N individuals distributed in NP re-

gions, with ni individuals residing in region (patch) i. Also con-
sider that individuals belong to one of NG different age strata, in
such a way that ngi individuals of age strata g live in region i. Thus,

N =
NG∑
g=1

NP∑
i=1

ngi =
NP∑
i=1

ni =
NG∑
g=1

ng (85)

where ng is the total population of age strata g (Figure 5).
The system is completely characterized by variables 𝜌

m,g
i (t)

which account for the probabilities that individuals of age stra-
tum g assigned to patch i are in state m at time t, where m ∈
{S, E, A, I, PH, PD,HR,HD, R,D} and g ∈ {Y,M,O}. The temporal
evolution of these quantities is given by:

𝜌
S,g
i (t + 1) = 𝜌

S,g
i (t) (1 − Πg

i (t)) (86)

𝜌
E,g
i (t + 1) = 𝜌

S,g
i (t)Πg

i (t) + (1 − 𝜂g ) 𝜌E,gi (t) (87)

𝜌
A,g
i (t + 1) = 𝜂g 𝜌

E,g
i (t) + (1 − 𝛼g ) 𝜌A,gi (t) (88)

𝜌
I,g
i (t + 1) = 𝛼g 𝜌

A,g
i (t) + (1 − 𝜇g ) 𝜌I,gi (t) (89)

𝜌
PD,g
i (t + 1) = 𝜇g 𝜃g 𝜌

I,g
i (t) + (1 − 𝜁 g ) 𝜌PD,gi (t) (90)

𝜌
PH,g
i (t + 1) = 𝜇g (1 − 𝜃g ) 𝛾g 𝜌I,gi (t) + (1 − 𝜆g ) 𝜌PH,gi (t) (91)

𝜌
R,g
i (t + 1) = 𝜇g (1 − 𝜃g ) (1 − 𝛾g ) 𝜌I,gi (t) + 𝜒 g 𝜌

HR,g
i (t) + 𝜌

R,g
i (t) (92)

𝜌
HD,g
i (t + 1) = 𝜆g 𝜔g 𝜌

PH,g
i (t) + (1 − 𝜓 g ) 𝜌HD,g

i (t) (93)

𝜌
HR,g
i (t + 1) = 𝜆g (1 − 𝜔g ) 𝜌PH,gi (t) + (1 − 𝜒 g ) 𝜌HR,g

i (t) (94)

𝜌
D,g
i (t + 1) = 𝜁 g 𝜌

PD,g
i (t) + 𝜓 g 𝜌

HD,g
i (t) + 𝜌

D,g
i (t) (95)

TheseMMCA equations correspond to a discrete-time dynamics,
in which each time-step represents a day. Note that the sum over
all 𝜌m,gi (t) for a given patch i and age group g equals 1 for each
time step t.
The essence of the described compartmental dynamics cen-

ters on the infection process: susceptible individuals become ex-
posed through contact with asymptomatic and symptomatic car-
riers at a probability Πg

i (t). These exposed individuals may be-
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come asymptomatic with probability rate 𝜂g , later becoming in-
fectious at rate 𝛼g . Once infected, three paths emerge, which are
reached at an infectious rate 𝜇g . The first one is death without
ICU admission at probability 𝜃g , after a latency period governed
by rate 𝜁 g . Otherwise, with probability 𝛾g the individuals are hos-
pitalized in the ICU, which is reached at rate 𝜆g , while with prob-
ability 1 − 𝛾g they recover. Individuals in the ICU have a fatality
probability𝜔g , which is reached at a rate𝜓 g , whereas the recovery
is reached at a rate 𝜒 g .
The study introduces a new way to derive an expression for

the effective reproduction number, (t), from the MMCA equa-
tions that encapsulate both the epidemiological traits of COVID-
19 and the social dynamics facilitating its spread. This measure
is critical for assessing non-pharmacological interventions’ effec-
tiveness, allowing for targeted, minimal-impact strategies.
Focusing on Spain’s outbreak, the research evaluates various

confinement levels (𝜅0) and their effects on epidemic control by
examining (t) at the start of containment (tc). This analysis
reveals a critical confinement threshold (𝜅c

0) distinguishing be-
tween a supercritical scenario, where(tc) > 1, merely flattening
the epidemic curve, and a subcritical scenario, (tc) < 1, which
significantly alters the social contact structure, effectively hinder-
ing viral transmission. This threshold’s effectiveness is intricately
linked to the specific social structure andmobility patterns inher-
ent to the population. Moreover, its efficacy is contingent upon
the timing of its application, reflecting the then-available suscep-
tible population pool that can be effectively isolated. The univer-
sality of the (t) expression derived from the MMCA facilitates
its application across varied populations and can be integrated
with anymetapopulation epidemicmodel. This paves the way for
the formulation and implementation of timely, evidence-based,
and socially considerate non-pharmacological strategies.

7. Conclusion and Perspectives

The Microscopic Markov Chain Approach (MMCA) has been
thoroughly examined as a framework for modeling probabilis-
tic spreading processes on networks within a discrete-time con-
text. Thismethodology is distinguished by itsmathematical rigor,
computational efficiency, and empirical fidelity,making it a viable
tool for practical applications.
Alternative models operating in continuous time are available;

however, the derivation of MMCA equations does not invari-
ably stem from the discretization of such continuous dynamics.
This distinction arises due to the potential occurrence of mul-
tiple concurrent events within a discrete time window, which
aligns with the granularity of data availability. This nuance was
notably evidenced in the context of COVID-19 forecasting, where
the discrete-timeMMCA framework provided a critical analytical
tool for predicting disease spread, underscoring the importance
of adapting model temporal resolution to align with empirical
data characteristics.
Within the scope of future research trajectories employing the

Microscopic Markov Chain Approach (MMCA) formalism, three
prominent avenues emerge. First, the extension of MMCA to en-
capsulate dynamical processes on hypergraphs presents a signif-
icant opportunity. This adaptation would enable the modeling
of complex interactions beyond pairwise relationships, thereby
capturing the multidimensional interplay characteristic of nu-

merous real-world systems. Although this extension has already
started, it is still limited to certain structures and dynamics, thus
with a long way to go. Second, the exploration of dynamically
evolving spreading processes, wherein both the parameters and
the nature of the dynamics themselves exhibit temporal varia-
tion, holds considerable promise. An illustrative case pertains
to the dissemination and concurrent evolution of ideas, a do-
main where MMCA could provide profound insights. By inte-
grating the dynamics of idea propagation with the inherent evo-
lution of the ideas themselves, this approach harbors the poten-
tial to unravel the intricate mechanisms governing information
flow and transformation. Lastly, although the current research
in MMCA has predominantly focused on spreading processes,
the framework’s versatility could be extended to a broader spec-
trum of applications. For instance, MMCA could be leveraged to
model competition dynamics such as evolutionary games, offer-
ing a comprehensive understanding of the underlying mecha-
nisms driving these processes.
Collectively, these research directions underscore the versatil-

ity and prospective utility of MMCA in addressing sophisticated
problems in the realm of network dynamics, promising to illu-
minate complex phenomena in the next future.
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