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Epidemiclike spreading processes on top of multilayered interconnected complex networks reveal a rich
phase diagram of intertwined competition effects. A recent study by the authors [C. Granell et al., Phys. Rev.
Lett. 111, 128701 (2013).] presented an analysis of the interrelation between two processes accounting for the
spreading of an epidemic, and the spreading of information awareness to prevent infection, on top of multiplex
networks. The results in the case in which awareness implies total immunization to the disease revealed the
existence of a metacritical point at which the critical onset of the epidemics starts, depending on completion of
the awareness process. Here we present a full analysis of these critical properties in the more general scenario
where the awareness spreading does not imply total immunization, and where infection does not imply immediate
awareness of it. We find the critical relation between the two competing processes for a wide spectrum of
parameters representing the interaction between them. We also analyze the consequences of a massive broadcast
of awareness (mass media) on the final outcome of the epidemic incidence. Importantly enough, the mass media
make the metacritical point disappear. The results reveal that the main finding, i.e., existence of a metacritical
point, is rooted in the competition principle and holds for a large set of scenarios.
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I. INTRODUCTION

During recent years significant progress has been made
in the study of complex networks, to the point that we now
have a comprehensive toolset to characterize them [1]. This
recent flurry of activity in network science has been induced by
increased computing power and by the possibility of studying
the properties of large databases describing real networks.
The challenge remains, however, of making network theory
predictive, that is, developing the methods that will help us
turn network data into quantitative predictions for complex
systems. Importantly, these methods need to take into account
that, as is increasingly recognized, complex systems are often
composed of interacting layers, giving rise to multilevel
networks (see [2] and references therein). For example,
cellular processes are the result of the interaction of metabolic
networks, protein interaction networks, and gene regulation
networks, among others; social networks are formed by
individuals who are interconnected at many different levels and
whose connectivity varies with time; and transportation net-
works are the superposition of different transportation services.

A particularly interesting setup comes from those multi-
layer interconnected networks in which the nodes represent
the same entities in all layers; these networks have been
usually called multiplex networks [3–15]. The understanding
of the emergent physical phenomena on multiplex networks is
gaining much attention as a particular case of interdependent
networks [16,17]. An archetypical example of a multiplex
network is a social network in which the different layers
represent different types of social relationships. For example,
one can place friendship ties, family ties, and co-worker ties
in three different layers. Note that this scenario is particularly
interesting for epidemic spreading, raising the question about
what is the outcome of the epidemic given that we have
several layers for its spreading, and more intriguing, the
interplay between awareness and epidemics when the two
phenomena compete using different layers of propagation. By
understanding this interplay one can assess the consequences

the awareness can have on the outbreak of the epidemic and
its incidence [18].

Recently, the authors investigated the interplay between
awareness and epidemic spreading in multiplex networks [19]
in the particular scenario where infection by the epidemic
implies immediate awareness and awareness implies total
immunization of the epidemic. Here we relax these two
strong assumptions and investigate the consequences. The
two parameters, self-awareness and degree of immunization,
are regulated by probabilities κ and γ , respectively. We find
that while the self-awareness does not affect the critical
properties of the system, the degree of immunization does.
In this generalized model we also include the effect of massive
awareness information flowing through the network, the mass
media effect. We assess whether an external node which repre-
sents the mass media (TV, radio, newspapers, etc.), connected
to all nodes in the information layer, regularly transmitting
information about the disease is crucial to the final outcome of
the epidemic. The findings show that the presence of the mass
media makes the metacritical point of the epidemic vanish.

The paper is organized as follows: In the next section we
expose the model presented in its extended form, including the
mass media. In Sec. III, we present the microscopic Markov
chain approach to analytically represent the previous model.
In Sec. IV we find analytically the onset of the epidemics,
and in Sec. V we present the results. Section VI is devoted to
discussion and conclusions.

II. MODEL FOR AWARENESS AND EPIDEMIC
SPREADING WITH MASS MEDIA

Dynamical processes in the real world are not isolated
but they interact with each other. Epidemic spreading, for
instance, can be effectively represented as a diffusive process
in a single layer, using well-known models such as the
susceptible-infected-susceptible (SIS), susceptible-infected-
recovered (SIR), and other models. However, this particular
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spreading could be affected by other processes, such as
diffusion of information about the epidemic itself [20].

For example, epidemics such as flu and other contagious
diseases may spread in a network representing the physical
contacts people have. People you see every day in the office,
family, and close friends are nodes of this network. On the
other hand, consider a network of information, whose links
now represent the relations with people you regularly share
information with. Some of these entities will be the same as
in the physical contacts network, and others are just sources
of information such as friends in Twitter or any other online
social network with whom you do not have a regular physical
contact. When there is an important outbreak of an epidemic,
for instance seasonal flu, or any other special event involving a
disease, information about the presence of this illness is spread
in the social networks. Awareness of a disease often leads to
individuals taking preventive measures in the physical contact
layer [21].

Here we describe a setup involving two competing spread-
ing processes: the spreading of information holds back the
spreading of the disease, while the nodes infected by the dis-
ease support the information spreading process by generating
new aware individuals. The abstract model is then as follows:
consider a multiplex network formed by two layers; the bottom
layer is formed by the network of physical contacts, while
the top one is a representation of an online social network.
All nodes represent the same entities in both layers, but
the connectivity is different in each of them. On top of the
physical contacts layer we assimilate a SIS process, where the
probability that a susceptible node gets infected after a contact
with another infected node is β, and the probability of an
infected node spontaneously recovering is μ. On the awareness
layer we apply an equivalent process, unaware-aware-unaware
(UAU), with parameters λ and δ playing the roles of β and μ,
respectively.

The interaction between the two processes is modeled as
follows: a node that is infected in the SIS layer will become
aware in the UAU layer with probability κ . This probability
accounts for the possibility that the nodes may not know
they are infected or may choose not to spread information
about it. Similarly, a node that is aware on the UAU layer
will take measures for preventing infection; therefore the
parameter γ regulates the probability of a node becoming
infected. The infectivity parameter of the SIS model is then
different depending on the state of the node in the information
layer. βU regulates the probability of a node becoming
infected when it is unaware of the disease, while βA = γβU

regulates the probability when the node is aware. Thus, the
parameter γ ranges from 0, representing total immunization,
to 1, representing no effect of the information awareness
on the epidemic. Equivalently, we can regulate the upwards
interaction by tuning the parameter κ from 0 to 1. Note that
when γ = 1 and κ = 0 the two interactions are disabled and
the setup becomes equivalent to running both processes in
single-layer independent networks.

The proposed model above is restricted to local flow of
information, a word-of-mouth propagation in the information
layer. Nevertheless, a certainly more realistic scenario is
prescribed when considering that information can also have
global impact on the system; this is the usual case when we

κ

m

Information layer

Epidemics layer

Mass media

γ

FIG. 1. (Color online) Awareness-epidemic model in the pres-
ence of mass media. The upper (information) layer is supporting the
spreading of awareness, and nodes have two possible states: unaware
(U) or aware (A). The lower (epidemic) layer corresponds to the
network where the epidemic spreading takes place. The nodes are
the same actors as in the upper layer, but here their state can be:
susceptible (S) or infected (I). The mass media are represented as a
top node that provides information to the full system.

consider the effect of mass media. Mass media are entities with
eventually a large impact (connectivity) that regularly transmit
information all over the entire population. Moreover, they are
perceived as reliable sources of information, and therefore
their role when warning about an epidemic outbreak may be
crucial to the final outcome of the disease.

To incorporate this effect to our setup, we add a single node
connected to all nodes in the UAU layer, that will regularly
transmit information about the presence of a disease, and each
individual becomes aware with probability m. The behavior is
then as follows: at each time step, all nodes have the chance to
become aware through the UAU dynamics. The nodes that are
still unaware after this process, may spontaneously become
aware with probability m. In Fig. 1 we depict a sketch of the
resulting scenario.

III. MICROSCOPIC MARKOV CHAIN APPROACH

Summing up, the N nodes in the multiplex model proposed
can be in the following states: US (unaware and susceptible),
UI (unaware and infected), AS (aware and susceptible), or
AI (aware and infected). A methodological way to discover
the dynamical equations governing the system is to build first
discrete transition probability trees that account for all the
possible changes of state (and their probabilities) at every time
step. Let us illustrate how to build these trees using a stand-
alone SIS process, with nodes in states either susceptible (S) or
infected (I). As explained above, β represents the probability
that a susceptible node becomes infected after a contact with
one of its infected neighbors, and μ is the recovery probability
for infected nodes. In a standard SIS model (reactive process
[22,23]), each infected node contacts all its neighbors at each
time step, and thus it is convenient to define the probability
1 − qi that a susceptible node i gets infected by at least one of
its infected neighbors. Conversely, qi represents the probability
that none of the neighbors of i infects it. The possible changes
of state of the nodes and their probabilities at every time step
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can be represented by the following state transition trees:

S

I

µ

1 − µ I

S

S

qi

1 − qi I

The roots of the trees represent the possible states of a node at
time t ; hence the need of two trees, one for state I and another
for state S. The leaves of each tree account for the possible
states at time t + 1. The transition arrows are labeled with the
corresponding probabilities, and they may depend on the node
(e.g., qi) and also on the time step t ; this time dependence has
not been made explicit in the trees for the sake of simplicity.

From these transition trees it is possible to recover the
microscopic Markov chain approach (MMCA) equations [24]
which express the probability of a node being in each state at
time t + 1 as a function of its state in the previous time step.
For example, the probability pI

i(t + 1) of node i being infected
(I) at time t + 1 has two contributions, one for each branch in
which state I appears as a leaf in the trees. From the left tree
we get the contribution pI

i(t)(1 − μ), which corresponds to the
case in which the node was infected (I) and has not recovered,
and from the tree in the right we get pS

i (t)(1 − qi(t)), which

accounts for the case in which the node was healthy (S) but has
been infected by any of its neighbors. After doing the same
procedure for the branches ending in state S, the final MMCA
equations read

pI
i(t + 1) = pI

i(t)(1 − μ) + pS
i (t)[1 − qi(t)], (1)

pS
i (t + 1) = pI

i(t)μ + pS
i (t)qi(t). (2)

These two equations fulfill, for all time steps, the normalization
condition pI

i + pS
i = 1, and thus only one of them is really

needed, which is the standard MMCA equation for the SIS
process:

pI
i(t + 1) = pI

i(t)(1 − μ) + [
1 − pI

i(t)
]
[1 − qi(t)]. (3)

Following this procedure we can deal with more complex
situations such as the proposed model of competing awareness
and epidemic spreading with mass media. The transition trees
for our model are shown in Fig. 2. They are structured accord-
ing to the four phases into which every time step is divided:
awareness spreading (UAU process), mass media broadcast,
epidemic spreading (SIS process), and self-awareness of being
infected. The resulting MMCA equations representing the
probabilities of every node node being in each of the four
possible states are

pUS
i (t + 1) = pUI

i (t)ri(t)(1 − m)μ + pAI
i (t)δ(1 − m)μ + pUS

i (t)ri(t)(1 − m)qU
i (t) + pAS

i (t)δ(1 − m)qU
i (t), (4)

pUI
i (t + 1) = pUI

i (t)ri(t)(1 − m)(1 − μ)(1 − κ) + pAI
i (t)δ(1 − m)(1 − μ)(1 − κ)

+ pUS
i (t)ri(t)(1 − m)

[
1 − qU

i (t)
]
(1 − κ) + pAS

i (t)δ(1 − m)
[
1 − qU

i (t)
]
(1 − κ), (5)

pAS
i (t + 1) = pUI

i (t){ri(t)mμ + [1 − ri(t)]μ} + pAI
i (t)[δmμ + (1 − δ)μ]

+ pUS
i (t)

{
ri(t)mqA

i (t) + [1 − ri(t)]q
A
i (t)

} + pAS
i (t)

[
δmqA

i (t) + (1 − δ)qA
i (t)

]
, (6)

pAI
i (t + 1) = pUI

i (t){ri(t)m(1 − μ) + ri(t)(1 − m)(1 − μ)κ + [1 − ri(t)](1 − μ)}
+ pAI

i (t)[δm(1 − μ) + δ(1 − m)(1 − μ)κ + (1 − δ)(1 − μ)]

+ pUS
i (t)

{
ri(t)m

[
1 − qA

i (t)
] + ri(t)(1 − m)

[
1 − qU

i (t)
]
κ + [1 − ri(t)]

[
1 − qA

i (t)
]}

+ pAS
i (t)

{
δm

[
1 − qA

i (t)
] + δ(1 − m)

[
1 − qU

i (t)
]
κ + (1 − δ)

[
1 − qA

i (t)
]}

. (7)

The probabilities of not being informed [ri(t)] or infected
[qU

i (t) and qA
i (t)] by any neighbor may be written as follows:

ri(t) =
∏

j

[
1 − ajip

A
j (t)λ

]
, (8)

qU
i (t) =

∏

j

[
1 − bjip

I
j (t)βU

]
, (9)

qA
i (t) =

∏

j

[
1 − bjip

I
j (t)βA

]
, (10)

where aji and bji are the elements of the adjacency matrices
of the UAU and SIS layers, respectively; and βA = γβU. In
Eqs. (8) to (10), we assume independence of the probabilities
of becoming infected or aware by any neighbor, which is
the only hypothesis in the MMCA equations. Of course, the

normalization condition

pUS
i (t) + pUI

i (t) + pAS
i (t) + pAI

i (t) = 1 (11)

holds for all time steps.
Solving iteratively the system of Eqs. (4) to (7), together

with Eqs. (8) to (10), we can track the time evolution of the
awareness and the epidemic for any initial condition. More-
over, interestingly, we can solve analytically the stationary
state of the full system, and determine the onset of the epidemic
as a function of the rest of the parameters of the model.

IV. THE ONSET OF THE EPIDEMIC IN THE PRESENCE
OF LOCAL AND GLOBAL AWARENESS

Starting out from the MMCA equations derived from the
transition probability trees, one can calculate the critical
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FIG. 2. Transition probability trees for each one of four possible states a node may be in. The root of each tree represents the state of any
node at time t , and the leaves their states at time t + 1. Each time step is subdivided into four phases: awareness spreading (UAU process),
mass media broadcast, epidemic spreading (SIS process), and self-awareness of being infected.

epidemic threshold βU
c as a function of the rest of the pa-

rameters in the system at the stationary state pi(t + 1) = pi(t)
for all nodes i and states. First, since this epidemic threshold
is given by the order parameter ρI, which corresponds to the
fraction of infected nodes in the system and is calculated as

ρI = 1

N

N∑

i=1

pI
i = 1

N

N∑

i=1

(
pUI

i + pAI
i

)
, (12)

it is useful to add Eqs. (5) and (7) to obtain, in the steady state,

pI
i = pI

i(1 − μ)

+ pUS
i

{
ri(1 − m)

(
1 − qU

i

) + [
1 − ri(1 − m)

](
1 − qA

i

)}

+ pAS
i

{
δ(1 − m)

(
1 − qU

i

) + [1 − δ(1 − m)]
(
1 − qA

i

)}
.

(13)

Near the onset of the epidemic, the probability of nodes
to be infected is close to zero, i.e., pI

i = εi � 1. Accordingly,
Eqs. (9) and (10) are approximated as

qU
i ≈ 1 − βU

∑

j

bjiεj = 1 − σi, (14)

qA
i ≈ 1 − γβU

∑

j

bjiεj = 1 − γ σi, (15)

where

σi = βU
∑

j

bjiεj , (16)

and Eq. (13) becomes

εi = εi(1 − μ)

+ pUS
i {ri(1 − m)σi + [1 − ri(1 − m)]γ σi}

+ pAS
i {δ(1 − m)σi + [1 − δ(1 − m)]γ σi}

= εi(1 − μ)

+ [
pU

i ri(1 − m) + pA
i δ(1 − m)

]
σi

+ {
pU

i [1 − ri(1 − m)] + pA
i [1 − δ(1 − m)]

}
γ σi. (17)

Here we have made use of pU
i = pUS

i + pUI
i ≈ pUS

i and pA
i =

pAS
i + pAI

i ≈ pAS
i , since εi = pUI

i + pAI
i � 1. In a similar

way, removing O(εi) terms in the stationary state of Eqs. (4)
and (6) we get

pU
i = pU

i ri(1 − m) + pA
i δ(1 − m), (18)

pA
i = pU

i [1 − ri(1 − m)] + pA
i [1 − δ(1 − m)]. (19)

These last equations correspond to an UAU process with mass
media decoupled from the SIS process, with pU

i + pA
i = 1.
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Substituting them in Eq. (17) leads to

εi = (1 − μ)εi + pU
i σi + pA

i γ σi

= (1 − μ)εi + (
pU

i + pA
i γ

)
βU

∑

j

bjiεj , (20)

which can be written as
∑

j

[
βU

(
pU

i + γpA
i

)
bji − μδij

]
εj = 0, (21)

where δij are the elements of the identity matrix. Defining
matrix H with elements

hij = (
pU

i + γpA
i

)
bji, (22)

the nontrivial solutions of Eq. (21) are eigenvectors of H ,
whose largest real eigenvalues are equal to μ/βU. Therefore,
the onset of the epidemics is given by the largest real eigenvalue
of H ,

βU
c = μ


max(H )
. (23)

Note that the matrix H depends on the solutions of Eqs. (18)
and (19), or equivalently

pA
i = (1 − pA

i )[1 − ri(1 − m)] + pA
i [1 − δ(1 − m)], (24)

where

ri =
∏

j

(
1 − ajip

A
j λ

)
, (25)

which are also solved by iteration.

V. RESULTS

Here we investigate the effects of the three main parameters
of the model: γ (degree of immunization), κ (self-awareness),
and m (mass media). The multiplex network we use is the
following: the bottom layer corresponding to the physical
contacts network is a power-law degree distribution network
generated with the configurational model with an exponent of
2.5 and a size of 1000 nodes. The top layer representing the
information contacts is the same network with 400 additional
(nonoverlapping with previous) links. This setup is the same
as in [19] for the sake of consistency. In the following, we
analyze the incidence of epidemics for different values of the
parameters. To simplify the notation we will denote βU by β.

In Fig. 3 we plot the fraction of infected nodes as a function
of β for different values of the self-awareness parameter κ .
The rest of the parameters are set to intermediate values (see
caption). The κ parameter regulates the probability of being
aware of your own disease, that is, the probability of going
from the UI state to the AI state. In the figure we consider
that the mass media are inactive (top) or active (bottom),
and also that the immunization is total (left) or partial (right).
Observing the figures, we see that by varying κ the onset of
the epidemic is not affected in any of the scenarios, which is a
consequence of the absence of κ in Eqs. (22) to (25) to deter-
mine the epidemic threshold. We also observe no significant
change in the final incidence. This result indicates that the
incidence of self-awareness in the whole process is negligible,
even in the limiting cases where infected unaware individuals
remain unaware of their sickness (κ = 0) or certainly become
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γ = 0.0 γ = 0.5
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FIG. 3. (Color online) Fraction of infected nodes as a function
of the infectivity parameter β, for different values of the parameter
κ . The networks used in this setup are the same as throughout the
paper. The rest of the values of parameters are λ = 0.3, δ = 0.6, μ =
0.4. Top left corner, γ = 0.0, i.e., total immunization and the mass
media effect is turned off, m = 0; top right corner, the immunization
is reduced, γ = 0.5; bottom left corner mass media effect active,
m = 0.5, with total immunization, γ = 0.0; and bottom right corner
mass media active and partial immunization, γ = 0.5.

aware of it (κ = 1). The message extracted from these findings
is that the self-awareness is not a key factor for the dynamical
behavior of our system.

In Fig. 4 we plot the density of infected nodes for
different values of γ for four combinations of the parameters
m and κ . The panel depicts the scenarios where the mass
media are inactive (top) or active (bottom), and also that the
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FIG. 4. (Color online) Fraction of infected nodes as a function of
the infectivity parameter β, for different values of the parameter γ .
The networks used in this setup are the same as throughout the paper.
The rest of the values of parameters are set to λ = 0.3, δ = 0.6,
and μ = 0.4. The top left panel shows the results for nonexistent
mass media and self-awareness; top right has an intermediate self-
awareness, κ = 0.5, keeping mass media turned off; bottom left has
no self-awareness but an intermediate mass media effect, m = 0.5;
and bottom right is set to intermediate values of both m and κ .

012808-5
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FIG. 5. (Color online) Fraction of infected nodes as a function
of the infectivity parameter β, for different values of the parameter
representing the mass media effect, m. The networks used in this
setup are the same as throughout the paper. The rest of the values of
parameters are λ = 0.3, δ = 0.6, μ = 0.4, and κ is fixed to 0.5. The
four panels correspond to values of γ = 1, γ = 0.50, γ = 0.25, and
γ = 0.

self awareness is nonexistent (left) or existent (right). The
parameter γ accounts for the immunity that a node gains when
it is aware of the disease. We observe that for low values
of γ (high immunity) the final incidence of the epidemic is
lowered, and the critical point is shifted right (compared with
nonexistent coupling γ = 1), for whatever the values of m and
κ . We can also see, if we compare the left and right plots, that
κ does not change the onset of the epidemic, and only slightly
the final incidence, as explained previously.

To analyze the effect of the mass media on this model we
also plot the density of infected nodes for different values
of m; see Fig. 5. We fix the value of κ and move only the
immunization parameter γ . From this picture we observe that
high values of m shift the onset of the epidemic right and
lower the final incidence. For low values of γ the mass media
effect is very pronounced (see bottom right panel); on the
other hand, when γ = 1 (top left plot) the mass media have no
effect whatsoever as the epidemic layer has effectively been
disconnected from the information layer.

We have shown how the critical point is affected by the
parameters γ and m. In Fig. 6 we plot the nonlinear dependence
of βc on the degree of immunization and the mass media.
Surprisingly enough, in both cases the dependence can be
empirically fitted to an expression that is inversely linear with
the parameters, i.e., βc ∼ (a + bx)−1 for certain constants a

and b and the variable being x = γ or x = m.
The most remarkable outcome of the mass media effect is

observed when representing the curve of critical points in the
λ-β phase space. As seen in the previous work, the coupling of
the UAU and SIS layer implies the existence of a metacritical
point, a point following which the critical onset of the epidemic
depends on the incidence of awareness in the population. The
effect of the mass media is that of making the metacritical
point vanish; this can be directly observed in Fig. 7. When
m = 0 we see that for low values of the rumor infectivity
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FIG. 6. (Color online) Plot of βc as a function of γ (top) and m

(bottom). Dots represent the data and the line is the fitting function
βc ∼ (a + bx)−1. As described, the less intense the immunization
degree (larger γ ) the lower the critical point of the epidemic, and
conversely, the larger the intensity of the mass media m the larger the
critical onset.

parameter λ, the onset of the epidemic βc is independent of
λ, and it is not until a certain point (the metacritical point)
that the UAU process begins to influence the onset of the
epidemic. However, when the mass media parameter is greater
than zero (even for very small values) the phenomenology is
different and the metacritical point disappears. The explanation
of this phenomenon is rooted on the nature of the awareness
provided by the mass media. Since it is a random process
acting on the whole population at each time step, whatever the
capability of the awareness to spread, a certain finite fraction of
aware individuals will survive. This pool of aware individuals
effectively decrease the epidemic, although not in a uniform
linearly predictable way.
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FIG. 7. (Color online) Value of the onset of the epidemics as a
function of the UAU parameter λ, for different values of the mass
media parameter m. The setup is the same used throughout this paper,
with δ = 0.6, μ = 0.4, and parameters κ = 1.0 and γ = 0.0 which
imply maximum coupling between layers.
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VI. CONCLUSIONS

We have presented an extended analysis of a generalization
of a model of competing spreading processes on multiplex
networks. The original model [19] accounts for the interplay
between awareness and disease, both spreading processes
competing on the same nodes, but on two different connectivity
layers. The main physical result in such a system relies
on the emergence of a metacritical point, where the critical
onsets of both dynamics get intertwined and the onset of
the epidemic starts depending on the incidence of aware
individuals. This result was obtained assuming that infected
individuals become immediately aware, that aware individuals
get immediately immunized, and that no awareness massive
broadcast was present (mass media). Here we have relaxed
the two first assumptions, and included the presence of mass
media aiming to check the validity of the previous results.
The results are interesting, and while the immediacy of
awareness when infected (self-awareness) has almost no effect

on the dynamics, the other two factors, namely, the degree
of immunization of aware individuals and the mass media,
do change the critical aspects of the epidemic’s spreading.
Summarizing, we have found analytic expressions using a
microscopic Markov chain approach, that relate the decrease
of the epidemic incidence with the increase in the level of
immunization, and the modification of the incidence due to
the mass media. The nonlinear character of these relationships
makes the analytical approach extremely useful to understand
the different scenarios.
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[6] J. Gómez-Gardeñes, I. Reinares, A. Arenas, and L. M. Florı́a,
Sci. Rep. 2, 620 (2012).

[7] G. J. Baxter, S. N. Dorogovtsev, A. V. Goltsev, and J. F. F.
Mendes, Phys. Rev. Lett. 109, 248701 (2012).

[8] E. Cozzo, A. Arenas, and Y. Moreno, Phys. Rev. E 86, 036115
(2012).

[9] G. Bianconi, Phys. Rev. E 87, 062806 (2013).
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