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We investigate the adaptation and performance of modularity-based algorithms, designed in the

scope of complex networks, to analyze the mesoscopic structure of correlation matrices. Using a

multiresolution analysis, we are able to describe the structure of the data in terms of clusters at

different topological levels. We demonstrate the applicability of our findings in two different

scenarios: to analyze the neural connectivity of the nematode Caenorhabditis elegans and to

automatically classify a typical benchmark of unsupervised clustering, the Iris dataset, with

considerable success. VC 2011 American Institute of Physics. [doi:10.1063/1.3560932]

Facing the famous Salvador Dali’s painting “Gala con-

templating the Mediterranean sea which at twenty

meters becomes a portrait of Abraham Lincoln,” we have

the best proof of how a complex system reveals different

information when observed at different (in this case

length) scales. We proposed a method
1

to unveil the

equivalent phenomena in the description of complex net-

works from a topological perspective. By defining a pa-

rameter that controls the resistance of each node to

belong to a group, we are able to analyze the community

structure of the network at different topological scales.

We apply the method to the exploratory analysis of

the structural connectivity of the neuronal system of

Caenorhabditis elegans and find a tentative classification

of functional activity of groups of neurons at certain top-

ological scales. We also have tested the method to auto-

matically classify a typical benchmark of unsupervised

data clustering, the Iris dataset. These results pave the

way to the applicability of community detection algo-

rithms in complex networks to the exploration and classi-

fication of real datasets.

I. INTRODUCTION

Complex networks are graphs representative of the intri-

cate connections between elements in many natural and arti-

ficial systems,2–4 whose description in terms of statistical

properties has been largely developed in the course for a uni-

versal classification of them. However, when the networks

are locally analyzed, some characteristics that become par-

tially hidden in the statistical description emerge. The most

relevant perhaps is the discovery in many of them of commu-
nity structure, meaning the existence of densely (or strongly)

connected groups of nodes, with sparse (or weak) connec-

tions between them.5

The study of the community structure helps to elucidate

the organization of the networks and, eventually, could be

related to the functionality of groups of nodes.6 The most suc-

cessful solutions to the community detection problem, in

terms of accuracy, are those based in the optimization of a

quality function called modularity proposed by Newman and

Girvan,7 which allows the comparison of different partitioning

of the network. Given a network partitioned into communities,

being Ci the community to which node i is assigned, the math-

ematical definition of modularity is expressed in terms of the

weighted adjacency matrix wij, that represents the value of the

weight in the link between nodes i and j; this weight would be

0 if no link existed, and the strengths wi ¼
P

j wij as 8

Q ¼ 1

2w

X
i

X
j

wij �
wiwj

2w

� �
dðCi;CjÞ; (1)

where the Kronecker delta function dðCi;CjÞ takes the values,

1 if node i and j are into the same community, 0 otherwise,

and the total strength 2w ¼
P

i wi. The modularity of a given

partition is then the probability of having edges falling within

groups in the network minus the expected probability in an

equivalent (null case) network with the same number of

nodes, and edges placed at random preserving the nodes’

strength. The larger the modularity, the best the partitioning

is, causing more deviates from the null case. Note that the

optimization of the modularity cannot be performed by ex-

haustive search since the number of different partitions is

equal to the Bell9 or exponential numbers, which grow at

least exponentially in the number of nodes N. Indeed, optimi-

zation of modularity is a NP-hard (nondeterministic polyno-

mial-time hard) problem.10 Several authors have attacked the

problem, with considerable success, by proposing different

optimization heuristics,11–16 see Fortunato17 for a review.

By maximizing modularity, one obtains the “best” parti-

tion of the network into communities. This partition represents

an intermediate topological scale of organization, or meso-

scale, which, in many cases, has been shown to coincide with

known information about subdivisions in the network.7,18

However, recently, it has been pointed out that the optimiza-

tion of the modularity has a characteristic scale related to thea)Electronic mail: alex.arenas@urv.cat.
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number of links in the network that delimits the resolution

beyond which no separation into smaller groups can be

obtained when optimizing modularity, even though these

smaller partitions, and then different levels of description, are

plausible to exist from direct observation.19 The problem

seems then that modularity, as it has been prescribed, does not

have access to these other levels of description, and then its

direct interpretation must be cautiously used.20 The reason for

this is that the topological scale at which we have access by

maximizing modularity has a topological resolution limit. The

analogy with the observation of Dali’s painting is clear, modu-

larity is our tool to “observe’ a complex network, and their

limit is equivalent of a limit in the distance at which we

observe the painting (Fig. 1).

We proposed a method1 that allows the full screening of

the topological structure at any resolution level using the

original formulation and semantics of modularity, overcom-

ing then the resolution limit. Our aim is to take advantage of

this method to analyze real datasets in terms of clustering.

The paper is structured as follows: in Sec. II, we over-

view the multiple resolution method. Once the method has

been presented, we propose its application for exploratory

analysis in the topology of the neural network of the nema-

tode C. elegans in Sec. III, and its application to data cluster-

ing in Sec. IV. Finally, we present the conclusions of the

work in Sec. V.

II. MULTIPLE RESOLUTION METHOD

In this section, we provide the necessary tools to extend

the multiple resolution method to the most general case of

networks with weighted signed directed links.

A. General formulation of modularity

The generalization of modularity to any network, with

weighted, directed, and signed values of the weights21 is as

follows. Let us suppose that we have a weighted undirected

complex network with weights wij as above. The relative

strength pi of a node,

pi ¼
wi

2w
; (2)

may be interpreted as the probability that this node makes

links to other ones if the network were random. This is pre-

cisely the approach taken by Newman and Girvan to define

the modularity null case term, which reads as

pipj ¼
wiwj

ð2wÞ2
: (3)

The introduction of negative weights destroys this probabil-

istic interpretation of pi, since, in this case, the values of pi

are not guaranteed to be between 0 and 1. The problem is the

implicit hypothesis that there is only one unique probability

to link nodes, which involves both positive and negative

weights. To solve this problem, we have to introduce two

different probabilities to form links, one for positive and the

other for negative links.

Let us formalize this approach. First, we separate the

positive and negative weights:

wij ¼ wþij � w�ij ; (4)

where we use the notation

wþij ¼ maxf0;wijg; (5)

w�ij ¼ maxf0;�wijg: (6)

These expressions are useful since in principle we do not

know the sign of wij. The positive and negative strengths are

given by

wþi ¼
X

j

wþij ; (7)

w�i ¼
X

j

w�ij ; (8)

and the positive and negative total strengths by

2wþ ¼
X

i

wþi ¼
X

i

X
j

wþij ; (9)

2w� ¼
X

i

w�i ¼
X

i

X
j

w�ij : (10)

Consequently,

wi ¼ wþi � w�i (11)

and

2w ¼ 2wþ � 2w�: (12)

With these definitions in hand, the connection probabil-

ities with positive and negative weights are respectively.

pþi ¼
wþi

2wþ
; (13)

FIG. 1. (Color online) “Gala contemplating the Mediterranean sea which at

twenty meters becomes a portrait of Abraham Lincoln,” by Salvador Dali,

1974. Left, at closer distance, and right, at larger distance.
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p�i ¼
w�i
2w�

; (14)

Now, there are two terms that contribute to modularity: the

first one takes into account the deviation of actual positive

weights against a null case random network given by proba-

bilities pþi , and the other is its counterpart for negative

weights. Thus, it is useful to define

Qþ ¼ 1

2wþ

X
i

X
j

wþij �
wþi wþj
2wþ

 !
dðCi;CjÞ; (15)

Q� ¼ 1

2w�

X
i

X
j

w�ij �
w�i w�j
2w�

� �
dðCi;CjÞ: (16)

The total modularity must be a trade off between the

tendency of positive weights to form communities and that

of negative weights to destroy them. If we want that Qþ and

Q� contribute to modularity proportionally to their respec-

tive positive and negative strengths, the final expression for

modularity Q is

Q ¼ 2wþ

2wþ þ 2w�
Qþ � 2w�

2wþ þ 2w�
Q�: (17)

An alternative equivalent form for modularity Q is

Q ¼ 1

2wþ þ 2w�

X
i

X
j

wij �
wþi wþj
2wþ

�
w�i w�j
2w�

 !" #

� dðCi;CjÞ: (18)

The main properties of Eq. (18) are the following: with-

out negative weights, the standard modularity is recovered;

modularity is zero when all nodes are together in one com-

munity; and it is antisymmetric in the weights, i.e.,

QðC; fwijgÞ ¼ �QðC; f�wijgÞ.
The extension to directed networks22 is simply obtained

by the substitutions in Eq. (18) of

w6
i ! w6;out

i ¼
X

k

w6
ik ; (19)

w6
j ! w6;in

j ¼
X

k

w6
kj : (20)

B. Mesocales analysis for weighted signed networks

The extension of the multiple resolution method1 to the

general case of weighted signed networks follows the same

original idea. The method relies on the introduction of a mag-

nitude r that we call resistance, represented by a self-link for

each node, which stands for the opposition of a node to belong

to a group, in the sense of modularity. We tune the resistance

uniformly for all nodes because, in this way, the functional

form of the strength distribution is preserved and does not dis-

tort the relative structural properties of nodes. More precisely,

the formulation of modularity Qr at different resolution scales

tagged by r consists in substituting in Eq. (18)

wij ! wij þ rdij; (21)

w6
i ! w6

i þ r6; (22)

2w6 ! 2w6 þ Nr6; (23)

where

r ¼ rþ � r�; (24)

and

rþ ¼ maxf0; rg; (25)

r� ¼ maxf0;�rg: (26)

The topological scale determined by maximizing Q at

which the detection of community structure has been

attacked so far corresponds to r¼ 0 (Newman’s scale). For

positive values of r, we have access to the substructure

below r¼ 0, and for negative values of r, we have access to

the superstructures. For negative values of r, the resistance

should be understood as an affinity of nodes to belong to the

same group, and using Eq. (1), the formulation is still pre-

served but not the semantics in terms of probabilities. The

main challenge in this new scenario is that the limiting cases

of r that corresponds to the partition of individual nodes and

to the whole network as a unique module have to be com-

puted using the new modularity formulation Eq. (18).

C. Resistance limiting cases for weighted signed
networks

Here we present the mathematical proofs of the physical

limiting cases of the resistance for weighted signed net-

works. Let us call rmax the limit of resistance for which all

nodes are isolated in communities of size 1, and rmin the

limit for which all nodes become members of a single group

that represents the whole network. To determine rmax, we

look for a value of the resistance such that the increment in

modularity when joining any pair of vertices in the same

community is negative, and the contrary for rmin. The idea is

the following: if r> 0 and all the nondiagonal terms (i 6¼ j)
of Eq. (18) are negative,

wij �
ðwþi þ rÞðwþj þ rÞ

2wþ þ Nr
�

w�i w�j
2w�

; 8i 6¼ j; (27)

then the maximum of Qr is achieved with the partition that

satisfies dðCi;CjÞ ¼ 0 for all i 6¼ j, i.e., the partition in which

all nodes are isolated. Equation (27) forms a system of sec-

ond order in equations in r. After some algebra, it can be

shown that rmax is the lowest value of r for which the follow-

ing set of inequalities per link (denoted ij) is satisfied:

min
r;ij
½Ar2 þ Bijr þ Cij � 0�; (28)

where

A ¼ �2w�; (29)

Bij ¼ Nð2w�wij þ w�i w�j Þ � 2w�ðwþi þ wþj Þ; (30)

Cij ¼ 2w�2wþwij þ 2wþw�i w�j � 2w�wþi wþj : (31)

Equivalently, if r> 0 and all the nondiagonal terms

(i 6¼ j) of Eq. (18) are positive,
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wij �
wþi wþj
2wþ

�
ðw�i � rÞðw�j � rÞ

2w� � Nr
; 8i 6¼ j; (32)

then the maximum of Qr is achieved with the partition that satis-

fies dðCi;CjÞ ¼ 1 for all i 6¼ j, i.e., the partition in which all

nodes are together in the same community. Thus, to determine a

lower bound of rmin, we look for the largest value of r satisfying

max
r;ij
½Ar2 þ Bijr þ Cij � 0� (33)

where

A ¼ 2wþ; (34)

Bij ¼ Nð2wþwij � wþi wþj Þ þ 2wþðw�i þ w�j Þ; (35)

Cij ¼ 2wþ2w�wij � 2w�wþi wþj þ 2wþw�i w�j : (36)

The value of r obtained from Eq. (33) is only a lower

bound of the exact rmin, since these equations are only suffi-

cient conditions for the existence of a unique community hold-

ing all the nodes of the network [not all terms in Eq. (18) need

to be positive in the rmin limit]. On the other hand, Eq. (28) is a

necessary and sufficient condition, and thus the rmax found is

the exact value.

The method to unveil the mesoscales of a complex net-

work consists in to optimize Qr for r in [rmin, rmax]. Different

values of r will eventually reveal different optimal partitions

(found by heuristic algorithms to detect community structure)

that represent intermediate topological scales of the complex

network. We have applied this method to study the mesoscales

in synthetic structured networks and real complex networks.

D. Validation of the method in synthetic networks

In Fig. 2, we have screened the whole range of topologi-

cal scales for three synthetic networks, representing the num-

ber of modules obtained at the optimal partition for Qr and

plotting in a matrix the superposition of scales found. More

precisely, any graphical representation of the whole meso-

scale should take into account, for every pair of nodes, the

frequency of mesoscales at which they belong to the same

community. Each mesoscale has a natural length defined by

the range of resistances [rfrom, rto] at which it is optimal:

length ¼ logðrto � rminÞ � logðrfrom � rminÞ: (37)

Thus, the length frequency for a pair of nodes is the sum

of the lengths corresponding to mesoscales in which they

belong to the same community, normalized by the total length.

The graphical representation of this table is the frequency mes-
oscales matrix. First, we have computed the modular structure

in a hierarchical scale-free network with 125 nodes, RB 125,

proposed by Ravasz and Barabasi.23 We clearly observe persis-

tent structures in 5 and 25 communities, respectively, which

account for the subdivisions that are more significant in the

process, showing two hierarchical levels for the structure.

Another network example used is the H 13–4 network,24

which corresponds to a homogeneous in degree network with

2 predefined hierarchical levels, being 256 the number of

nodes, 13 the number of links of each node with the most in-

ternal community (formed by 16 nodes), 4 the number of links

with the most external community (4 groups of 64 nodes), and

1 more link with any other node at random in the network.

Both hierarchical levels are revealed by the method as they

correspond to the original construction of the network: the first

hierarchical level consisting in 4 groups of 64 nodes, and the

second level consisting in 16 groups of 16 nodes.

Finally, we have used the FB network proposed by For-

tunato and Barthélemy19 to demonstrate the resolution limit

of modularity (at r¼ 0). It consists in 2 cliques of 20 nodes

linked with 2 small cliques of 5 nodes. At r¼ 0, the best par-

tition cannot separate the two small cliques. We observe that

the partition searched by the authors, formed by the four cli-

ques isolated in their own communities, is obtained by

increasing the resolution r, showing that the resolution limit

of modularity is overcome by the method.

The optimization of modularity in all these cases has

been performed using existing heuristics found in the litera-

ture1,14,16 and compiled in a free toolbox available at the

authors’ webpage.25

FIG. 2. (Color online) Frequency mesoscales matrices in synthetic complex

networks. We have computed the topological mesoscales for three synthetic

networks. Left, we plot the networks, and right, we present their mesoscales

matrices. The different color levels correspond to the superposition of the

structures in r, which account for the persistence of the partitions revealed.

See text for details.
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III. APPLICATION TO EXPLORATORY DATA ANALYSIS

Exploratory data analysis stands for the approach to data

analysis in which some rather general assumptions are used to

reveal information of the data in a kind of inverse hypothesis

testing. In our particular scenario, we will analyze the structure

of the neural connectivity of the nematode C. elegans26 using

this approach. We do not pretend an exhaustive biological clas-

sification of all functionalities that are related to the topology

but to show the applicability of the mesoscales analysis

described before. A pretty exhaustive analysis of the same sys-

tem has been recently presented27 for the scale corresponding

to r¼ 0. The whole nervous system of the nematode is com-

posed by 302 neurons whose anatomical and connectivity

description is completely known. The resulting network is rep-

resented as a weighted directed adjacency matrix, see Fig. 3.

We will assume that those groups of nodes more persistent

throughout the screening of the mesoscales of the topology

have some functional role, and afterward, we will look for this

role in the current biological literature.

The original data28 is a weighted and directed network,

composed of 306 vertices (302 neuronsþWE, WI, WM, and

WN) and 2359 arcs. We have discarded nine disconnected nodes

from the network; the remaining 297 neurons form a single con-

nected component and will be the subject of our analysis.

We have discretized the resistance range in 1000 non-

uniform intervals, in such a way that the last resistance incre-

ment is ten times larger than the first one, and the size of the

increments grow at a constant rate. The significant New-

man’s scale r¼ 0 has been added. The negative values of the

resistance have been discarded, since we are interested only

in substructure beyond the standard Newman’s scale.29

The order of the neurons in the matrix follows that in

Watts and Strogatz28 obtained from experimental data by

White et al.26 The detection of the mesoscales in this neuronal

system has been performed according to the method explained

in Sec. III The best partition at r¼ 0 corresponding to the orig-

inal Newman’s scale provides with five communities. The rep-

resentation of the obtained groups is depicted in Fig. 4 (left).

This figure does not allow the observation of relevant informa-

tion because of the original order of the neurons in Fig. 3; how-

ever, after ordering the neurons in the matrix by their

communities, the representation shown in Fig. 4 emerges.

The coarse graining at r¼ 0 provides then with a large

scale in this system; hence, our interest has been specially

focused in the substructural levels, not in suprastructural lev-

els, which means that we have analyzed the mesoscale for

r 2 ½0; rmax�, see gray region of Fig. 5. We used the partition

at r¼ 0 simply as a reference for sorting the neurons in the

substructures found by the multiple resolution method.

Any trial of classification of the functional role of neurons

of the C. elegans is extremely delicate because of the multi-

functional aspects they have. Many neurons participate in dif-

ferent synaptic pathways resulting in different functionalities.

This property is also captured by our method that shows that, at

different scales, the same neuron can appear in different groups,

i.e., the method is not necessarily hierarchical. However, to

extract information from the results obtained, we use an ensem-

ble of the different partitions found by screening r and construct

a frequency mesoscales matrix, indicating the relative persist-

ence of each neuron in a particular community. By fixing a

threshold in the frequency value, we are able to unravel sub-

structural scales that correspond to groups of neurons involved

in different functionalities at different time scales.

The most interesting information is that provided at a

large value of the frequency threshold, because, in this case,

FIG. 3. (Color online) Connectivity matrix of C. elegans neuronal network.

FIG. 4. Newman’s scale of the C. ele-
gans neuronal network. Left, original

order, right, reordering by communities.
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the substructures found will contain small groups of neurons

whose activity response is topologically correlated, in partic-

ular, the highlighted scales in Fig. 5 are the ones that most

contribute to the frequency matrix. We have studied the en-

semble frequency matrix at a threshold value of 0.6, Fig. 6,

the lengths below the threshold are discarded, and the con-

nected components of the graph defined by the remaining

lengths are found. We have chosen this threshold fixing the

sizes of the groups to be analyzed to be less than ten neurons.

With this information in hand, and the wide description of

each neuron found at the public database of C. elegans,30,31

we propose a tentative classification of some groups of neu-

rons by functionality.

Our purpose, after identification of individual function-

alities, has been to assign a specific action to the more persis-

tent groups of neurons. The classification obtained (see

Appendix) does not pretend to be exact but to provide biolo-

gists with a useful information for future research.

IV. APPLICATION TO THE UNSUPERVISED
CLASSIFICATION OF DATA

Unsupervised classification of data (or data clustering)

stands for the process of grouping patterns of data according

to their similarity. A pattern is a vector of features (usually

understood as a point in a multidimensional space) that

describes the item we wish to classify. The goal of the pro-

cess of data clustering is to organize these patterns into

groups, in such a way that patterns into the same group are

more alike than with other patterns in other groups.

The problem of data clustering has been the subject of in-

terest in many disciplines where the mining of raw information

is crucial to understand some phenomenon or gain insight into

a system. Typical processes where data clustering is used are

pattern analysis, decision-making, machine learning, and image

segmentation. These subjects have interesting applications as,

for example, targeted marketing, biological taxonomy, and

detecting communities of interest in the World Wide Web.32

The methodology used to obtain the clusters from the raw

data is as follows: First of all, a representation of the patterns

has to be chosen, and also a feature selection or extraction is

performed. Feature selection means choosing, from all the

available features, those that will make easier the process of

clustering, leaving the redundant, correlated, and less informa-

tive features out of the analysis. On the other hand, feature

extraction consists in transforming the original dataset to a

new one containing only the most relevant information. This

first step is very important, as the result of the clustering often

depends directly on the quality of it. Second, the similarity or

dissimilarity between each pair of patterns has to be computed,

which is often done by defining a measure of distance. The

result of this step is the similarity matrix, which, by using the

mapping to complex networks, can be understood as a graph,

where each node is a pattern and the links are the representa-

tion of the similarity.33 Finally, the main step of the process,

the grouping (or clustering) algorithm will decompose the sim-

ilarity matrix and return the groups of data.

In our approach, the algorithm used to classify the similar-

ity matrix is the multiple resolution algorithm based on modu-

larity explained previously in this document. Given the nature

of this algorithm, the result will not be a single partition into

clusters, but a collection of different partitions. This fact

deserves a reflection about how to evaluate the quality of the

output obtained. If we make a screening between the minimum

and maximum value of the resistance parameter to obtain every

topological scale of resolution of the network, each one of these

resolution levels will provide us with a partition of clusters.

Then the question is, which one of these partitions is the right

one? The answer is that every one of them is right, since what

we are doing is analyzing the network at different levels of re-

solution, and all the information obtained though this process is

found in the structure of the network. Having pointed that out,

FIG. 5. (Color online) Mesoscales of the C. elegans: number of clusters in

the optimal partition at every value of the topological scale defined by the

logðr � rminÞ, where rmin refers to the exact value, not its lower bound.

Highlighted in circle, we represent the scale that most contributes to the fre-

quency matrix.

FIG. 6. (Color online) Frequency matrix of C. elegans neuronal network

thresholded at 0.6. We used a color scale (same as in Fig. 3) to plot the per-

sistence of neurons into the same groups, darker values correspond to more

persistent communities and, according to our hypothesis in the exploratory

analysis, to specific functionalities.
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the problem of choosing the right partition is translated to that

of choosing the more relevant partitions. The more relevant par-

titions in our scope are those that persist unchanged during

larger intervals of values of the resistance parameter.

The dataset benchmark selected to perform the data

clustering is the Iris flower dataset, presented by Sir Ronald

Aylmer Fisher34 in 1936. This dataset consists of 150 pat-

terns corresponding to 3 different classes of flowers: setosa,

versicolor and virginica. Four features, the width and length

of petal and sepal, form each pattern. Plots for the cross-vari-

ables and type of flowers are represented in Fig. 7. The unsu-

pervised classification of this dataset is a major challenge in

artificial intelligence and statistical theory, because of the

patterns’ organization, while one of the classes is linearly

separable and then is easy to classify by any elemental clas-

sification algorithm; the other two classes are not linearly

separable and consequently far more difficult to classify.

Following the steps of data clustering explained above,

we first performed a feature extraction=selection process. The

idea here is simply to follow the workflow in any clustering

problem, where the high dimensionality of the data and its re-

dundancy is a main concern. In the particular case that we ana-

lyze, we can use all the original data with no computational

stress; however, we propose to address the feature extraction

using principle component analysis (PCA), which will be the

most common approach in many scenarios. We performed the

principal component analysis of the four features that form

each pattern and choose to work with the two principal compo-

nents corresponding to the largest part of the data variance. In

Fig. 8, a representation of these two components is shown.

Based on these two variables, we propose to build up a similar-

ity matrix as the euclidean distances between patterns compo-

nents with respect to the center of mass of the dataset in this

space. For any pair of flowers i and j, we define the similarity

sij ¼ �d � xi � xjk k, where �d stands for the average distance of

the set, and xi � xjk k is the euclidean distance between the fea-

ture vectors of each flower. The resulting similarity matrix is

interpreted as a weighted network whose communities will, in

principle, reproduce the right clustering of the data.

The results of the multiple resolution algorithm on the

two main components of the Iris dataset is shown in the

Fig. 9. It can be observed that the longest plateau in terms of

the resistance interval values is that formed by those parti-

tions that divide the dataset into two communities. This is

not a surprising fact, as we know beforehand that one of the

three classes of flowers is linearly separable, and then this

partition makes totally sense, since there is one for the setosa

class and the other one containing the versicolor and virgin-

ica. However, the second longest plateau is the one formed

by the three community partitions, and if we analyze the

most resistant of them, we realize that it largely corresponds

to the biological taxonomy of the flowers. To be specific, if

we calculate the success as the number of correctly classified

FIG. 7. (Color online) Feature vectors

for the Iris dataset. Colors correspon-

dence is as follows: setosa-blue, versi-

color-red, and virginica-green.

FIG. 8. (Color online) Two principal components of the PCA analysis on

the Iris dataset. Colors correspondence is as follows: setosa-blue, versicolor-

red, and virginica-green. The separation of pattern classes seems more clear

in this projection.
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nodes divided by the total number of nodes, we achieve for

the most resistant partition of three communities a 94.6% of

success compared to the correct biological taxonomy.

Summarizing, we have presented a possible application

of the multiple resolution method to the problem of data

clustering. Our proposal has been proved competitive in suc-

cess with other techniques used in the literature on the same

benchmark,35 but as an essential difference, we also provide

information of grouping at different scales of resolution that

are invisible to other algorithms. The methodology presented

so far is plausible to be extensive to any data clustering prob-

lem expressed in terms of similarity matrices.

V. CONCLUSIONS

Scientists working on the field of complex networks

have developed tools for the analysis of structural informa-

tion embedded in the topological connectivity matrix.

Especially interesting are the heuristic algorithms intended

to find the community structure of networks, which remind

the kind of problems of data clustering found in many disci-

plines. Here we have presented a possible application of

community detection algorithms to help exploratory analysis

and data clustering. In particular, we have used a previous

methodology proposed by the authors, which allows for a

multiple resolution of topological scales in the substructure

of networks.

The exploratory analysis of the neural connectivity of

the nematode C. elegans has been presented. We found a ten-

tative classification of groups of neurons presumably

involved in specific tasks, according to the persistence of

these groups in the topological analysis. We have also

exposed the applicability of the method to the unsupervised

classification of data, using the famous Iris dataset as a

benchmark. The results are encouraging; we observe the full

spectrum of clusters according to the organization of data,

and the most persistent scales are those corresponding to

well-known facts about its structure, a partition in two line-

arly separable groups, and a partition in three groups corre-

sponding to the biological taxonomy. These results open the

field of applicability of the theory of complex networks to

other problems where the representation of data as a network

allows the use of the technology developed so far.
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APPENDIX: FUNCTIONAL GROUPS OF C. elegans

Classification of functional groups of neurons resulting

from the multiple resolution method. Using the database

WormAtlas30 and the results depicted in Fig. 6, we have

identified nine groups of neurons of size lower than ten,

whose functionality can be tentatively related to a specific

action. The process to assign a tentative function to the

groups of neurons has been done manually, reading the asso-

ciated literature and using the WormAtlas database. We ex-

pose the list in Table I.

FIG. 9. Number of clusters as a function of the resolution parameter of the

classification method (see text for details).

TABLE I. Temptative functionality of several significant groups of neurons

found in the mesoscale.

Cluster of neurons Tentative function

RIAL, RIAR, RMDR,

RMDVR, SMDVR, RMDDL,

SMDDR

Nose=head orientation movement

IL1DR, IL1VR, IL2DR,

IL2VR, RIPR

Head-withdrawal reflex, more related to

dorsal relaxation. When worms are

touched on either the dorsal or ventral

sides of their nose with an eyelash, they

interrupt the normal pattern of foraging

and undergo an aversive head-with-

drawal reflex

IL2, IL2R, OLQVL,

OLQVR, RIH

Head-withdrawal reflex, more related to

ventral relaxation

ADLR, AIBR, ASEL, ASHR,

AWCL, AWCR, AIAR,

AIYL

Olfactory and thermosensation reflex

ASGL, ASJL, ASKL, AIAL,

PVQL

Chemotaxis to lysine reflex

DB1, DB2, DD1, VB2, VD2,

AS3, DA2, DA3, DA4, DA5

Backward sinusoidal movement of the

worm, more related to touch stimulus

AVAL, AVAR, AVBL,

AVBR, AVDL, AVDR,

AVEL, AVER, DA1, FLPL

Forward and backward sinusoidal move-

ment of the worm, more related to search

for food in starving case, involve social

feeding effect

AVHL, AVHR, AVJL,

AVFL, AVFR

Impossible to determine from the experi-

mental data available. There is not any

specific function known for any of these

neurons

AVKL, ACKR, PDEL,

PDER, PVM, DVA, WN

The functionality of this group could be

related to a relaxation state similar to a

sleep state, with reduced motor activity,

decreased sensory threshold, characteris-

tic posture, and easy reversibility, basi-

cally mediated by PDs neurons
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