
PHYSICAL REVIEW E 92, 012805 (2015)

Benchmark model to assess community structure in evolving networks

Clara Granell,1 Richard K. Darst,2 Alex Arenas,1,3 Santo Fortunato,2 and Sergio Gómez1

1Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain
2Department of Computer Science, Aalto University School of Science, P.O. Box 12200, 00076 Aalto, Finland

3Institut Català de Paleoecologia Humana i Evolució Social, 43007 Tarragona, Spain
(Received 23 January 2015; published 10 July 2015)

Detecting the time evolution of the community structure of networks is crucial to identify major changes in
the internal organization of many complex systems, which may undergo important endogenous or exogenous
events. This analysis can be done in two ways: considering each snapshot as an independent community detection
problem or taking into account the whole evolution of the network. In the first case, one can apply static methods
on the temporal snapshots, which correspond to configurations of the system in short time windows, and match
afterward the communities across layers. Alternatively, one can develop dedicated dynamic procedures so that
multiple snapshots are simultaneously taken into account while detecting communities, which allows us to keep
memory of the flow. To check how well a method of any kind could capture the evolution of communities, suitable
benchmarks are needed. Here we propose a model for generating simple dynamic benchmark graphs, based on
stochastic block models. In them, the time evolution consists of a periodic oscillation of the system’s structure
between configurations with built-in community structure. We also propose the extension of quality comparison
indices to the dynamic scenario.

DOI: 10.1103/PhysRevE.92.012805 PACS number(s): 89.75.Fb, 89.75.Hc

I. INTRODUCTION

The analysis and modeling of temporal networks has
received a great deal of attention lately, mainly due to the
increasing availability of time-stamped network data sets
[1–5]. A relevant issue is whether and how the community
structure of networks [6] changes in time. Communities
reveal how networks are organized and function, hence major
changes in their configuration might signal important turns in
the evolution of the system as a whole, possibly anticipating
dramatic developments such as rapid growth or disruption.

Indeed, there has been a great deal of activity around this
topic in recent years [7–17]. However, most investigations
lack strength on the validation part, which typically consists
in checking whether the results of the algorithm make sense
in one or more real networks whose community structure is
usually unknown. Actually, it is not obvious what exactly it
means to test an algorithm for detecting evolving communities.
One idea could be that of correctly identifying the community
structure of the system at each time stamp. However, during the
evolution of the system several events that affect the network
structure may occur, such as the creation or deletion of nodes
or links or link rewiring, and it is not possible to detect
these events by observing a single time-stamped network; they
require taking into account the whole picture to be properly
understood.

To explicitly keep track of the history of the system, an
option is to consider multiple snapshots at once. For instance,
in the evolutionary clustering approach [8] the goal is to find a
partition that is descriptive of the structure of a given snapshot
as well as correlated to the structure of the previous snapshots.
Furthermore, the added value of any approach should be the
ability to promptly detect changes in the community structure
of the network. It would be possible to verify this if there were
suitable benchmark graphs with evolving clusters, but those are
still missing. This paper aims at filling this gap. We propose
a model, derived from the classic stochastic block models

[18–21], that generates three classes of dynamic benchmark
graphs. The objective is to provide time-evolving networks
such that at each snapshot the partition into communities is
well defined according to the model. To keep things simple
we consider a periodic evolution such that the same history
repeats itself in cycles and is invariant under time reversal. The
analysis of the community structure evolution for the designed
benchmarks reveals that approaches exploiting the flow of
system configurations might be more accurate in detecting
the evolving community structure than methods that consider
the snapshots independently. Note that in real data sets this
evolution can be sharp and bursty, however in these cases
the challenge of finding the community structure is not well
defined because the range of time scales makes the mesoscopic
structure clearly disconnected.

The paper is structured as follows. In Sec. II we describe the
model to generate the benchmark networks. Section III intro-
duces measures of comparison between dynamic clusterings.
Section IV shows an example of the application of a dynamic
multislice algorithm on the proposed benchmarks. Section V
gives a summary and reports our conclusions.

II. MODEL DESCRIPTION

The model we propose for generating networks with
evolving community structure is based on the classic stochastic
block model (SBM) [18]. It works as follows. A network is
divided into a number q of subgraphs and the nodes of the
same subgraph are linked with a probability pin, whereas
nodes of different subgraphs are linked with a probability
pout. Such probabilities match the link densities within and
between subgraphs. Supposing subgraphs of equal size, if
pin > (q − 1)pout the resulting subgraphs are communities,
as the (expected) link density within subgraphs exceeds their
connectivity to the rest of the graph. The generation of samples
from this model has a built-in efficiency: If there are mmax pairs
of nodes, the actual number of edges is drawn from a binomial

1539-3755/2015/92(1)/012805(8) 012805-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.012805

GRANELL, DARST, ARENAS, FORTUNATO, AND GÓMEZ PHYSICAL REVIEW E 92, 012805 (2015)

distribution with parameters mmax and p. Then we simply place
this number of edges randomly to generate a sample from our
ensemble.

The model implements the two fundamental classes of
dynamic processes: growing or shrinking and merging or
splitting of communities. By combining these two reversible
types of processes one can capture the most common behaviors
of dynamic communities in real systems. We are then able
to generate three standardized benchmarks. One consists in
communities that grow and shrink in size (keeping fixed the
total number of nodes of the network), while the second
considers communities that merge and split. The third one
is a mixed version of the previous two and consists of a
combination of the last four operations.

A. Grow-shrink benchmark

This process models the movement of nodes from one
community to another. At all times, two communities are kept
in a SBM ensemble with intracommunity link density pin and
intercommunity link density pout. However, the number of
nodes in the two communities changes over time. In the basic
process, we have a total of 2n nodes in two communities. In
the balanced state, these are split into two equal communities
of n nodes, which we call A and B. At the extremes, a fraction
f of nodes in community A will switch to community B. If
we take nl as the size of community A, then the number of
nodes in the community B is nr = 2n − nl. Then, at time t the
number of nodes in community A is

nA = n − nf [2x(t + τ/4) − 1], (1)

with the τ/4 phase factor specifying equal-sized communities
at t = 0. The function x(t) is the triangular waveform

x(t) =
{

2t∗, 0 � t∗ < 1/2

2 − 2t∗, 1/2 � t∗ < 1
(2)

[with t∗ ≡ (t/τ + φ) mod 1], which controls the time period-
icity. The constant φ is a phase factor with φ = 0 for the
q = 2 case and specified otherwise in the case of q > 2.
With this formulation, we get communities of sizes (n,n),
(n − nf,n + nf), (n,n), and (n + nf,n − nf) at t/τ mod 1 =
0, 1

4 , 2
4 , and 3

4 , respectively. In practice, all 2n nodes are sorted
in some arbitrary order and the first nA nodes are put into
community A and the others into community B. Say these
nodes are i = 0 to i = 2n − 1.

After the community sizes are decided, the edges must be
placed, taking into account that it is necessary that we keep the
two communities in the proper SBM ensemble with equal and
independent link probability pin at all times. The independence
of pairs provides a hint on how to do this. When a node j is
moved from community A to B, all the existing edges of node
j are removed. Then an edge is added between j and each node
in the destination community B with equal and independent
probability pin and between j and each node in community A

with equal and independent probability pout, thus the ensemble
is maintained. Conveniently, all edges can be precomputed and
stored to allow a strictly repeating process, with the state at
time t being identical to the state at time t + τ , in analogy to
the merging process.

(a) Grow-Shrink

(b) Merge-Split

(c) Mixed

t=0 t=τ =t4/ τt=τ/2 t=3τ/4

t=0 t=τ/2 t=τ

t=0 t=τ/4 t=τ/2 t=3τ/4 t=τ

FIG. 1. (Color online) Schematic representation of the bench-
marks. (a) Grow-shrink benchmark with q = 2. We begin with two
equal-sized communities and over a period of τ nodes move from the
bottom community to the top, then from the top to bottom, and then
back to the symmetric state. (b) Merge-split benchmark with q = 2.
We begin with two communities and over a period of τ we linearly
add edges until there is one community with uniform link density and
then reverse the process. (c) Mixed benchmark with q = 4, combining
the merging and growing processes.

A special case that we need to cope with is the situation
where f is very high and pin is very low. When this
happens, a community shrinks too much and it may become
disconnected. In order to preserve the ensemble, we do not take
actions to totally eliminate this possibility, but we ensure that
n(1 − f)pin � 2 to reduce the probability of disconnection.
However, if a disconnection occurs, the process is aborted and
rerun. Figure 1(a) is a sketch of the grow-shrink benchmark
for the case q = 2.

B. Merge-split benchmark

This process models the merging of two communities.
In this setup, we have a set of 2n nodes, divided into
two communities of n nodes each. Each of the two initial
communities has a link density of pin, where those links are
placed at initialization and kept unmodified over time. There
are two extreme states: the unmerged and the merged state.
In the unmerged state, all possible pairs of nodes between
the two communities have an edge with probability pout. This
means that the network still has a connected component, but the
nodes form two communities. In the merged state, all possible
pairs of nodes between these two communities have an edge
with probability pin, which implies that all pairs of nodes in

012805-2

BENCHMARK MODEL TO ASSESS COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 92, 012805 (2015)

the network have the same link density pin, the previous two
communities are now indistinguishable, and thus we have one
large community with 2n nodes.

The merge-split process is a periodic interpolation of the
merged and unmerged states. The numbers of intercommunity
edges in the unmerged state mum and in the merged state mm

are first picked from a binomial distribution consistent with
the binomial distribution parameters n2 and pout or pin. All
possible intercommunity edges are placed in some arbitrary
but random order and the first

m∗(t) = [1 − x(t)]mum + x(t)mm (3)

edges are selected to be active at time t . The effective intracom-
munity link density is p∗

inter(t) = m∗(t)/n2. The parameter x(t)
is the triangular waveform from Eq. (2). In practice, this means
that at time t/τ mod 1 = 0 the communities are unmerged and
at t/τ mod 1 = 1/2 the communities are merged, with linear
interpolation (of the number of edges) between these points.
Since the possible edges are ordered only at initialization, the
process is strictly periodic, that is, the edges present at time t

are identical to those present at time t + τ .
One may think that the communities are fully merged

at the extreme of this process, where the intercommunity
link density is p∗

inter = pin (at t = τ/2). However, due to the
detectability limit of communities in stochastic block models,
this is not the case [22]. Even when pout < pin, it can be that the
configuration is indistinguishable from one large community.
Following [22], at the point

pin − p∗
inter =

√
1

n
(pin + p∗

inter) (4)

we consider the communities to be merged into one for all
practical purposes. While this limit is strictly speaking only
accurate in the sparse and infinite-size limit, it is an adequate
approximation. A schematic representation of the merge-split
benchmark for q = 2 is shown in Fig. 1(b).

C. Mixed benchmark

This process is a combination of the merging and growing
processes. In this process, there is a total of 4n nodes
with two merging-splitting communities (2n nodes) and two
growing-shrinking communities (2n nodes). The intracom-
munity links are managed with the same processes as above
with phase factors of φ = 0 for both. If there are q = 4a > 4
total communities, then the pairs of communities involved
in merging and growing process have phase factors φ =
0, 1

a
, 2
a
, . . . , a−1

a
. Between the pairs of nodes that belong to

different processes, an edge exists with a probability of pout.
Figure 1(c) exemplifies the mixed benchmark when q = 4.

III. TIME-DEPENDENT COMPARISON MEASURES

The assessment of the performance of any clustering
algorithm requires the use of measures to define the distance or
similarity between any pair of partitions. The list of available
measures is long, including, e.g., the Jaccard index [23], the
Rand index [24], the adjusted Rand index [25], the normalized
mutual information [26], the van Dongen metric [27], and
the normalized variation of information metric [28]. All of

them have in common the possibility of being expressed in
terms of the elements of the so-called confusion matrix or
contingency table, thus we focus first on its calculation. Let
C = {Cα|α = 1, . . . ,r} and C ′ = {C ′

α′ |α′ = 1, . . . ,r ′} be two
partitions of the data in r and r ′ disjoint clusters. The αα′th
component of the contingency table M accounts for the number
of elements in the intersection of clusters Cα and C ′

α′ ,

mαα′ = |Cα ∩ C ′
α′ |. (5)

The sizes of the clusters simply read nα = |Cα| = ∑
α′ mαα′

and n′
α′ = |C ′

α′ | = ∑
α mαα′ and the total number of elements

is N = ∑
α nα = ∑

α′ n
′
α′ = ∑

α

∑
α′ mαα′ . With these defini-

tions at hand, one can calculate the Jaccard index

J =

∑
α

∑
α′

(
mαα′

2

)

∑
α

(
nα

2

)
+

∑
α′

(
n′

α′

2

)
−

∑
α

∑
α′

(
mαα′

2

) , (6)

the normalized mutual information (NMI) index

NMI =
−2

∑
α

∑
α′

mαα′ log (Nmαα′/nαn′
α′)

∑
α

nα log (nα/N) +
∑
α′

n′
α′ log (n′

α′/N)
, (7)

and the normalized variation of information (NVI) metric

NVI = −1

log N

∑
α

∑
α′

mαα′

N
log

(mαα′)2

nαn′
α′

, (8)

where, by convention, 0 log 0 = 0.
In the case of evolving networks we have to compare

two sequences of partitions {C(t)|t = 1, . . . ,T } and {C ′(t)|t =
1, . . . ,T }, a task that can be performed in different ways. The
simplest solution is the independent comparison of partitions at
each time step by measuring the similarity or distance between
C(t) and C ′(t) for each value of t , thus obtaining, e.g., a Jaccard
index J (t) for each snapshot [see Fig. 2(a)]. However, this
procedure discards the evolutionary nature of the communities:
We would like to quantify not only the static resemblance of
the communities but also if they evolve in a similar way.

Our proposal consists in the definition of windowed forms
of the different indices and metrics, obtained by considering
sequences of consecutive partitions, i.e., time windows of a
predefined duration σ . In Fig. 2(b) we show the comparison
between individual snapshots and sequences of length 2. For
example, let us consider the time window formed by time
steps from t to t + σ . Every node belongs to a different cluster
at each snapshot and this evolution can be identified as one
of the items in D(t ; σ) = C(t) × C(t + 1) × · · · × C(t + σ)
for the first sequence of partitions and D′(t ; σ) = C ′(t) ×
· · · × C ′(t + σ) for the second one, where the multiplication
sign denotes the Cartesian product of sets. Since the number
of nodes is N , there are at most N different nonvoid sets
Dα(t ; σ) ∈ D(t ; σ) and the same for D′

α′(t ; σ) ∈ D′(t ; σ).
For example, in Fig. 2(b), the combinations of partitions
(excluding empty sets) areD(t = 1; σ = 1) = {AA,AB,BB,CC}
and D′(t = 1; σ = 1) = {AA,BB,CC}. Next, we may define the
elements of the contingency table for this time window as

mαα′ (t ; σ) = |Dα(t ; σ) ∩ D′
α′(t ; σ)|, (9)

012805-3

GRANELL, DARST, ARENAS, FORTUNATO, AND GÓMEZ PHYSICAL REVIEW E 92, 012805 (2015)

A
A

A A
B A
BB C

C C C

1

2

3

4

t=1 t=2 t=3

(a)

AA

AA

AB

BB

BB CC

1

1

1

CC 1

(b)

Planted Algorithm

A
B

A A
B B
BB C

C C D

1

2

3

4

t=1 t=2 t=3

A
A
B
C

A
B
B
C

A
A
C
C

A
B
B
C

A
B
B
C

A
B
C
D

A
A
B
C

A
B
B
C

A
A
C
C

A
B
B
C

A
B
B
C

A
B
C
D

A

A

B

C

B C

1

1

1

1

FIG. 2. (Color online) Construction of the contingency tables
mαα′ . On top we represent three steps (columns) of the time evolution
of a network of four nodes (rows) and the partitions in communities
we want to compare, e.g., the planted partitions from the benchmark
and those obtained by a certain algorithm. To compare these two
partitionings, we can do it as it is depicted in (a), which takes only one
snapshot at a time (σ = 0), or as in (b), building a contingency table
where the entries consider two snapshots at the same time (σ = 1).
Afterward, the measures (NVI, NMI, or Jaccard index) are calculated
from these tables.

which accounts for the number of nodes following the same
cluster evolutions Dα(t ; σ) and D′

α′(t ; σ). Likewise, we have

nα(t ; σ) = |Dα(t ; σ)| =
∑
α′

mαα′ (t ; σ), (10)

n′
α′ (t ; σ) = |D′

α′(t ; σ)| =
∑

α

mαα′ (t ; σ), (11)

and

N =
∑

α

nα(t ; σ) =
∑
α′

n′
α′ (t ; σ) =

∑
α

∑
α′

mαα′(t ; σ). (12)

Finally, we may use Eqs. (6)–(8) to calculate the corresponding
windowed Jaccard index J (t ; σ), windowed normalized mu-
tual information index NMI(t ; σ), and windowed normalized
variation of information metric NVI(t ; σ), respectively. Of
course, the windowed measures reduce to the standard static
ones when σ = 0 and are able to capture differences in the
evolution of communities that cannot be distinguished using
their classical versions (see the Appendix).

We will see in the next section how the plots of NVI(t ; σ) are
valuable to compare different algorithms and to detect in which
moments of the time evolution they differ. Nevertheless, it is
also convenient to have a single number to quantify the overall
deviation. A simple solution is the use of the average-squared

errors, which is expressed as follows:

EJ(σ) = 1

T

T∑
t=1

[J (t ; σ) − 1]2, (13)

ENMI(σ) = 1

T

T∑
t=1

[NMI(t ; σ) − 1]2, (14)

ENVI(σ) = 1

T

T∑
t=1

NVI(t ; σ)2. (15)

For simplicity and for its superior mathematical properties
(see [28]) we have chosen to use only the NVI metrics in
the rest of this article. See Ref. [29] for the results using the
normalized mutual information and the Jaccard index.

IV. RESULTS

Here we show an example of the application of a community
detection algorithm, designed to take into account the evolu-
tion of complex networks, to reveal the community structure
in our benchmarks. The chosen method is the multislice
algorithm in [12], which extends the definition of modularity
to multilayer networks. In their representation, each layer
(slice) consists of a single network at a particular time. The
slices are connected between them by joining each node with
its counterpart in the next and previous layer and this link
has a specified weight ω, equal for all links of this kind,
which acts as a tuning parameter. For ω = 0, no connection
between slices is considered and the algorithm is performed
statically. As this value increases, more consideration is given
to the communities across layers. The formulation includes an
additional parameter γ , which accounts for the tuning of the
resolution at which communities are found, in the manner
of [30]. In this work, we have used the code available in
[31], setting the resolution parameter γ to 1 and varying the
interslice coupling ω.

The benchmarks used to put to test this algorithm are
generated using the model proposed in this paper. For the sake
of simplicity, we generate three simple standard benchmarks,
one for each basic procedure: grow-shrink, merge-split, and
mixed. The grow-shrink benchmark consists in a network with
q = 2 communities, where each community has initially n =
32 nodes (therefore the total size of the network is N = 64),
with pin = 0.5, pout = 0.05, f = 0.5, and τ = 100 time steps.
The merge-split test has a variable number of communities;
in this paper we use the parameters q = 2 communities of
size n = 32 each, with pin = 0.5, pout = 0.05, and τ = 100.
The mixed benchmark, a combination of the previous two,
has q = 4 communities of n = 32 nodes each and the other
parameters are set as in the previous cases.

Figure 3 shows the planted partitions for the three bench-
marks and the results from the multislice algorithm at three
different interslice couplings: In the extreme case ω = 0 slices
are considered independently, ω = 0.5 is an intermediate value
that provides good results, and ω = 2 provides an example
of the partitioning obtained when using strong coupling
between layers. It can be seen that for ω = 0 we obtain a
different partition for each time step and the results are mostly
correct, except for those configurations of the sizes of the

012805-4

BENCHMARK MODEL TO ASSESS COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 92, 012805 (2015)

0 20 40 60 80 100
0

10

20

30

40

50

60

no
de

 id
Grow-Shrink

P
la

nt
ed

0 20 40 60 80 100
0

10

20

30

40

50

60

Merge-Split

0 20 40 60 80 100
0

20

40

60

80

100

120

Mixed

0 20 40 60 80 100
0

10

20

30

40

50

60

no
de

 id
ω

 =
 0

0 20 40 60 80 100
0

10

20

30

40

50

60

0 20 40 60 80 100
0

20

40

60

80

100

120

0 20 40 60 80 100
0

10

20

30

40

50

60

no
de

 id
ω

 =
 0

.5

0 20 40 60 80 100
0

10

20

30

40

50

60

0 20 40 60 80 100
0

20

40

60

80

100

120

0 20 40 60 80 100
time

0

10

20

30

40

50

60

no
de

 id
ω

 =
 2

0 20 40 60 80 100
time

0

10

20

30

40

50

60

0 20 40 60 80 100
time

0

20

40

60

80

100

120

FIG. 3. (Color online) Results of the application of the multislice community detection method to the three benchmarks proposed (in
columns). The first row corresponds to the planted partition of each benchmark, while the three remaining rows are the partitions obtained by
the multislice algorithm for different values of the interslice parameter ω, which is the weight of the coupling between different instances of the
same nodes across layers. When ω = 0 the slices are disconnected and then the community detection analysis is done for each slice separately.
As this value increases, more importance is given to the evolving nature of the problem and communities across slices are found. In each plot,
the vertical axis corresponds to the index of nodes in the network, while the horizontal axis represents the time. The color of each pair {node,
time} is the label of the community at which the node is assigned at that specific time.

communities where the preference of modularity for equal-
sized communities hampers the process (see the first column
of Fig. 3). Higher values of ω request higher consistency
through time, which implies that the number of misclassified
individual snapshots is reduced. We have also compared the
multislice method with a temporal stability approach [32]
and the results obtained are very similar to the results of the
multislice algorithm obtained at ω = 0.5.

To quantitatively evaluate the results, we use the windowed
measures introduced in the previous section. We calculate the
measures between the partitions obtained by the algorithm
and the planted ones, for three values of the time window.
When the time window is of size 1 (σ = 0), each snapshot

is considered independently, that is, we have computed the
measure between the planted partition at t and the algorithm’s
result at t , repeating this process until t = τ . Instead, with the
time window of size 2 (σ = 1), we evaluate the evolution of
the partitions during two consecutive time steps, following the
same process but comparing the planted partitions at [t,t + 1]
with the algorithm’s results at [t,t + 1]. This formulation is
more restrictive, as we impose, in addition to the condition
that the nodes must belong to the same community, that their
evolution during two consecutive time steps is also the same.
Similarly, we have also analyzed time windows of size 5 (σ =
4) to check the quality of the detected community evolutions
at longer ranges.

012805-5

GRANELL, DARST, ARENAS, FORTUNATO, AND GÓMEZ PHYSICAL REVIEW E 92, 012805 (2015)

0 20 0 20 0 2040 60 80 60 80 60 80100

time

0.0

0.2

0.4

0.6

0.8

1.0

N
V

I

40 100

time
40 100

time

ω = 0.0
ω = 0.5
ω = 2.0

0.0

0.2

0.4

0.6

0.8

1.0

N
V

I

ω = 0.0
ω = 0.5
ω = 2.0

0.0

0.2

0.4

0.6

0.8

1.0

N
V

I

ω = 0.0
ω = 0.5
ω = 2.0

Grow-Shrink Merge-Split Mixed

T
im

e
w

in
do

w
 =

 5
T

im
e

w
in

do
w

 =
 2

 T
im

e
w

in
do

w
 =

 1

FIG. 4. (Color online) Plots of the normalized variation of information (NVI) between the planted partition and the results of the multislice
algorithm in Fig. 3, for three different interslice couplings and for the three benchmarks proposed. The NVI is computed using the proposed
evolving formulation and for three different window sizes: 1, 2, and 5. There is a column for each benchmark and a row for each time window
size.

Figure 4 shows the results for the NVI. We observe that, for
the grow-shrink benchmark, the error is large for ω = 0, but
becomes almost zero at ω = 2. Moreover, the values of the NVI
increase with the size of the time window for ω = 0 and ω =
0.5, but in a larger amount when the parameter corresponds
to the static version of the multislice algorithm. This means
that the interslice weight is helping to find the persistence
of nodes in their communities, as expected. The merge-split
benchmark shows an almost identical bad performance for the
three values of ω at windows of size 1, but ω = 2 does not
make it worse when the size of the window increases, unlike
the other two. The mixed benchmark is quite neutral, with just
a small difference from ω = 2. Finally, the NVI squared errors
reported in Table I and calculated using Eq. (15) are in perfect
agreement with this analysis. The results using the NMI and
Jaccard indices (see Ref. [29]) also support these observations.
Thus, we may conclude that, in this case, the use of memory
to track the evolution of communities is convenient, but the
trade-off between the continuity of the community structure
and its static relevance must be carefully adjusted.

TABLE I. The NVI squared error, for each method tested and
each benchmark in Fig. 3, considering three different time windows.

Time NVI squared error

Multislice window Grow-shrink Merge-split Mixed

1 0.0065 0.0851 0.0015
ω = 0.0 2 0.0201 0.2146 0.0015

5 0.0658 0.4427 0.0016

1 0.0023 0.0808 0.0014
ω = 0.5 2 0.0067 0.2019 0.0014

5 0.0242 0.4278 0.0015

1 0.0006 0.0878 0.0023
ω = 2.0 2 0.0005 0.1113 0.0024

5 0.0006 0.1922 0.0029

012805-6

BENCHMARK MODEL TO ASSESS COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 92, 012805 (2015)

A
A

A A
A A
AA A

A A A

1

2

3

4

t=1 t=2 t=3

Planted

B
B
B
B

B
B
B
B

B
B
B
B

5

6

7

8

Time window = 1

3A

B

C Dt=1

1

0 4

3A

B

C Dt=2

1

0 4

4A

B

C Dt=3

0

1 3

0.2856 0.2856 0.2856

Algorithm

C
D

C C
C C
DC C

C C C
D
D
D
D

D
D
D
D

D
C
D
D

t=1 t=2 t=3

C

D

D
C C C

Time window = 3

0.3852

2AAA

BBB

CCC CDC

1

0 0

DCC DDC DDD

1 0 0

0 1 3

A
A

A A
A A
AA A

A A A

1

2

3

4

t=1 t=2 t=3

Planted
(a) (b)

Algorithm

B
B
B
B

B
B
B
B

B
B
B
B

5

6

7

8

C
C

C C
C C
CC C

D D D
D
D
D
D

D
D
D
D

D
D
D
D

t=1 t=2 t=3

Time window = 1

3A

B

C Dt=1

1

0 4

Time window = 3

3A

B

C Dt=2

1

0 4

3A

B

C Dt=3

1

0 4

3AAA

BBB

CCC DDD

1

0 4

0.2856 0.2856 0.2856

0.2856

FIG. 5. (Color online) Example of the comparison of a planted evolving community structure with the results from two different algorithms.
The NVI values are shown below the corresponding contingency tables for time windows of sizes 1 and 3.

V. CONCLUSION

We have presented a simple model based on the stochastic
block model that allows for the construction of time-dependent
networks with evolving community structure. It is useful for
benchmarking purposes in testing the ability of community
detection algorithms to track properly the structural evolution.
We have also introduced extended time-dependent measures
for the comparison of different partitions in the dynamic
case, which allow for the observation of differences between
the outcome of the algorithms and the planted partitions
through time. Our code for benchmark generation and the
time-dependent comparison indices is available at [33] and
released under the GNU General Public License.

ACKNOWLEDGMENTS

This work was partially supported by MINECO through
Grant No. FIS2012-38266 and by the EC FET-Proactive
Project PLEXMATH (Grant No. 317614). A.A. also acknowl-
edges partial financial support from the ICREA Academia and
the James S. McDonnell Foundation. R.K.D. and S.F. grate-
fully acknowledge EC FET-Proactive Project MULTIPLEX,
Grant No. 317532.

APPENDIX: DISTINGUISHING COMMUNITY
EVOLUTIONS WITH WINDOWED MEASURES

Figure 5 shows an example in which, according to the
planted partitions, the eight nodes of a network are divided
in two communities of four nodes each and these partitions
remain constant throughout the three times steps of the network
evolution. Two different community detection algorithms find
the communities evolutions represented in Figs. 5(a) and 5(b),
which are characterized by the assignment of just one node
to the wrong community at each time step. In Fig. 5(a) this
node is the fourth one during the three time steps, while in Fig.
5(b) they are the second, the third, and the sixth, respectively.
Since the nature of the mistake is the same at all time steps, the
comparison of the planted and algorithm partitions with a time
window of size 1 generates equivalent contingency tables, thus
the standard comparison measures do not change in time, with
a constant value of the NVI equal to 0.2856. However, if we
take into account a time window of size 3, the two evolving
community structures detected by the algorithms are different,
yielding structurally different contingency tables and values of
the NVI equal to 0.2856 and 0.3852, respectively. Therefore,
the conclusion is that windowed measures give complementary
information for the comparison of time evolving community
structures due to their capacity to take into account several
snapshots at the same time.

[1] L. Kovanen, M. Karsai, K. Kaski, J. Kértesz, and J. Saramäki,
J. Stat. Mech. (2011) P11005.

[2] P. Holme and J. Saramäki, Phys. Rep. 519, 97 (2012).

[3] N. Perra, A. Baronchelli, D. Mocanu, B. Gonçalves, R. Pastor-
Satorras, and A. Vespignani, Phys. Rev. Lett. 109, 238701
(2012).

012805-7

http://dx.doi.org/10.1088/1742-5468/2011/11/P11005
http://dx.doi.org/10.1088/1742-5468/2011/11/P11005
http://dx.doi.org/10.1088/1742-5468/2011/11/P11005
http://dx.doi.org/10.1016/j.physrep.2012.03.001
http://dx.doi.org/10.1016/j.physrep.2012.03.001
http://dx.doi.org/10.1016/j.physrep.2012.03.001
http://dx.doi.org/10.1016/j.physrep.2012.03.001
http://dx.doi.org/10.1103/PhysRevLett.109.238701
http://dx.doi.org/10.1103/PhysRevLett.109.238701
http://dx.doi.org/10.1103/PhysRevLett.109.238701
http://dx.doi.org/10.1103/PhysRevLett.109.238701

GRANELL, DARST, ARENAS, FORTUNATO, AND GÓMEZ PHYSICAL REVIEW E 92, 012805 (2015)

[4] M. Starnini, A. Baronchelli, A. Barrat, and R. Pastor-Satorras,
Phys. Rev. E 85, 056115 (2012).

[5] A. Barrat, B. Fernandez, K. K. Lin, and L.-S. Young, Phys. Rev.
Lett. 110, 158702 (2013).

[6] S. Fortunato, Phys. Rep. 486, 75 (2010).
[7] J. Hopcroft, O. Khan, B. Kulis, and B. Selman, Proc. Natl. Acad.

Sci. U.S.A. 101, 5249 (2004).
[8] D. Chakrabarti, R. Kumar, and A. Tomkins, KDD ’06: Pro-

ceedings of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (ACM, New York,
2006), pp. 554–560.

[9] G. Palla, A.-L. Barabási, and T. Vicsek, Nature (London) 446,
664 (2007).

[10] J. Ferlez, C. Faloutsos, J. Leskovec, D. Mladenic, and M.
Grobelnik, Proceedings of the 2008 IEEE 24th International
Conference on Data Engineering (IEEE Computer Society,
Washington, DC, 2008), pp. 1328–1330.

[11] P. Ronhovde and Z. Nussinov, Phys. Rev. E 80, 016109 (2009).
[12] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J. P.

Onnela, Science 328, 876 (2010).
[13] C. Granell, S. Gómez, and A. Arenas, Chaos 21, 016102

(2011).
[14] P. Ronhovde, S. Chakrabarty, D. Hu, M. Sahu, K. K. Sahu, K. F.

Kelton, N. A. Mauro, and Z. Nussinov, Sci. Rep. 2, 329 (2012).
[15] D. S. Bassett, M. A. Porter, N. F. Wymbs, S. T. Grafton, J. M.

Carlson, and P. J. Mucha, Chaos 23, 013142 (2013).
[16] P. Bródka, S. Saganowski, and P. Kazienko, Soc. Network Anal.

Min. 3, 1 (2013).

[17] M. De Domenico, A. Lancichinetti, A. Arenas, and M. Rosvall,
Phys. Rev. X 5, 011027 (2015).

[18] P. Holland, K. B. Laskey, and S. Leinhardt, Soc. Networks 5,
109 (1983).

[19] M. Girvan and M. E. Newman, Proc. Natl. Acad. Sci. U.S.A.
99, 7821 (2002).

[20] A. Lancichinetti, S. Fortunato, and F. Radicchi, Phys. Rev. E 78,
046110 (2008).

[21] R. Guimerà and M. Sales-Pardo, Proc. Natl. Acad. Sci. U.S.A.
106, 22073 (2009).

[22] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Phys.
Rev. Lett. 107, 065701 (2011).

[23] P. Jaccard, New Phytol. 11, 37 (1912).
[24] W. M. Rand, J. Am. Stat. Assoc. 66, 846 (1971).
[25] L. Hubert and P. Arabie, J. Classif. 2, 193 (1985).
[26] A. Strehl and J. Ghosh, J. Mach. Learn. Res. 3, 583 (2002).
[27] S. V. Dongen, Ph.D. thesis, Dutch National Research Institute

for Mathematics and Computer Science, University of Utrecht,
2000.

[28] M. Meilă, J. Multivar. Anal. 98, 873 (2007).
[29] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.92.012805 for the results using the normal-
ized mutual information and the Jaccard index.

[30] J. Reichardt and S. Bornholdt, Phys. Rev. Lett. 93, 218701
(2004).

[31] http://netwiki.amath.unc.edu/GenLouvain/GenLouvain
[32] G. Petri and P. Expert, Phys. Rev. E 90, 022813 (2014).
[33] http://rkd.zgib.net/proj/multiplex/

012805-8

http://dx.doi.org/10.1103/PhysRevE.85.056115
http://dx.doi.org/10.1103/PhysRevE.85.056115
http://dx.doi.org/10.1103/PhysRevE.85.056115
http://dx.doi.org/10.1103/PhysRevE.85.056115
http://dx.doi.org/10.1103/PhysRevLett.110.158702
http://dx.doi.org/10.1103/PhysRevLett.110.158702
http://dx.doi.org/10.1103/PhysRevLett.110.158702
http://dx.doi.org/10.1103/PhysRevLett.110.158702
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1073/pnas.0307750100
http://dx.doi.org/10.1073/pnas.0307750100
http://dx.doi.org/10.1073/pnas.0307750100
http://dx.doi.org/10.1073/pnas.0307750100
http://dx.doi.org/10.1038/nature05670
http://dx.doi.org/10.1038/nature05670
http://dx.doi.org/10.1038/nature05670
http://dx.doi.org/10.1038/nature05670
http://dx.doi.org/10.1103/PhysRevE.80.016109
http://dx.doi.org/10.1103/PhysRevE.80.016109
http://dx.doi.org/10.1103/PhysRevE.80.016109
http://dx.doi.org/10.1103/PhysRevE.80.016109
http://dx.doi.org/10.1126/science.1184819
http://dx.doi.org/10.1126/science.1184819
http://dx.doi.org/10.1126/science.1184819
http://dx.doi.org/10.1126/science.1184819
http://dx.doi.org/10.1063/1.3560932
http://dx.doi.org/10.1063/1.3560932
http://dx.doi.org/10.1063/1.3560932
http://dx.doi.org/10.1063/1.3560932
http://dx.doi.org/10.1038/srep00329
http://dx.doi.org/10.1038/srep00329
http://dx.doi.org/10.1038/srep00329
http://dx.doi.org/10.1038/srep00329
http://dx.doi.org/10.1063/1.4790830
http://dx.doi.org/10.1063/1.4790830
http://dx.doi.org/10.1063/1.4790830
http://dx.doi.org/10.1063/1.4790830
http://dx.doi.org/10.1007/s13278-012-0058-8
http://dx.doi.org/10.1007/s13278-012-0058-8
http://dx.doi.org/10.1007/s13278-012-0058-8
http://dx.doi.org/10.1007/s13278-012-0058-8
http://dx.doi.org/10.1103/PhysRevX.5.011027
http://dx.doi.org/10.1103/PhysRevX.5.011027
http://dx.doi.org/10.1103/PhysRevX.5.011027
http://dx.doi.org/10.1103/PhysRevX.5.011027
http://dx.doi.org/10.1016/0378-8733(83)90021-7
http://dx.doi.org/10.1016/0378-8733(83)90021-7
http://dx.doi.org/10.1016/0378-8733(83)90021-7
http://dx.doi.org/10.1016/0378-8733(83)90021-7
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1073/pnas.0908366106
http://dx.doi.org/10.1073/pnas.0908366106
http://dx.doi.org/10.1073/pnas.0908366106
http://dx.doi.org/10.1073/pnas.0908366106
http://dx.doi.org/10.1103/PhysRevLett.107.065701
http://dx.doi.org/10.1103/PhysRevLett.107.065701
http://dx.doi.org/10.1103/PhysRevLett.107.065701
http://dx.doi.org/10.1103/PhysRevLett.107.065701
http://dx.doi.org/10.1111/j.1469-8137.1912.tb05611.x
http://dx.doi.org/10.1111/j.1469-8137.1912.tb05611.x
http://dx.doi.org/10.1111/j.1469-8137.1912.tb05611.x
http://dx.doi.org/10.1111/j.1469-8137.1912.tb05611.x
http://dx.doi.org/10.1080/01621459.1971.10482356
http://dx.doi.org/10.1080/01621459.1971.10482356
http://dx.doi.org/10.1080/01621459.1971.10482356
http://dx.doi.org/10.1080/01621459.1971.10482356
http://dx.doi.org/10.1007/BF01908075
http://dx.doi.org/10.1007/BF01908075
http://dx.doi.org/10.1007/BF01908075
http://dx.doi.org/10.1007/BF01908075
http://dx.doi.org/10.1016/j.jmva.2006.11.013
http://dx.doi.org/10.1016/j.jmva.2006.11.013
http://dx.doi.org/10.1016/j.jmva.2006.11.013
http://dx.doi.org/10.1016/j.jmva.2006.11.013
http://link.aps.org/supplemental/10.1103/PhysRevE.92.012805
http://dx.doi.org/10.1103/PhysRevLett.93.218701
http://dx.doi.org/10.1103/PhysRevLett.93.218701
http://dx.doi.org/10.1103/PhysRevLett.93.218701
http://dx.doi.org/10.1103/PhysRevLett.93.218701
http://netwiki.amath.unc.edu/GenLouvain/GenLouvain
http://dx.doi.org/10.1103/PhysRevE.90.022813
http://dx.doi.org/10.1103/PhysRevE.90.022813
http://dx.doi.org/10.1103/PhysRevE.90.022813
http://dx.doi.org/10.1103/PhysRevE.90.022813
http://rkd.zgib.net/proj/multiplex/

Supplemental material

A benchmark model to assess community structure in

evolving networks

C. Granell, R. K. Darst, A. Arenas, S. Fortunato, S. Gómez

Time Jaccard squared error
window Grow/Shrink Merge/Split Mixed

1 0.0720 0.3345 0.0307
Multislice ω = 0.0 2 0.1365 0.4840 0.0303

5 0.2336 0.6272 0.0325
1 0.0293 0.3193 0.0276

Multislice ω = 0.5 2 0.0546 0.4608 0.0282
5 0.1105 0.6013 0.0303
1 0.0019 0.3326 0.0360

Multislice ω = 2.0 2 0.0014 0.3605 0.0374
5 0.0147 0.4488 0.0421

Table S1: Jaccard squared error, for each method tested and each benchmark, considering three
different time windows.

Time NMI squared error
window Grow/Shrink Merge/Split Mixed

1 0.0337 0.4932 0.0067
Multislice ω = 0.0 2 0.0621 0.4806 0.0063

5 0.1022 0.4855 0.0059
1 0.0143 0.4896 0.0060

Multislice ω = 0.5 2 0.0262 0.4753 0.0059
5 0.0479 0.4790 0.0055
1 0.0065 0.4951 0.0094

Multislice ω = 2.0 2 0.0041 0.4891 0.0094
5 0.0041 0.4825 0.0100

Table S2: NMI squared error, for each method tested and each benchmark, considering three
different time windows.

1

0 20 40 60 80 100

time

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d

in
de

x

0 20 40 60 80 100

time
0 20 40 60 80 100

time

ω = 0.0
ω = 0.5
ω = 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d

in
de

x

ω = 0.0
ω = 0.5
ω = 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d

in
de

x

ω = 0.0
ω = 0.5
ω = 2.0

Grow/Shrink Merge/Split Mixed

T
im

e
w

in
do

w
 =

 5
T

im
e

w
in

do
w

 =
 2

 T
im

e
w

in
do

w
 =

 1

Figure S1: Plots of the Jaccard Index between the planted partition and the results of the multislice
algorithm for three different inter-slice couplings and for the three benchmarks proposed. The
Jaccard index is computed using the proposed evolving formulation and for three different window
sizes: 1, 2 and 5. There is a column for each benchmark, and a row for each time window size.

2

0 20 40 60 80 100

time

0.0

0.2

0.4

0.6

0.8

1.0

N
M

I

0 20 40 60 80 100

time
0 20 40 60 80 100

time

ω = 0.0
ω = 0.5
ω = 2.0

0.0

0.2

0.4

0.6

0.8

1.0

N
M

I

ω = 0.0
ω = 0.5
ω = 2.0

0.0

0.2

0.4

0.6

0.8

1.0

N
M

I

ω = 0.0
ω = 0.5
ω = 2.0

Grow/Shrink Merge/Split Mixed

T
im

e
w

in
do

w
 =

 5
T

im
e

w
in

do
w

 =
 2

 T
im

e
w

in
do

w
 =

 1

Figure S2: Plots of the Normalized Mutual Information (NMI) between the planted partition and
the results of the multislice algorithm for three different inter-slice couplings and for the three
benchmarks proposed. The NMI is computed using the proposed evolving formulation and for
three different window sizes: 1, 2 and 5. There is a column for each benchmark, and a row for each
time window size.

3

