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We present the analysis of the interrelation between two processes accounting for the spreading of an

epidemic, and the information awareness to prevent its infection, on top of multiplex networks. This

scenario is representative of an epidemic process spreading on a network of persistent real contacts, and

a cyclic information awareness process diffusing in the network of virtual social contacts between the

same individuals. The topology corresponds to a multiplex network where two diffusive processes are

interacting affecting each other. The analysis using a microscopic Markov chain approach reveals the

phase diagram of the incidence of the epidemics and allows us to capture the evolution of the epidemic

threshold depending on the topological structure of the multiplex and the interrelation with the awareness

process. Interestingly, the critical point for the onset of the epidemics has a critical value (metacritical

point) defined by the awareness dynamics and the topology of the virtual network, from which the onset

increases and the epidemics incidence decreases.

DOI: 10.1103/PhysRevLett.111.128701 PACS numbers: 89.65.�s, 89.75.Fb, 89.75.Hc

Real complex systems are often composed of several
layers of networks interrelated with each other; when
the actors in these different layers of networks are the
same we call them multiplex networks. The understanding
of the emergent physical phenomena onmultiplex networks
is gaining much attention [1–8] as a particular case of
interdependent networks [9,10]. In particular, multiplex
networks represent the natural way to describe social inter-
actions that occur at different contexts or in different cate-
gories. For example, people have a series of persistent
contacts in daily life with family, friends, and co-workers
that form the network of physical contacts, while at the
same time, the same actors are connected using online
social networks with the previously mentioned contacts
and also probably with others. These different layers can
support different dynamical processes; e.g., in online social
networks actors exchange information in any form, while
in the physical network actors exchange also biological
elements that can carry on diseases.

The described scenario is a good proxy to analyze the
interplay between information spreading of the awareness
of certain epidemics, and the epidemic infection itself, in a
certain networked population. The importance of under-
standing this interplay relies on the consequences the
awareness can have on the outbreak of epidemics and its
incidence. Several works addressed the problem from
different perspectives [11–16] considering, for example,
the risk perception, behavioral changes, or competing
viral agents.

In this Letter, we propose the use of the microscopic
Markov chain approach (MMCA) [17–19] to understand
the interplay between an epidemic spreading process, and a
cyclic spreading of awareness process in quenched multi-
plex networks. The multiplex corresponds to a two layer

network, one where the dynamics of the awareness evolves
and another where the epidemic process spreads. The
approximation using MMCA has an accuracy up to 2.5%
error for the prediction of the epidemic threshold and epi-
demic incidence. The error has been computed comparing
with extensiveMonteCarlo simulations of the same system.
This setup is an abstraction for those epidemics that satisfy
the dynamics of susceptible-infected-susceptible processes
(SIS) coexisting with a cyclic process of awareness
spreading satisfying the cycle unaware-aware-unaware
(UAU). It could represent the interrelated dynamics of those
epidemics like influenza, with a marked seasonal character,
and the word of mouth of aware individuals advising their
social acquaintances to take a flu shot. Note that herewe are
not considering the effect of the media on the vaccination
campaign.
Let us start by defining the specific setup we analyze. We

use a multiplex, see Fig. 1, with different connectivity at
each layer, corresponding to the layer of physical persistent
social contacts (those that can infect you), and to the layer
of virtual contacts (those that communicate with you but
are not necessarily in physical contact, e.g., Facebook
friends, etc.). Note that we are not using a framework of
general interdependent networks, because the actors in
both layers are the same. However, as observed in inter-
dependent networks [20] the interrelation between two
different structures is responsible for the emergence of
new physical effects on the epidemic onset and prevalence
of the epidemics.
On top of the virtual network where the UAU process

takes place, nodes spread the awareness of the epidemics.
The states in this process are unaware (U), and aware (A)
of the existence of the epidemics and its prevention.
Unaware individuals do not have information about how
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to prevent infection, while aware individuals reduce their
risk to be infected. Awareness can come from two sources,
the communication with aware neighbors (becoming aware
with a probability �) or because the individual is already
infected. Since the awareness corresponds to cycles paral-
lel to the seasonality of the epidemics, there is a certain
probability of an individual to forget the awareness or not
to care about it, and become again, at all effects, unaware
(with a probability �).

In the physical layer, the nodes are susceptible (S) or
infected (I). The infection propagates from certain infected
individuals to their neighbors with a probability �, and
infected nodes eventually recover with probability�. After
an individual gets infected it is automatically aware of the
infection and changes its state in the virtual contact layer.
On the other hand, if an individual is aware in the virtual

layer and is susceptible in the physical layer, it reduces its
own infectivity by a factor �. We distinguish between the
original unaware infectivity �U and the subsequent infec-
tivity after being aware of the infection �A ¼ ��U. In the
particular case of � ¼ 0, the aware individuals are com-
pletely immune to the infection.
According to this scheme, an individual can be in three

different states: unaware and susceptible (US), aware and
susceptible (AS), or aware and infected (AI). Note that the
state unaware and infected (UI) is spurious because accord-
ing the definition of the dynamical process stated it
becomes immediately (AI). We propose the use of proba-
bility trees to reveal the possible states of the nodes and
their transitions; see scheme in Fig. 2. The MMCA equa-
tions for the coupled dynamics in the multiplex are derived
using the total probability of the different states according
to Fig. 2.
Let us denote aij and bij the adjacency matrices

that support the UAU and the SIS processes, respectively.
Every node i has a certain probability of being in one of the
three states at time t, denoted by pAI

i ðtÞ, pAS
i ðtÞ, and pUS

i ðtÞ
respectively. Assuming the absence of dynamical correla-
tions [21], the transition probabilities for node i not being
informed by any neighbors riðtÞ, not being infected by any
neighbors if i was aware qAi ðtÞ, and not being infected by
any neighbors if i was unaware qUi ðtÞ are

riðtÞ ¼
Y
j

½1� ajip
A
j ðtÞ��;

qAi ðtÞ ¼
Y
j

½1� bjip
AI
j ðtÞ�A�;

qUi ðtÞ ¼
Y
j

½1� bjip
AI
j ðtÞ�U�;

(1)

where pA
j ¼ pAI

j þ pAS
j . Using Eqs. (1) and the scheme

presented in Fig. 2 we can develop the microscopic
Markov chains for the coupled processes for each
node i as
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FIG. 2. Transition probability trees for the states (a) AI, (b) US and (c) AS, of the UAU-SIS dynamics in the multiplex per time step.
The notation is (AI) aware-infected, (AS) aware-susceptible, (UI) unaware-infected, (US) unaware-susceptible, � transition proba-
bility from aware to unaware, � transition probability from infected to susceptible, ri transition probability from unaware to aware
given by neighbors, qAi transition probability from susceptible to infected, if node is aware, given by neighbors, and qUi transition

probability from susceptible to infected, if node is unaware, given by neighbors.

FIG. 1 (color online). Sketch of the multiplex structure type
used in this work. The upper layer (virtual contact) is supporting
the spreading of awareness, nodes have two possible states:
unaware (U) or aware (A). The lower layer (physical contact)
corresponds to the network where the epidemic spreading takes
place. The nodes are the same actors than in the upper layer, but
here their state can be: susceptible (S) or infected (I).
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pUS
i ðtþ 1Þ ¼ pAI

i ðtÞ��þ pUS
i ðtÞriðtÞqUi ðtÞ þ pAS

i �qUi ðtÞ;
pAS
i ðtþ 1Þ ¼ pAI

i ðtÞð1� �Þ�þ pUS
i ½1� riðtÞ�qAi ðtÞ

þ pAS
i ðtÞð1� �ÞqAi ðtÞ;

pAI
i ðtþ 1Þ ¼ pAI

i ðtÞð1��Þ þ pUS
i f½1� riðtÞ�½1� qAi ðtÞ�

þ riðtÞ½1� qUi ðtÞ�g þ pAS
i ðtÞf�½1� qUi ðtÞ�

þ ð1� �Þ½1� qAi ðtÞ�g: (2)

The stationary solution of the system of Eqs. (2) is
computed as a set of fixed point equations satisfying
pAI
i ðtþ 1Þ ¼ pAI

i ðtÞ ¼ pAI
i and, equivalently, for (US)

and (AS). Using stationarity we are now in the position
of computing the onset of the epidemics �c. Near the
critical point the MMCA can be expanded assuming that
the probability of nodes to be infected in the physical layer
is pAI

i ¼ �i � 1. Consequently, qAi � 1� �A
P

jbji�j and

qUi � 1� �U
P

jbji�j. Inserting this in Eqs. (2) we obtain

pUS
i ¼ pUS

i ri þ pAS
i �;

pAS
i ¼ pUS

i ð1� riÞ þ pAS
i ð1� �Þ;

��i ¼ ðpAS
i �A þ pUS

i �UÞX
j

bji�j;

(3)

and, therefore,

X
j

�
½1� ð1� �ÞpA

i �bji �
�

�U
�ji

�
�j ¼ 0; (4)

where �ij are the elements of the identity matrix.

Note that the solution of Eq. (4) reduces to an eigenvalue
problem for the matrix H whose elements are hji ¼ ½1�
ð1� �ÞpA

i �bji. The onset of the epidemics is the minimum

value of �U satisfying Eq. (4). Denoting �maxðHÞ the
largest eigenvalue of H, the critical point is written as

�U
c ¼ �

�maxðHÞ : (5)

Note that �c depends explicitly on the dynamics
on the virtual layer, in particular, of the values of pA

i .
Interestingly, if we consider the critical value �c ¼
�=�maxðAÞ of the onset of awareness when decoupled
from the infection, i.e., as a simple spreading process on
the virtual layer with no interaction with the physical layer,
then for � < �c Eq. (5) reduces to �c ¼ �=�maxðBÞ, and
the onset of the epidemics is obviously independent of the
awareness. The point (�c, �c) defines a sort of metacritical
point for the epidemic spreading. It is worth mentioning
that this point could be a tricritical point because even
though there are only two different phases in the steady
state, those corresponding to the classical SIS, in the
transient, for certain values of beta, there is an initial
amplification of the number of infectious nodes. Later
on, the awareness level increases and the infection level
goes back down towards extinction. For values of � > �c

the onset of the epidemics depends on the structure of the

virtual layer and the dynamics of the awareness.
Specifically, it depends on the stationary values of the
probabilities pA

i of the virtual layer, decoupled from the
multiplex. These values are found by solving the fixed
point equations of the virtual layer only.
We crosscheck our analytical results with extensive

computer simulations of the coupled dynamics UAU-SIS
in different configurations of multiplex. For the sake of
simplicity, we will present the results for � ¼ 0, meaning
that �A ¼ 0 (and henceforth qAi ¼ 1, and �U ¼ �). This
corresponds to complete immunity of nodes aware of the
infection, although the calculation is identical for any other
different value of �.
In Fig. 3 we plot the comparison of MMCA with

Monte Carlo simulations, for a quenched multiplex of
two layers, in the physical layer we build a power-law
degree distribution network generated with the configura-
tional model with exponent 2.5 of 1000 nodes, and in the
virtual layer the same network with 400 extra random links
(nonoverlapping with the previous). Note that the MMCA
approach is specially suited for quenched networks, and
then it is not necessary to assess the validity of the
approximation in the thermodynamic limit [18,19]. The
average accuracy of the approximation is �2%. We use
this multiplex as a representation of a structure that could
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FIG. 3 (color online). Top: comparison of the stationary frac-
tion of aware individuals �A ¼ ð1=NÞPip

A
i using Monte Carlo

(dotted line) simulations and the MMCA approach (solid line) as
a function of the infectivity � for a fixed value of � ¼ 0:15.
Bottom: comparison of the stationary fraction of infected indi-
viduals �I ¼ 1=N

P
ip

I
i using Monte Carlo (dotted line) simula-

tions and the MMCA approach (solid line) as a function of the
infectivity �. The initial fraction of infected nodes is set to 0.2.
The multiplex structure is, in this case, (i) physical layer, a scale-
free network of 1000 nodes generated with the configurational
model, and with exponent 2.5, (ii) virtual layer, the same net-
work than in the physical layer but with 400 extra random links
(nonoverlapping with previous). The values for the recovery
probabilities are � ¼ 0:6, and � ¼ 0:4.
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account for a realistic scenario, where all the connections
in the physical layer are also present in the virtual network,
and the virtual network has additional links. Nevertheless,
we have explored different multiplexes for the sake of
completion, and in all of them, the qualitative behavior is
the same (see Supplemental Material [22]).

We have also explored the full phase diagram (�� �) of
the dynamics UAU-SIS for the same multiplex as before;
see Fig. 4. We represent the fraction of infected individuals
in the whole population in the stationary state �I. The
agreement is very good for the full phase space, being
the relative error less than 2.5% in all the multiplex con-
figurations explored, e.g., composing random homogene-
ous networks (Erdős-Rényi networks) and heterogeneous
networks (scale-free networks), for different values of the
parameters (see Supplemental Material [22]).

Finally, we plot the prediction of the critical epidemic
threshold line �cð�Þ given by Eq. (5) for different values
of the recoveries � and �, Fig. 5. Note that there exists
a region where the metacritical point is localized,
corresponding to the area bounded by ½0; 1=�maxðAÞ� �
½0; 1=�maxðBÞ�. Looking at the curves in Fig. 5 we observe
that initially the epidemic threshold does not depend on the
awareness. At a certain point �c, what we call the meta-
critical point, the epidemic is delayed and contained. This
last effect will be observed for any value (�, �) outside the
shaded area.
Summarizing, we have analyzed a coupled dynamical

process of awareness and infection on top of multiplex
networks. The results show that the coexistence of different
topologies spreading antagonistic effects raises interesting
physical phenomena, as, for example, the emergence of a
metacritical point where the diffusion of awareness is able
to control the onset of the epidemics. Given the specific
nature of the awareness spreading proposed here, equiva-
lent to a SIS process, the results are also valid to describe
two competing infectious strains coexisting in a multiplex
structure, the only difference being if the strains reinforce
or weaken each other. The genuine mechanism underlying
the emergence of the dependence of the onset of the
epidemics on the diffusion of the awareness is rooted to
the cyclic character of both coupled processes. If one of the
processes is not cyclic � ¼ 0 or � ¼ 0 this dependence
disappears. The high accuracy of the MMCA is specially
useful in this scenario of coupled dynamics in quenched
networks, where heterogeneous mean-field approxima-
tions for binary states, or, in general, approximations for
annealed networks [23–25] could be difficult to define
because of the structure of the multiplex, where the degree
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FIG. 4 (color online). Comparison between Monte Carlo
simulations and MMCA for the fraction �I of infected individu-
als in the stationary state (colors represent the fraction of
infected individuals). Top, full phase diagram �� � for the
same multiplex described in Fig. 3 obtained by averaging 50
Monte Carlo simulations for each point in the grid 100� 100.
Bottom, same for the MMCA. The relative error for the full
phase diagram is � 1:6%.
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FIG. 5 (color online). Dependence of the onset of the epidem-
ics �c as a function of � computed using Eq. (5), for different
values of the recovery � and �, for the same multiplex described
in Fig. 3. The shaded rectangle corresponds to the area where the
metacritical points may be, which are bounded by the topologi-
cal characteristics of the multiplex 1=�maxðAÞ and 1=�maxðBÞ.
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class is multivalued. The results provide clues to quantify
the effect of word of mouth, for example, using Facebook,
or Twitter, in campaigns against seasonal diseases, and
its power in the prevention of epidemics, decreasing its
incidence, or eventually eradicating it.
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and L. J. Dubé, Phys. Rev. E 84, 026105 (2011).
[15] V. Hatzopoulos, M. Taylor, P. L. Simon, and I. Z. Kiss,

Math. Biosci. 231, 197 (2011).
[16] Q. Wu, X. Fu, M. Small, and X.-J. Xu, Chaos 22, 013101

(2012).
[17] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and

C. Faloutsos, ACM Trans. Inf. Syst. Secur. 10, 1

(2008).
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[21] M. Boguñá, C. Castellano, and R. Pastor-Satorras, Phys.

Rev. E 79, 036110 (2009).
[22] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.111.128701 for

analysis of the UAU-SIS dynamics in additional

multiplex networks.
[23] R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86,

3200 (2001).
[24] M. E. J. Newman, Phys. Rev. E 66, 016128 (2002).
[25] J. P. Gleeson, Phys. Rev. Lett. 107, 068701 (2011).

PRL 111, 128701 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

20 SEPTEMBER 2013

128701-5

http://dx.doi.org/10.1103/PhysRevLett.96.138701
http://dx.doi.org/10.1103/PhysRevLett.96.138701
http://dx.doi.org/10.1126/science.1184819
http://dx.doi.org/10.1073/pnas.1004008107
http://dx.doi.org/10.1073/pnas.1004008107
http://dx.doi.org/10.1038/srep00620
http://dx.doi.org/10.1103/PhysRevLett.109.248701
http://dx.doi.org/10.1103/PhysRevE.86.036115
http://dx.doi.org/10.1103/PhysRevE.86.036115
http://dx.doi.org/10.1103/PhysRevE.87.062806
http://dx.doi.org/10.1103/PhysRevLett.110.028701
http://dx.doi.org/10.1103/PhysRevLett.110.028701
http://dx.doi.org/10.1038/nature08932
http://dx.doi.org/10.1038/nphys2180
http://dx.doi.org/10.1038/nphys2180
http://dx.doi.org/10.1103/PhysRevE.76.061904
http://dx.doi.org/10.1103/PhysRevE.76.061904
http://dx.doi.org/10.1073/pnas.0810762106
http://dx.doi.org/10.1073/pnas.0810762106
http://dx.doi.org/10.1103/PhysRevE.81.036118
http://dx.doi.org/10.1103/PhysRevE.81.036118
http://dx.doi.org/10.1103/PhysRevE.84.026105
http://dx.doi.org/10.1016/j.mbs.2011.03.006
http://dx.doi.org/10.1063/1.3673573
http://dx.doi.org/10.1063/1.3673573
http://dx.doi.org/10.1145/1284680.1284681
http://dx.doi.org/10.1145/1284680.1284681
http://dx.doi.org/10.1209/0295-5075/89/38009
http://dx.doi.org/10.1103/PhysRevE.84.036105
http://dx.doi.org/10.1103/PhysRevE.86.026106
http://dx.doi.org/10.1103/PhysRevE.79.036110
http://dx.doi.org/10.1103/PhysRevE.79.036110
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.128701
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.128701
http://dx.doi.org/10.1103/PhysRevLett.86.3200
http://dx.doi.org/10.1103/PhysRevLett.86.3200
http://dx.doi.org/10.1103/PhysRevE.66.016128
http://dx.doi.org/10.1103/PhysRevLett.107.068701


Supplemental material

On the dynamical interplay between awareness and

epidemic spreading in multiplex networks

C. Granell, S. Gómez, A. Arenas

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 β

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 λ

 δ = 0.1, µ = 0.9
 δ = 0.2, µ = 0.8
 δ = 0.3, µ = 0.7
 δ = 0.4, µ = 0.6
 δ = 0.5, µ = 0.5
 δ = 0.6, µ = 0.4
 δ = 0.7, µ = 0.3 
 δ = 0.8, µ = 0.2
 δ = 0.9, µ = 0.1

Figure 1: (color online) Dependence of the onset of the epidemics βc as a function of λ
computed using Eq.(5) of main text, for different values of the recovery δ and µ, for a multiplex
formed by: physical layer, a scale-free network of 1000 nodes with degree distribution P (k) ∼
k−2.5, and virtual layer, same scale-free network with 400 extra (non-overlapping) random
links. The shaded rectangle corresponds to the area where the meta-critical points may
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Figure 2: (color online) Comparison between Monte Carlo and MMCA for the fraction ρI of
infected individuals in the stationary state. Multiplex formed by: virtual layer, Erdös-Rényi
network of 1000 nodes with 〈k〉 = 8, and physical layer, a scale-free network of 1000 nodes
with degree distribution P (k) ∼ k−2.5. Full 100 × 100 λ − β phase diagram. MC values are
averages over 50 simulations, and initial fraction of infected nodes is 20%. The relative errors
between MC and MMCA are: 0.9%, 1.0%, and 1.2%, respectively.
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Figure 3: (color online) Comparison between Monte Carlo and MMCA for the fraction ρI of
infected individuals in the stationary state. Multiplex formed by: virtual layer, a scale-free
network of 1000 nodes with degree distribution P (k) ∼ k−2.5, and physical layer, Erdös-Rényi
network of 1000 nodes with 〈k〉 = 8. Full 100 × 100 λ − β phase diagram. MC values are
averages over 50 simulations, and initial fraction of infected nodes is 20%. The relative errors
between MC and MMCA are: 0.4%, 0.4%, and 0.4%, respectively.
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Figure 4: (color online) Comparison between Monte Carlo and MMCA for the fraction ρI

of infected individuals in the stationary state. Multiplex formed by: physical layer, a scale-
free network of 1000 nodes with degree distribution P (k) ∼ k−2.5, and virtual layer, same
scale-free network with 400 extra (non-overlapping) random links. Full 100×100 λ−β phase
diagram. MC values are averages over 50 simulations, and initial fraction of infected nodes is
20%. The relative errors between MC and MMCA are: 1.2%, 1.5%, and 1.6%, respectively.
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Figure 5: (color online) Comparison between Monte Carlo and MMCA for the fraction ρI of
infected individuals in the stationary state. Multiplex formed by: virtual layer, a scale-free
network of 1000 nodes with degree distribution P (k) ∼ k−2.5, and physical layer, a scale-free
network of 1000 nodes with degree distribution P (k) ∼ k−3.0. Full 100 × 100 λ − β phase
diagram. MC values are averages over 50 simulations, and initial fraction of infected nodes is
20%. The relative errors between MC and MMCA are: 1.9%, 2.3%, and 2.5%, respectively.
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