
Multilayer neural networks: learning
models and applications

Sergio Gómez Jiménez

Multilayer neural networks: learning
models and applications

Xarxes neuronals multicapa: models
d’aprenentatge i aplicacions

Memòria de la Tesi presentada
per en Sergio Gómez Jiménez

per a optar al grau de
Doctor en Ciències F́ısiques

Departament d’Estructura i Constituents de la Matèria

Universitat de Barcelona

Juliol de 1994

Emili Elizalde i Rius, i Lluis Garrido i Beltran, professors titulars del Depar-
tament d’Estructura i Constituents de la Matèria de la Universitat de Barcelona,

Certifiquen: que la present memòria, que porta per t́ıtol Multilayer neural
networks: learning models and applications, ha estat realitzada sota la seva di-
recció i constitueix la Tesi d’en Sergio Gómez Jiménez per a optar al grau de
Doctor en Ciències F́ısiques.

Emili Elizalde i Rius Lluis Garrido i Beltran

A mis padres

A Esther

Acknowledgements

I would like to thank all the people that, during the last four years, have made
possible the realization of this work.

Contents

Resum xv

1 Introduction 1

1.1 From biology to artificial neural networks 1

1.2 A historical overview of artificial neural networks 3

1.3 Multilayer neural networks . 4

2 Associative memory 7

2.1 Hopfield networks . 7

2.1.1 Formulation of the associative memory problem 7

2.1.2 The Hebb rule . 9

2.1.3 The projection or pseudo-inverse solution 10

2.1.4 Optimal stability solution 10

2.2 Maximum overlap neural networks 11

2.2.1 Optimal associative memory schemes 12

Binary units . 12

Decreasing thresholds 14

Quasilinear units . 16

2.2.2 Examples and simulations 20

3 Supervised learning with discrete activation functions 25

3.1 Encoding of binary patterns . 25

3.1.1 Encoding schemes . 26

Unary input and output sets 26

Arbitrary input and output sets 34

3.1.2 Accessibilities . 42

Accessibilities of a three-valued unit intermediate layer 43

Accessibilities at finite temperature. 54

3.2 Simple perceptrons . 57

3.2.1 Perceptron learning rule 57

3.2.2 Perceptron of maximal stability 60

3.3 Multi-state perceptrons . 62

ix

x Contents

3.3.1 Multi-state perceptron learning rule and convergence the-
orem . 62

3.3.2 Multi-state perceptron of maximal stability 66
3.4 Learning with growing architectures 67

4 Supervised learning with continuous activation functions 73
4.1 Learning by error back-propagation 73

4.1.1 Back-propagation in multilayer neural networks 73
Batched and online back-propagation 74
Momentum term . 75
Local learning rate adaptation 76
Back-propagation with discrete networks 77

4.1.2 Back-propagation in general feed-forward neural nets . . . 77
4.1.3 Back-propagation through time 80

4.2 Analytical interpretation of the net output 83
4.2.1 Study of the quadratic error criterion 83
4.2.2 Unary output representations and Bayesian decision rule . 87
4.2.3 Other discrete output representations 87
4.2.4 An example of learning with different discrete output rep-

resentations . 89
4.2.5 Continuous output representations 94
4.2.6 Study of other error criterions 98

4.3 Applications . 100
4.3.1 Reconstruction of images from noisy data 100
4.3.2 Image compression . 101

Self-supervised back-propagation 101
The compression method 108
Maximum information preservation and examples . . . 109

4.3.3 Time series prediction . 111

5 Conclusions 127

A Accessibilities in terms of orthogonalities 129

B Proof of two properties 133
B.1 Proof of S(l, j) = 0 , 1 ≤ j < l . 133

B.2 Proof of

j∑
l=1

S(l, j) = (−1)j , j ≥ 1 134

Bibliography 135

List of Figures

1.1 Schematic drawing of a neuron. 2
1.2 A three-layer perceptron consisting of input, hidden and output

layers. 6
1.3 Schematic display of the states, weights and thresholds of a mul-

tilayer neural network. 6

2.1 Scheme of a binary units three-layer perceptron for optimal asso-
ciative memory. 13

2.2 Scheme involving a control unit c with repeated threshold decrease
for associative memory. 15

2.3 Time-evolving MaxNet S(t) as part of a multilayer neural network
for pattern recognition. 19

3.1 Scheme of a multilayer perceptron for the encoding of N unary
patterns with a ‘bottle-neck’ hidden layer of R ∼ log2 N 27

3.2 Cumulative average accesibilities for N = 4 at finite T = 0.05. . . 55
3.3 Example of a linearly separable set of patterns. 59
3.4 The XOR problem. 60
3.5 Perceptron of maximal stability. 61
3.6 Example of a multi-state-separable set of patterns. 64
3.7 Example of a tiling of the input space. 69

4.1 A comparison between the tiling algorithm, back-propagation and
a discretized back-propagation. 78

4.2 Example of a multilayer neural network with a recurrent layer. . 81
4.3 Unfolding of the network of Fig. 4.2 for three time steps. 81
4.4 Probability densities for the four gaussians problem. 90
4.5 Predicted and neural network classifications for the four gaussians

problem using unary output representations. 92
4.6 First output unit state for the four gaussians problem using the

unary output representation. 93
4.7 Predicted classifications for the four gaussians problem. 95
4.8 Predicted and neural network classifications for the four gaussians

problem using binary output representations. 96

xi

xii List of Figures

4.9 Predicted and neural network classifications for the four gaussians
problem using real output representations. 97

4.10 Predicted and neural network outputs. 99
4.11 A noisy image. 102
4.12 Reconstruction of the image of Fig. 4.11 using the FMAPE algo-

rithm. 103
4.13 Reconstruction of the image of Fig. 4.11 using a neural network

trained with the reconstructed image of Fig. 4.12. 104
4.14 Another noisy image. 105
4.15 Reconstruction of the image of Fig. 4.14 using the FMAPE algo-

rithm. 106
4.16 Reconstruction of the image of Fig. 4.14 using a neural network

trained with the reconstructed image of Fig. 4.12. 107
4.17 Compressed images distribution obtained with the self-supervised

back-propagation. 110
4.18 Compressed images distribution obtained with our self-supervised

back-propagation with a repulsive term. 112
4.19 Compressed images distribution obtained with our self-supervised

back-propagation with sinusoidal units. 113
4.20 Thorax original. 114
4.21 Thorax compressed with the repulsive term and decompressed us-

ing the neighbours. 115
4.22 Difference between the original of the thorax and the compressed

and decompressed with standard self-supervised back-propagation. 116
4.23 Difference between the original of the thorax and the decompressed

making use of the neighbours. 117
4.24 Difference between the original of the thorax and the compressed

using the repulsive term. 118
4.25 Difference between the original of the thorax and the learnt using

the repulsive term and the neighbours. 119
4.26 Difference between the original of the thorax and the learnt using

four different images, the repulsive term and the neighbours. . . 120
4.27 Difference between the original of the thorax and the learnt using

four different images and sinusoidal activation functions. 121
4.28 Difference between the original of the thorax and the compressed

and decompressed with the JPEG algorithm. 122
4.29 Average relative variance of the predictions of the sunspots series

at different numbers of step-ahead iterations. 124
4.30 Average relative variance at different numbers of step-ahead iter-

ations. 125
4.31 A single step-ahead prediction of the sunspots series. 126

List of Tables

2.1 Average frequencies for the parallel simulation corresponding to
the example N = 10, p = 4. 22

2.2 Global retrieval rates obtained by each procedure for N = 10 and
for different values of α = p

N
. 23

3.1 Different network structures for encoding. 40
3.2 Expressions for the weights and thresholds in the different network

structures for encoding. 41
3.3 Accessibilities for N = 4, R = 2. 51
3.4 Accessibilities for N = 8, R = 3. 53
3.5 The XOR logical function. 59
3.6 Tiling learning of random boolean functions with Q = 2 and Q = 3. 71
3.7 Tiling learning of random boolean functions with Q = 4 and Q =

5. 71

4.1 Averages and standard deviations of the normal probability den-
sities for the four gaussians problem. 89

4.2 Three representations for the four gaussians problem. 91

xiii

xiv List of Tables

Resum

Els models de xarxes neuronals artificials es van introduir per tal d’explicar el fun-
cionament del sistema nerviós dels éssers vius i, en particular, el del cervell humà.
Des de finals del segle XIX es sabia que aquestes estructures eren bàsicament
enormes col·leccions d’un tipus de cèl·lula, anomenades neurones, altament con-
nectades entre śı. Per tant, el coneixement del funcionament d’una sola neurona
potser permetria aclarir en part el seu comportament col·lectiu.

L’any 1943 McCulloch i Pitts van proposar el primer model de xarxa neuronal
artificial (veure Secc. 1.1). Basant-se en els coneixements existents sobre la mor-
fologia i la fisiologia de les neurones, van definir una neurona artificial (també
anomenada unitat) com a un element de processament l’estat (o activació) del
qual només pot prendre dos valors, zero o u, i que està connectat amb moltes
altres neurones de dues maneres diferents: rebent com a senyal d’entrada l’estat
de l’altre unitat multiplicat per un cert pes, o mostrant-li el seu estat a l’altre
neurona (senyal de sortida). Si la suma dels senyals d’entrada supera un cert
llindar, la neurona pren com a estat el valor u, i en cas contrari l’activació és zero
(és a dir, la funció d’activació és la funció esglaó). Aquesta dependència entre
les activacions individuals de les diferents neurones artificials és la que fa que la
xarxa evolucioni, posant de manifest el seu comportament col·lectiu.

Una de les caracteŕıstiques més interessants de les xarxes amb unitats comple-
tament interconnectades és la possibilitat d’emmagatzemar patrons en forma de
memòria associativa: escollint adequadament els pesos i els llindars, la dinàmica
fa que la xarxa tendeixi a assolir una configuració estable que correspon al patró
emmagatzemat més semblant a l’estat inicial de la xarxa. Existeixen diverses
tècniques pel càlcul d’aquests paràmetres com, per exemple, la regla de Hebb, la
regla de la pseudo-inversa o l’algorisme AdaTron (veure Secc. 2.1). No obstant,
totes elles presenten una sèrie de problemes que dificulten la seva operativitat:
la seva capacitat és limitada, existeixen estats estables que no corresponen a cap
patró emmagatzemat, i hi poden haver estats oscil·lants dels quals la dinàmica no
es pot escapar.

A Secc. 2.2 exposem tres solucions diferents al problema de la memòria as-
sociativa que no pateixen dels problemes anteriors, totes elles basades en l’ús de
xarxes neuronals multicapa. En aquest tipus de xarxes les unitats s’agrupen en
capes i, habitualment, només hi ha connexions entre capes consecutives. A més,

xv

xvi Resum

dues capes tenen funcions especials: la d’entrada, on la xarxa llegeix els patrons
d’entrada, i la de sortida, on la xarxa col·loca el resultat de processar el patró
d’entrada (veure Secc. 1.3). Les nostres solucions són òptimes en el sentit que
sempre recuperen el patró emmagatzemat més proper a qualsevol patró d’entrada
que li introdüım. Això ho aconseguim dividint el problema en tres fases: càlcul
de les distàncies entre el patró d’entrada i els emmagatzemats, identificació del
patró que està a distància mı́nima, i recuperació d’aquest patró.

Malgrat l’indubtable interès dels sistemes de memòria associativa, que poden
servir per a explicar el funcionament de la memòria en els éssers vius, la carac-
teŕıstica que ha atret més l’atenció últimament és la possibilitat de fer-les anar
com a mecanismes d’entrada-sortida que aprenen a partir d’exemples. És a dir,
donat un conjunt de parelles formades cadascuna per un patró d’entrada i un de
sortida, existeixen diverses maneres d’ajustar els pesos i els llindars de la xarxa
(normalment multicapa) per tal d’aconseguir que aquesta interpoli prou bé bona
part dels exemples: aquest és l’anomenat aprenentatge supervisat amb xarxes
neuronals.

Un primer problema que hem tractat és la codificació i decodificació de patrons
amb components a dos valors (veure Secc. 3.1). Més concretament, suposem que
tenim N patrons d’entrada i els seus corresponents N patrons de sortida, tots ells
del tipus mencionat anteriorment i de longitud N , i volem construir una xarxa
multicapa que faci l’assignació desitjada. Demanem, a més, que entre les capes
d’entrada i sortida existeixi una altra de tamany el més petit possible. Aquest
minim número és, bàsicament, R ∼ log2 N , que s’assoleix quan l’estat d’aquesta
capa és, per cada patró d’entrada, un número diferent en base dos. Nosaltres
demostrem que, per patrons arbitraris, no existeix cap combinació de pesos i
de llindars que facin aquesta feina directament, és a dir, sense cap altra capa
intermitja apart de la de R unitats. Pel cas particular de patrons unaris, però, śı
que hi ha infinites solucions, i nosaltres en donem una d’especialment senzilla.

La introducció de noves capes intermitges obre les portes a moltes altres solu-
cions completament generals, de les quals nosaltres n’expliquem unes quantes. La
idea principal és que, si aconseguim transformar els patrons inicials en patrons
unaris mitjantçant una xarxa amb només dues capes, llavors podem aprofitar la
solució unària anterior com a part de la solució general.

Si a una xarxa d’aquest tipus se li presenta un patró que no es cap dels
utilitzats a l’hora de dissenyar-la, pot passar que el senyal d’entrada d’alguna
unitat coincideixi amb el seu llindar. La neurona, doncs, no pot decidir si la seva
activació ha de ser zero o u. En aquesta mateixa secció donem quatre solucions
diferents, i estudiem en detall els dos cassos més interessants. En particular,
calculem el nombre de patrons que generen aquestes indecisions per a la xarxa
de codificació de patrons unaris, amb i sense soroll tèrmic, i l’accessibilitat dels
possibles estats de la capa intermitja.

En les solucions que hem proposat pel problema de la codificació, els pesos i els
llindars s’han calculat de forma teòrica i s’han provëıt fórmules per a calcular-los.

Resum xvii

Quan els patrons d’entrada poden prendre valors continus, però, aquest enfoca-
ment ja no serveix, havent-se de cercar nous mètodes. Per exemple, la perceptron
learning rule (veure Secc. 3.2) permet trobar els paràmetres d’un perceptró simple
(que no és més que una xarxa amb una capa d’entrada i una única unitat de sor-
tida, sense altres neurones intermitges) que aplica correctament tots els patrons
a les seves imatges desitjades, sempre i quan aquests patrons siguin linealment
separables (com només hi ha una unitat de sortida, i aquesta només pot prendre
dos valors, les úniques possibles imatges desitjades són zero o u; és per això que
es parla de separar aquests dos tipus de patrons).

Una possible generalització d’aquesta regla consisteix en adaptar-la per a què
funcioni amb perceptrons simples que tinguin una unitat de sortida multiestat.
Un dels seus avantatges és que permeten tractar problemes de classificació en
més de dues classes de forma natural, sense haver d’utilitzar varies unitats per
a representar totes les classes. A Secc. 3.3 exposem la nostre solució i donem
una demostració de la convergència del mètode. A més, aconseguim definir
l’anomenat perceptró multiestat de màxima estabilitat i en donem un esquema
de la demostració de la seva existència i unicitat.

Quan un problema no és linealment separable, no existeix cap perceptró sim-
ple que pugui aprendre tots els patrons alhora. L’alternativa evident són, doncs,
les xarxes multicapa. No obstant, l’aprenentatge d’aquestes xarxes és molt més
complicat, degut especialment al caràcter discret de les funcions d’activació.
Una manera molt elegant de resoldre un problema amb xarxes multicapa con-
sisteix en començar amb una xarxa petita, i llavors anar afegint neurones durant
l’aprenentatge fins que, finalment, tots els patrons estiguin correctament clas-
sificats. Aquest és precisament el funcionament del tiling algorithm i d’altres
mètodes relacionats (veure Secc. 3.4). L’avantatge del tiling algorithm respecte
alguns altres és que permet la seva utilització amb unitats multiestat. Aix́ı hem
pogut aprendre problemes multiestat no separables amb certa facilitat.

Una propietat molt remarcable de les xarxes multicapa amb funcions d’activació
discretes és el fet que la primera capa intermitja juga un paper diferent a la resta,
ja que defineix una partició a l’espai de patrons d’entrada. Tots els patrons que
pertanyen a una mateixa unitat d’aquesta partició, quan són introdüıts a la xarxa,
produeixen la mateixa sortida. Llavors, si es vol que la xarxa neuronal generalitzi
correctament, caldrà posar, durant l’aprenentatge, tot l’èmfasi en aconseguir que
aquesta partició sigui la millor possible.

Si es substitueixen les funcions d’activació discretes per unes de cont́ınues i
diferenciables (per exemple sigmoides, que s’assemblen a la funció esglaó habit-
ual), la xarxa multicapa es converteix en una funció cont́ınua i diferenciable entre
l’espai dels patrons d’entrada i els de sortida. Llavors, una manera convenient
de fer l’aprenentatge consisteix en definir una funció error entre les sortides de la
xarxa i les sortides desitjades, i tractar de minimitzar-la. Un mètode senzill de
fer aquesta minimització consisteix en utilitzar el mètode de descens pel màxim
pendent. Calculant el gradient de l’error respecte dels pesos i dels llindars s’obté

xviii Resum

aix́ı el conegut mètode de la back-propagation (veure Secc. 4.1).
A diferència del tiling algorithm, que sempre acaba aprenent tots els patrons

que se li ensenyan (suposant que no hi hagi patrons contradictoris), la back-
propagation dif́ıcilment redueix l’error fins a zero. Les principals raons són que
el mètode del gradient tendeix a trobar mı́nims de la funció error, però no pot
assegurar que els mı́nims trobats siguin globals, i que freqüentment es treballa
amb patrons amb soroll. No obstant, aquesta habilitat per a tractar el soroll
juntament amb la facilitat de les xarxes per a aprendre funcions complicades són
les principals causes de l’èxit de la back-propagation en tota mena d’aplicacions.

El fet que la back-propagation es basi en la minimització d’una funció d’error
fa possible un estudi més teòric sobre quin és aquest mı́nim, i quina influència
té sobre els resultats la manera d’escollir la representació dels patrons de sor-
tida. A Secc. 4.2 trobem el mı́nim suposant que la xarxa pot aprendre qualsevol
funció arbitrària, i demostrem, entre altres coses, que en problemes de classifi-
cació l’ús de representacions de sortida binàries és incorrecte ja que impedeixen
fer les òptimes decisions Bayesianes. A més, les nostres simulacions mostren una
perfecta correspondència amb les prediccions teòriques, posant de manifest la
seva validesa.

A Secc. 4.3 apareixen algunes de les aplicacions que hem desenvolupat util-
itzant xarxes neuronals. La primera d’elles consisteix en la reconstrucció d’imatges
a partir de dades amb soroll. El que fem és ensenyar a una xarxa multicapa a
treure aquest soroll, utilitzant com a base una imatge reconstrüıda per altres
mètodes. Un cop fet l’aprenentatge la xarxa ja es pot aplicar a noves imatges, i
observem que la nostra reconstrucció té una qualitat molt semblant a l’obtinguda
pels altres mètodes, però amb molt menys esforç i molta més velocitat.

Una segona aplicació és la compressió d’imatges. Com les imatges digital-
itzades solen ocupar molt d’espai en disc, és necessari comprimir-les de manera
que ocupin el mı́nim possible, però habitualment no hi ha prou amb els mètodes
de compressió reversible corrents. Llavors, pot ser preferible perdre una mica de
qualitat si amb això s’aconsegueixen factors de compressió més elevats. Utilitzant
una variant de la back-propagation, anomenada self-supervised back-propagation,
es poden comprimir imatges d’aquesta manera. No obstant, aquest mètode pre-
senta alguns problemes que afecten a la qualitat de la imatge comprimida. Nos-
altres proposem una sèrie de modificacions que milloren sensiblement el mètode,
com són la utilització dels valors de les cel·les veines, o la introducció d’un terme
repulsiu per tal de minimitzar la pèrdua d’informació entre les capes de la xarxa.

Finalment, hem aplicat xarxes recurrents per l’aprenentatge de sèries tem-
porals, en particular de la coneguda sèrie de taques solars. Es demostra que
aquestes xarxes donen resultats més bons que les multicapa corrents, sobretot
per a prediccions a llarg termini. Per a aconseguir-ho, però, cal escollir correcta-
ment el tipus de funció d’activació de cada capa, ja que amb les sigmoides no es
pot aprendre aquesta tasca.

Chapter 1

Introduction

1.1 From biology to artificial neural networks

The structure of biological nervous systems started to be understood in 1888,
when Dr. Santiago Ramón y Cajal succeeded to see the sysnapses between in-
dividual nervous cells, the neurons. This discovery was quite impressive since it
proved that all the capabilities of the human brain rest not so much in the com-
plexity of its constituents as in the enormous number of neurons and connections
between them. To give an idea of these magnitudes, the usual estimate of the
total number of neurons in the human central nervous system is 1011, with an
average of 10 000 synapses per neuron. The combination of both numbers yields
a total of 1015 synaptic connections in a single human brain!

All the neurons share the common structure schematized in Fig. 1.1. There
is a cell body or soma where the cell nucleus is located, a tree-like set of fibres
called dendrites and a single long tubular fibre called the axon which arborizes at
its end. Neurons establish connections either to sensory organs (input signals),
to muscle fibres (output signals) or to other neurons (both input and output).
The output junctions are called synapses . The interneuron synapses are placed
between the axon of a neuron and the soma or the dendrites of the next one.

The way a neuron works is basically the following: a potential difference of
chemical nature appears in the dendrites or soma of the neuron, and if its value
reaches a certain threshold then an electrical signal is created in the cell body,
which immediately propagates through the axon without decaying in intensity.
When it reaches its end, this signal is able to induce a new potential difference
in the postsynaptic cells, whose answer may or may not be another firing of a
neuron or a contraction of a muscle fibre, and so on. Of course, a much more
detailed overview could be given, but this suffices for our purposes.

In 1943 W.S. McCulloch and W. Pitts [48] proposed a mathematical model
for capturing some of the above described characteristics of the brain. First, an
artificial neuron (or unit or simply neuron) is defined as a processing element

1

2 Introduction

Figure 1.1: Schematic drawing of a neuron.

whose state ξ at time t can take two different values only: ξ(t) = 1, if it is firing,
or ξ(t) = 0, if it is at rest. The state of, say, the i-th unit, ξi(t), depends on
the inputs from the rest of the N neurons through the discrete time dynamical
equation

ξi(t) = Θ

(
N∑

j=1

ωijξj(t − 1) − θi

)
, (1.1)

where the weight ωij represents the strength of the synaptic coupling between the
j-th and the i-th neurons, θi is the threshold which points out the limit between
firing and rest, and Θ is the unit step activation function defined as

Θ(h) ≡
{

0 if h ≤ 0 ,
1 if h > 0 .

(1.2)

Then, a set of mutually connected McCulloch-Pitts units is what is called an
artificial neural network .

In spite of the simplicity of their model, McCulloch and Pitts where able to
prove that artificial neural networks could be used to do any desired computation,
provided the weights ωij and the thresholds θi were chosen properly. This fact
made that the interest towards artificial neural networks was not limited to the
description of the collective behaviour of the brain, but also as a new paradigm of
computing opposed to that of serial computers. However, there was a big problem
which had to be solved: how can one determine the weights and thresholds in
order to solve any given task?

1.2 A historical overview of artificial neural networks 3

1.2 A historical overview of artificial neural net-

works

As a consequence of their origins, the use of artificial neural networks was seen
as a very promising method of dealing with cognitive tasks, such as pattern
recognition or associative memory. From such a point of view, E. Caianiello
designed in 1961 a first learning algorithm to adjust the connections [5], inspired
in the ideas of D.O. Hebb [31].

In order to simplify the problem, F. Rosenblatt and his collaborators directed
their efforts to the study of a particular type of neural networks: the perceptrons
[63]. They believed that the perceptrons, for which the neurons are distributed in
layers with feed-forward connections, could describe some of the principal char-
acteristics of the perception mechanisms. Their most interesting result was the
discovery of a perceptron learning rule, together with its corresponding conver-
gence theorem, which could be used for the training of two-layer perceptrons.
This discovery seemed to open the doors of artificial intelligence. However, in
1969 M. Minsky and S. Papert published a book [51] which stated some of the
limitations of the simple perceptrons. In particular, they proved the existence of
very simple tasks, such as the XOR problem, which simple perceptrons cannot
learn. The effect was that this line of research was completely aborted for the
next twenty years.

The discovery of the close relationship existent between neural networks and
spin glasses oriented the investigations towards stochastic neural networks, spe-
cially as content-addressable associative memory machines. For them, the updat-
ing rule of eq. (1.1) is replaced by a similar but probabilistic law, which at low
temperature recovers its original deterministic form. For instance, W.A. Little
was concerned with synchronous and parallel dynamics [46], while J.J. Hopfield
studied the sequential dynamic case [35, 36]. Application of statistical mechan-
ics tools to this sort of problems continues to be very useful nowadays (see e.g.
[3, 12, 33, 53, 59]).

The existence of an energy function which governs the evolution of the network
towards the retrieval states was one of the basic ideas over which the use of neural
networks as associative memory devices rested. Hopfield and Tank realized that
in combinatorial optimization problems there exists also a cost function analog
to the energy. Thus, interpreting its coefficients as weights of a network it is
possible to achieve good solutions to them with a minimum effort [38].

From the point of view of understanding how the brain works, the discov-
ery that some neurons of the visual cortex of the cat were specialized to the
recognition of certain orientations of the optical patterns, and that adjacent neu-
rons detected patterns with a slightly different angle [40], demonstrated that at
least part of the information is stored in the brain in a topological way. Several
mechanisms were proposed to explain this topological-structure formation, giving

4 Introduction

rise to some unsupervised learning algorithms, standing out the winner-takes-all
method [69], the feature maps of T. Kohonen [43], and the ART1 and ART2
networks of Carpenter and Grossberg [6, 7].

Nevertheless, the reason why neural nets have become so popular in the last
few years is the existence of new learning algorithms to adjust the weights and
thresholds of multilayer perceptrons. The famous error back-propagation method
was initially introduced in 1974 by P. Werbos [80], but it remained forgotten
until 1985 when D.B. Parker [60] and Rumelhart, Hinton and Williams [67, 68]
rediscovered and applied it to solve many problems. With back-propagation it is
possible to train a neural network to learn any task from examples. Whether this
is the mechanism used by the brain or not seems to be not so important, since
it has given pass to new classification and interpolation tools which have proved
to work better than the traditional methods.

Some interesting applications of the previous and many other models of ar-
tificial neural networks could be event reconstruction in particle accelerators
[9, 10, 77] and radar signal analysis [72, 73].

In the present times artificial neural networks constitute one of the most
successful and multidisciplinary subjects. People with very different formation,
ranging from physicists to psychologists and from biologists to engineers, are
trying to understand why they do work well, how can the learning algorithms be
improved, how can they be implemented in hardware, which architectures are the
best ones for each problem, how could they be modified in order to incorporate as
many characteristics of the brain as possible, which sort of patterns can be stored,
which are the representation of the patterns with better generalization properties,
which is the maximum capacity of the net, which are the main characteristics of
their dynamics, etc. This is just a small sample of the work which is taking place
all over the world (see e.g. [34, 45, 52]), and to which we have tried to give a
necessarily small contribution.

1.3 Multilayer neural networks

Among the different types of neural networks, those in which we have concen-
trated most of our research are Rosenblatt’s perceptrons, also known as multilayer
feed-forward neural networks [63]. In these nets there is a layer of input units
whose only role is to feed input patterns into the rest of the network. Next, there
are one or more intermediate or hidden layers of neurons evaluating the same
kind of function of the weighted sum of inputs, which, in turn, send it forward to
units in the following layer. This process goes on until the final or output level is
reached, thus making it possible to read off the computation.

In the class of networks one usually deals with, there are no connections
leading from a neuron to units in previous layers, nor to neurons further than the
next contiguous level, i.e. every unit feeds only the ones contained in the next

1.3 Multilayer neural networks 5

layer. Once we have updated all the neurons in the right order, they will not
change their states, meaning that for these architectures time plays no role.

In Fig. 1.2 we have represented a three-layer perceptron with n1 input units,
n2 hidden units in a single hidden layer, and n3 outputs. When an input vector
ξ is introduced to the net, the states of the hidden neurons acquire the values

σj = g

(
n1∑

k=1

ω
(2)
jk ξk − θ

(2)
j

)
, j = 1, . . . , n2 , (1.3)

and the output of the net is the vector ζ whose components are given by

ζi = g

(
n2∑
j=1

ω
(3)
ij σj − θ

(3)
i

)
, i = 1, . . . , n3 . (1.4)

Here we have supposed that the activation function can be any arbitrary function
g, though it is customary to work only with bounded ones either in the interval
[0, 1] or in [−1, 1]. If this transfer function is of the form of the Θ step function of
eq. (1.2) it is said that the activation is discrete, since the states of the neurons
are forced to be in one of a finite number of different possible values. Other-
wise, commonly used continuous activation functions are the sigmoids or Fermi
functions

g(h) ≡ 1

1 + e−βh
, (1.5)

which satisfy
lim

β→∞
g(h) = Θ(h) . (1.6)

In the terminology of statistical mechanics the parameter β is regarded as the
inverse of a temperature. However, for practical applications we will set β = 1.

In general, if we have L layers with n1, . . . , nL units respectively, the state of
the multilayer perceptron is established by the recursive relations

ξ
(�)
i = g

(
n�−1∑
j=1

ω
(�)
ij ξ

(�−1)
j − θ

(�)
i

)
, i = 1, . . . , n� , 	 = 2, . . . , L , (1.7)

where ξ(�) represents the state of the neurons in the 	-th layer, {ω(�)
ij } the weights

between units in the (− 1)-th and the 	-th layers, and θ
(�)
i the threshold of the

i-th unit in the 	-th layer. Then, the input is the vector ξ(1) and the output ξ(L)

(see Fig. 1.3).
By simple perceptron one refers to networks with just two layers, the input

one and the output one, without internal units, in the sense that there are no
intermediate layers, and with the step activation function (1.2). These devices
have been seen to have limitations, such as the XOR problem, which do not
show up in feed-forward networks with hidden layers present. Actually, it has
been proved that a network with just one hidden layer can represent any boolean
function [11].

6 Introduction

� � �

� � �

� � �

ζ1 ζ2 ζn3 Output

σ1 σ2 σn2 Hidden

ξ1 ξ2 ξn1 Input

�

�

ω
(2)
jk , θ

(2)
j

ω
(3)
ij , θ

(3)
i

. . .

. . .

. . .

�
�

�
�

�

����������

��������������������

�
�

�
�

�

���������������

��������������������

���������������

	
	

	
	

	

	
	

	
	

	

��������������������

	
	

	
	

	

���������������

��������������������

���������������

�
�

�
�

�

Figure 1.2: A three-layer perceptron consisting of input, hidden and
output layers.

ξ(1) −→ · · · −→ ξ(�−1) −→ ξ(�) −→ · · · −→ ξ(L)

ω
(2)
ij ω

(�)
ij ω

(L)
ij

θ
(2)
i θ

(�)
i θ

(L)
i

Figure 1.3: Schematic display of the states, weights and thresholds
of a multilayer neural network.

Chapter 2

Associative memory

The basic problem of associative memory is the storage of a set {ξμ, μ = 1, . . . , p}
of binary patterns, of N bits each, in such a way that, when any other pattern ξ
is presented, the ‘memorized’ one which is closest to it is retrieved. Among the
different solutions, the ones with bigger capacity and larger basins of attraction
are preferred. The capacity is defined as the maximum number of patterns that
can be stored, and the basins of attraction are the regions of the input space
around the patterns in which the memory recall is perfect. In this chapter we
will see several possible solutions based in the use of artificial neural networks.

2.1 Hopfield networks

2.1.1 Formulation of the associative memory problem

Let us suppose that we have a fully connected neural net whose dynamics is
governed by eq. (1.1). The N units are updated in random or sequential order
from an initial state ξ. If proper connections are taken, we will prove that the
evolution of this net will approach its nearest stored pattern ξα, provided the
difference between them is small enough.

When dealing with this sort of networks it is convenient to modify the math-
ematical definition of the states in the new terms of the Ising spin-glass theory.
Thus, the firing and non-firing 1 and 0 values are replaced by the up and down
spin states, with numerical values +1 and −1 respectively. Moreover, the Θ ac-
tivation function has to be substituted by the sign function. The new evolution
equations are, then,

ξi(t + 1) = sign (hi(t)) , (2.1)

where

sign(h) ≡
{ −1 if h ≤ 0 ,

+1 if h > 0 ,
(2.2)

7

8 Associative memory

and hi is a commonly used quantity called the field of the i-th neuron, defined as

hi(t) ≡
N∑

j=1

ωijξj(t) − θi . (2.3)

Nevertheless, in the rest of this section we will take null values for the thresholds:

θi = 0 , i = 1, . . . , N . (2.4)

From now on we will switch from one formulation to the other whenever necessary,
choosing always the most appropiate one for each particular problem.

Some lines above it has been said that the correct retrieval is achieved if the
two patterns ξ and ξα are close enough. The concept of nearness is measured
with the aid of the so-called Hamming distance, which is defined as the number
of bits in which they differ. Some equivalent expressions for the calculation of
the Hamming distance H between ξ and ξμ could be

Hμ(ξ) =
1

4

N∑
j=1

(ξj − ξμ
j)2

=
1

2

N∑
j=1

(1 − ξjξ
μ
j)

=
N

2
− 1

2

N∑
j=1

ξjξ
μ
j , (2.5)

where we have made use of the fact that the ξj take spin-like values ±1. Another
equivalent (but opposite) measure is the overlap O, defined as the number of bits
equal to both ξ and ξμ:

Oμ(ξ) = N −Hμ(ξ)

=
1

4

N∑
j=1

(ξj + ξμ
j)2

=
1

2

N∑
j=1

(1 + ξjξ
μ
j)

=
N

2
+

1

2

N∑
j=1

ξjξ
μ
j . (2.6)

2.1 Hopfield networks 9

2.1.2 The Hebb rule

The easiest and more extensively studied choice of weights which transform a
neural net into an associative memory device is

ωij =
1

N

p∑
ν=1

ξν
i ξν

j , (2.7)

known as the Hebb rule. A remarkable property is the symmetry of the weights,
ωij = ωji, which allows the introduction of the energy functional

E[ξ] = −1

2

∑
i,j

ωijξiξj . (2.8)

It is possible to show that the dynamics defined by eqs. (2.1) and (2.3) never
increases this energy, meaning that the time evolution of the network tends to
bring the system to a local minimum of E.

If we substitue (2.7) into (2.3) with the initial condition ξ(0) = ξμ, we obtain

hμ
i (0) = ξμ

i +
1

N

∑
j

∑
ν �=μ

ξν
i ξν

j ξμ
j . (2.9)

Supposing that the patterns to be stored are random, the second term in the
r.h.s. turns out to be a sum of N × (p − 1) discrete random variables, each one
with equally probable values + 1

N
and − 1

N
. For large N , and due to the Central

Limit Theorem, the distribution of this ‘crosstalk’ term is gaussian with zero

mean and
√

p−1
N

standard deviation. Therefore, if the number of patterns p is

small compared to the number of units N , the absolute value of the crosstalk
term will have a high probability of being below 1. The consequence is that all
the patterns ξμ are stable configurations of the net, since the signs of the hμ

i are
the same as those of the ξμ

i .
A similar calculation shows that, if the initial state has n bits different to

those of the pattern ξα, then

hi(0) =

(
1 − 2n

N

)
ξα
i +

1

N

∑
j

∑
ν �=α

ξν
i ξν

j ξα
j . (2.10)

Once again, if n, p � N , the network configuration will be, after one update of
all the neurons, the desired ξα.

Application of the powerful mathematical tools of statistical mechanics shows
that p = 0.14N is the maximum number of retrievable patterns that can be stored
through this method (see e.g. [1]). This limit is far beyond the theoretical bound
of p = 2N for random patterns [24].

10 Associative memory

2.1.3 The projection or pseudo-inverse solution

When the patterns are correlated the Hebb rule can no longer be applied. Never-
theless, there exists a very simple though non-local solution for the storage of up
to N linearly independent patterns [61]. The model consists in the set of weights

ωij =
1

N

p∑
ν,σ=1

ξν
i (Q−1)νσξσ

j , (2.11)

where Q−1 is the inverse of the overlap matrix Q formed by

Qνσ ≡ 1

N

N∑
k=1

ξν
kξσ

k . (2.12)

It is straightforward to see that

hμ
i (0) =

N∑
j=1

ωijξ
μ
j = ξμ

i , (2.13)

so we conclude that every stored pattern is a stable configuration of the neural
network. Now both names given to this rule are justified: the pseudo-inverse
comes from eq. (2.11) and the projection from eq. (2.13).

The advantages of this method in front of the Hebb rule are clear: it can
deal with correlated though linearly independent patterns, and the capacity of
the network has been enlarged up to α ≡ p

N
= 1. Of course, the limitation to the

number of patterns comes from the necessity of inverting the overlap matrix.
However, in 1987 Kanter and Sompolinsky [41] showed that the previous

model does not retrieve the stored patterns if α > 1
2
, since even an initial config-

uration which differs from a memorized pattern by only one bit does not evolve
to the full memory. In this case it is said that the radius of attraction of the
stored patterns are zero. The solution they proposed is the elimination of the
self-coupling terms, i.e. ωii = 0 , ∀i, which for large N leads to a true capac-
ity of α = 1, with substantial basins of attraction. The same modification also
improves the behaviour of the Hebb rule.

2.1.4 Optimal stability solution

Both the Hebb and the projection rules share the property that we have an
explicit formula for the calculation of the synapses. However, the second method
requires the inversion of a usually very big matrix, which makes it difficult to be
implemented. In 1987 Diederich and Opper [13] realized that this inversion could
be done in an iterative local scheme. A further enhancement was carried out by

2.2 Maximum overlap neural networks 11

Krauth and Mézard [44]. They defined the stability Δ of the network as

Δ ≡ min
μ,i

(
ξμ
i

∑
j

ωijξ
μ
j

)
, (2.14)

where Δ is a positive quantity whenever the weights are chosen so that all the
stored patterns are stable. The stability of a network is a measure of the minimum
size of the basins of attraction. Thus, the optimal stability solution is the one
which solves the following constrained problem:

maximize Δ > 0 for i = 1, . . . , N satisfying ξμ
i

∑
j

ωijξ
μ
j ≥ Δ, μ =

1, . . . , p and
∑

j

ω2
ij = 1, where the independent variables are the

weights.

The normalization condition is imposed to fix the invariance of the dynamics
(2.1) under rescalings of the weights.

With this new geometrical point of view in mind, Krauth and Mézard pro-
posed an iterative method, known as the MinOver algorithm, that converges to
the optimal stability solution. Another rule, the AdaTron algorithm, based on
quadratic optimization techniques, was derived by Anlauf and Biehl in 1989 [2].
Its main advantage is that the relaxation towards the optimal stability weights
is much faster. The procedure is the following: first, one puts

ωij =
1

N

p∑
ν=1

xν
i ξ

ν
i ξν

j , (2.15)

where the embedding strengths xν
i are unknown. Then, any starting configuration

with xν
i ≥ 0 is possible, in particular the tabula rasa xν

i = 0. Finally, the strengths
are sequentially updated through the substitution rule

xν
i −→ xν

i + max

{
−xν

i , γ

(
1 − ξν

i

∑
j

ωijξ
ν
j

)}
, (2.16)

with a 0 < γ < 2 constant to ensure the convergence of the method.
The capacity of the solution of optimal stability for random patterns is, in

principle, the maximum possible, i.e. α = 2. Nonetheless, simulations show that
the time needed to achieve a good approximation to this solution diverges when
the number of patterns approaches this bound.

2.2 Maximum overlap neural networks

In the previous section we have exposed several methods of partially solving the
associative memory problem with the aid of fully connected and deterministic

12 Associative memory

artificial neural networks. Another improvement of physical nature consists in
the introduction of a small fraction of thermal noise capable of pushing the system
out of spurious minima. Nevertheless, it seems clear that, at large, they will not
be able to correctly classify an arbitrary set of input patterns, since the noice
induces errors, the capacity of the system has upper bounds, and the basins of
attraction do not fill the input space.

Leaving aside the undoubted relevance of these methods, the possibility of
connecting the units of the network in very different ways opens neural computing
to wider fields of research and applications. From now on we will try to take
advantage of this power.

In this section we will be concerned with the search for optimal solutions to
the problem of associative memory [19]. By optimal we mean that every input
pattern must make the network retrieve its nearest stored counterpart, with the
only exception, at most, of those inputs equidistant from two or more of them (not
to be confused with the optimal stability solutions of Subsect. 2.1.4). Moreover,
the capacity of the network cannot be bounded by anything but the size of the
input space. Proceeding in this way we clearly separate the specific interest in
the problem of associative memory from the interest towards the study of fully
connected spin-glass-like neural networks. The solutions found shall henceforth
be called Multilayer Associative Memory Optimal Networks (MAMONets).

2.2.1 Optimal associative memory schemes

Pattern recognition boils down to finding the mutual overlaps between a given
shape ξ and a set of stored binary patterns {ξμ, μ = 1, . . . , p}, of N bits each, in
order to determine which is the closest. While a Hopfield network produces the
result by persistence of its own configuration after evolving in time, our methods
entail the ‘actual’ computation of the overlaps and the selection of the largest by
means of multilayer nets with standard logistic functions.

The idea of calculating the overlaps among the input and stored patterns has
already been put forward by Domany and Orland in [14], where some of the
advantages we find were anticipated. However, Domany and Orland assume the
existence of activation functions capable of finding the largest of two numbers and
of picking its index, thus sidestepping the harder problem of doing so by means
of ‘available’ types of neurons, i.e. units either linear or binary. Our schemes will
precisely deal with this matter.

Binary units

Let Oμ(ξ) be the unnormalized overlap between the input shape ξ and the stored
pattern ξμ, i.e.

Oμ(ξ) =

N∑
k=1

(ξμ
k ξk + (1 − ξμ

k)(1 − ξk)) , (2.17)

2.2 Maximum overlap neural networks 13

ξ1

ξ2
...

ξN

−→
σ12 σ13 · · · σ1p

σ23 · · · σ2p

. . .
...
σp−1 p

−→
S1

S2

...
Sp

Figure 2.1: Scheme of a binary units three-layer perceptron for
optimal associative memory.

where, for mathematical convenience, the activation values of the input units are
0 and 1. Consider an intermediate layer of units

σμν(ξ) = Θ (Oμ(ξ) −Oν(ξ)) , ν > μ only, (2.18)

Θ being the logistic function defined in (1.2). Due to the linear character of
Oμ in the components of the input ξ, the argument of our step function can
be adequately written as a weighted sum by just identifying the weights and
thresholds implicit in expression (2.17):⎧⎪⎨⎪⎩

ωμν
k = 2(ξμ

k − ξν
k) ,

θμν =
N∑

k=1

(ξμ
k − ξν

k) .
(2.19)

With them, we can write

σμν(ξ) = Θ

(
N∑

k=1

ωμν
k ξk − θμν

)
. (2.20)

Further, we add an output layer of p units as shown in Fig. 2.1 and require
that its α-th unit be on and the rest off, so that this index be singled out. Assume
that ξ has its largest overlap with ξα, i.e. Oα(ξ) −Oμ(ξ) > 0 for every μ 	= α,
and that the difference is always negative when the order is reversed. As a result{

σαμ(ξ) = 1 ∀μ 	= α =⇒ the α-th row contains only ones,
σμα(ξ) = 0 ∀μ 	= α =⇒ the α-th column contains only zeros.

In rows and columns where the index μ does not occur there will always be a
mixture of zeros and ones. Therefore, the feature to be detected within the (σμν)

14 Associative memory

matrix is a column-row subarray of the sort

· · · 0 · · ·
. . .

...
...

0 · · ·
1 · · · 1

. . .
...

with α− 1 zeros in column α and p−α ones in row α. As can be easily checked,
the combination ⎧⎨⎩ ωλ,μρ =

{
δλμ if ρ > λ ,
−δλρ if μ < λ ,

θλ = p − λ − ε , 0 < ε < 1 ,
(2.21)

does the job nicely if the output activations are given by

Sλ = Θ

⎛⎝∑
μ,ρ
μ<ρ

ωλ,μρσμρ − θλ

⎞⎠ . (2.22)

Notice that the number of units on the hidden layer is nothing less than
p(p−1)

2
, which means that its size grows quadratically in p as the number of stored

patterns increases. This signals a problem for all applications where p can be
arbitrary large, and will be the major shortcoming of the method. The other
drawback is its inability to cope with input patterns which are equidistant from
two or more of the ξμ, as the above characteristic column-row configuration does
no longer appear in these cases.

Decreasing thresholds

According to definition (2.17), Oμ(ξ) ∈ {0, 1, 2, . . . , N}. If we knew in advance
the value of the largest overlap, say OM , it would suffice to choose a common
threshold θ = OM − ε, 0 < ε < 1, and compute

Sμ(ξ) = Θ (Oμ(ξ) − θ)

= Θ

(
N∑

k=1

(2ξμ
k − 1)ξk −

(
N∑

k=1

ξμ
k − N + θ

))
. (2.23)

With this, the activation of one Sμ unit on the second layer would be singling
out the index of the closest pattern, and no hidden layers would be called for.

What can be done in practice is to start by using a threshold large enough
and decrease it by time steps, until one of the overlaps be above it and the rest be
below. Since all the overlaps can only be integers between 0 and N , the threshold

2.2 Maximum overlap neural networks 15

ξ

��
�

�

ω , θ(t)
S

�
c�

�

Figure 2.2: Scheme involving a control unit c with repeated thresh-
old decrease for associative memory.

will be reduced by one unit every time, until the above condition is met. Since
OM can have at most the value of N , a good threshold to start with is

θ(0) = N − ε , 0 < ε < 1 . (2.24)

At every step the same input pattern will be reprocessed, i.e.

ξ(t + 1) = ξ(t) , (2.25)

and an additional unit, say c, will take care of checking whether the end condition
is satisfied or not (see Fig. 2.2). We define the state of this control unit as

c(S) = Θ

(
p∑

μ=1

Sμ

)
, (2.26)

i.e., it is activated only when there is a positive Sμ, which amounts to having
Oμ(ξ) > θ(t) for a certain index, say μ = α. Clearly, c = 0 when the threshold
is still above all the overlaps. While this happens, θ will have to be cut down.
Thus, the update rule for the variable threshold must be

θ(t + 1) = θ(t) − (1 − c(S)) . (2.27)

When c = 1, θ repeats its previous value and the network becomes stable. All
the Sμ are zero except for Sα, thus providing the desired identification.

Unlike the previous scheme, this set-up allows for the recognition of a subset of
patterns which are at the same minimal distance from the input ξ. They appear
in the form of several units simultaneously turned on at the S layer, after the
threshold has got just below the elements of this subset. The same will happen
with the model we propose next.

16 Associative memory

Quasilinear units

The so-called MaxNet algorithm was conceived for the purpose of picking win-
ning units in neuron clusters for competitive learning [45]. The idea behind this
method was to avoid the sequential calculation of overlap differences, thus making
possible the selection of the maximum by a purely neural method. The technique
we suggest here is yet another exploit of this nice algorithm.

Having computed the normalized overlaps, we store them into the units of a
fully interconnected Hopfield-like network, S, which, after time evolution under
an appropriate update rule, will point to the maximum. Rather than a hidden
layer, the present model contains a hidden time-evolving network.

From input to the hidden network at t = 0. We want each Sμ(t = 0) to
take on the value of 1

N
Oμ(ξ). This is easily achieved by propagating forward the

values of the ξ components in the way

Sμ(0) =

N∑
k=1

ωμ
k ξk − θμ , (2.28)

i.e. with an identity (between 0 and 1) logistic function, and using the weights
and thresholds ⎧⎪⎪⎨⎪⎪⎩

ωμ
k =

1

N
(2ξμ

k − 1) ,

θμ =
1

N

N∑
k=1

ξμ
k − 1 .

(2.29)

Time evolution. The rule chosen for the updating of the units, which we
assume to be synchronous, is

Sμ(t + 1) = f

(
p∑

ρ=1

ωμρSρ(t)

)
, (2.30)

where

ωμρ =

{
1 if ρ = μ ,
−ε if ρ 	= μ ,

(2.31)

with

0 < ε ≤ 1

p − 1
, (2.32)

and the activation is the quasilinear function

f(x) =

⎧⎨⎩
0 if x < 0 ,
x if 0 ≤ x ≤ 1 ,
1 if x > 1 .

(2.33)

2.2 Maximum overlap neural networks 17

Assume that a maximum exists, and let α denote its label:

Sα(0) > Sμ(0) , ∀μ 	= α . (2.34)

Since the overlaps have been normalized, the initial arguments of f are between
0 and 1 and this function effectively is the identity. It is easy to realize that
Sμ(t) ≤ Sμ(t − 1) , ∀μ , ∀t, i.e. the values of all the units are monotonically
decreasing.

For any t such that we still have Sν(t) > 0 and Sλ(t) > 0,

Sν(t) − Sλ(t) = Sν(t − 1) − ε
∑
μ�=ν

Sμ(t − 1) − Sλ(t − 1) + ε
∑
μ�=λ

Sμ(t − 1)

= (1 + ε)
(
Sν(t − 1) − Sλ(t − 1)

)
. (2.35)

Define
dνλ(t) ≡ Sν(t) − Sλ(t) . (2.36)

This quantity satisfies the recursive relation

dνλ(t) = (1 + ε) dνλ(t − 1) , (2.37)

whose solution is
dνλ(t) = (1 + ε)t dνλ(0) . (2.38)

Since the dνλ do not change their signs, the relative order of the values of the
non-zero units remains constant. It is therefore obvious that

Sα(t) > Sμ(t) , ∀μ 	= α , ∀t (2.39)

and that

Sμ(t) = Sμ(t − 1) ⇐⇒
⎧⎨⎩

Sμ(t − 1) = 0
∨
μ = α (the maximum) and Sμ(t − 1) = 0 for μ 	= α

(2.40)
i.e. the stable configuration takes the form

S = (
1

0, . . . ,
α−1

0 ,
α

Δ,
α+1

0 , . . . ,
N

0) (2.41)

which singles out the maximum, as desired.
Let ξβ be the pattern second closest to ξ. Then

Sα(0) > Sβ(0) ≥ Sμ(0) , ∀μ 	= α , ∀μ 	= β . (2.42)

The case Sβ(0) = 0 is only possible if p = 2. In this situation the system cannot
go any further, as it is already in a stable state. Otherwise, Sβ(0) > 0 and some
iterations are needed to reach the stable state. Let T be the least number of

18 Associative memory

iterations necessary in order to ensure that S(t + 1) = S(t) for any t ≥ T . By
(2.39), dαβ(t) is less than one while t < T . Hence the inequality

(1 + ε)t dαβ(0) < 1 , for t < T , (2.43)

follows. In addition, by considering the minimal difference between normalized
overlaps we come to dαβ(0) = Sα(0)− Sβ(0) ≥ 1

N
, which gives a lower bound for

dαβ(0). From this and (2.43) we get

1

(1 + ε)t
>

1

N
, (2.44)

which yields

t <
log N

log(1 + ε)
≡ T (N, ε) . (2.45)

Since T must be an integer, the answer is

T = upper integer part of T (N, ε). (2.46)

Using the most efficient ε, i.e. ε = 1
p−1

, we obtain

T (N, ε) =
log N

log
p

p − 1

. (2.47)

Depending on the conditions at the outset, several cases may be distinguished:

(i). If Sα(0) > Sβ(0) ≥ Sμ(0) , μ 	= α , μ 	= β, the system will eventually settle
down on a state of the type

S(t) = (0, . . . , 0,
α

Δ, 0, . . . , 0) , 0 < Δ < 1 , for t ≥ T or earlier.

(ii). If Sα1(0) = · · · = Sαr(0) > Sμ(0) , μ 	= α1, . . . , αr , r ≤ p, then the system
does not stabilize, but:

(iia) if r < p it comes to symmetric mixture states, of the sort

S(t) = (0, . . . , 0,
α1

Δ(t), 0, . . . , 0,
αr

Δ(t), 0, . . . , 0), for t ≥ T or earlier,

with 0 < Δ(t) < Δ(t − 1) < 1;

(iib) if r = p it will arrive at

S(t) = (0, . . . , 0) .

2.2 Maximum overlap neural networks 19

ξ � S(t)

��
�

� ζ

Figure 2.3: Time-evolving MaxNet S(t) as part of a multilayer neu-
ral network for pattern recognition.

Thus, if the execution is stopped after exactly T iterations, the final state
S(T) will be of one of the three kinds above. The interpretation of this fact is
also simple. A class (i) state means that ξα is the closest pattern to ξ. If the
network ends up in (iia), then there is a subset {ξα1 , . . . , ξαr} of patterns equally
similar to ξ, all of them closer than the rest. The (iib) subclass corresponds to
the rather unlikely case where all the stored patterns are at the same distance
from ξ.

The execution halt for t = T may be formally regarded as equivalent to taking
a time-dependent ε like

ε(t) =

{
ε if t < T ,
0 if t ≥ T ,

(2.48)

since, for ε = 0 nothing changes.

From the final state of the hidden network to the output. Here we
will consider the question of actually rebuilding the pattern(s) selected by the
network, i.e. of going from index-recognition to visual reconstruction. This dis-
cussion does also apply to the two previous schemes, as both end up with the
same representation. The result will be ‘visible’ if we add an external output
layer connected to the hidden network, which will not feed information into its
units until the time evolution has come to an end (see Fig. 2.3).

An activation that provides the recovery of ξα in case (i) is

ζi = Θ

(
p∑

μ=1

ωμ
i Sμ

)
, (2.49)

with
ωμ

i = ξμ
i . (2.50)

20 Associative memory

One can still wonder what comes up when applying the same method to type (ii)
states. It does not take too long to realize that the shape retrieved from (iia)
states is the result of adding all the single patterns in the selected subset by the
boolean OR function. Even (iib) cases allow for recovery of the OR-sum of all
the stored patterns if the scheme employed is step-by-step threshold reduction as
explained before. An additional difficulty is the existence of apparent one-pattern
retrieval states which emerge from special combinations of several ξμ giving rise to
another stored pattern of the same set. The difference between genuine retrieval
states and these fake one-pattern configurations is that the former appear after
the network settles on a stable state of class (i), while the latter are symmetric
mixtures of the type (iia).

2.2.2 Examples and simulations

In order to assess the efficiency of the MAMONet methods, we have carried out
numerical simulations of a few examples. The third MAMONet (the most ad-
equate in our view) has been compared with the Hebb prescription and with
two enhanced variants, based on the pseudo-inverse method and on the AdaTron
algorithm, all of them under synchronous dynamics. Although they have been
explained in Subsects. 2.1.3 and 2.1.4, some brief comments on their applica-
bility are in order. The pseudo-inverse method is valid only when the overlap
matrix Q is invertible, which amounts to requiring linear independence of all the
stored patterns. An AdaTron net finds the weights by an iterative algorithm of
self-consistent nature, which, in fact, leads to aimless wandering on quite a few
occasions. We have used both techniques as improvements of the Hebb rule for
fixing the weights in the sense that, whenever the system is posed with a {ξμ} set
leading to a singular Q matrix or otherwise preventing the AdaTron algorithm
from achieving convergence, the ‘straight’ Hebb rule is enforced.

We fix the size of the net as well as p and, after choosing a random set {ξμ, μ =
1, . . . , p}, all the 2N possible initial configurations are fed into the input units.
At every step, the retrieval frequency of each stored pattern, as well as those of
the different kinds of non-retrieval final situations (such as spurious minima or
unstable change) are computed separately. Notwithstanding that, if we want to
describe the general behaviour of a particular model, the relevant quantities to
be taken into account will be the cumulative averages of these frequencies over
all the different iterations performed so far. Specifically, the following.

• The average global retrieval frequency . Consider the number of retrievals of
every particular stored pattern ξμ, μ = 1, . . . , p, and take its average over
all the random generations of the {ξμ} set. Since under these circumstances
each ξμ by itself is, of course, as stochastic as the rest, these numbers do not
make sense as individual quantities, but their sum does in fact provide a
measure of the power of the system to produce retrievals of single patterns

2.2 Maximum overlap neural networks 21

belonging to the set. As an indicator of the performance of the network,
such a magnitude must depend on the typical sizes and distributions of the
basins of attraction produced by the method in question [1], and gives us
an idea of the relative extent (referred to the whole input space) to which
the system is capable of making unambiguous decisions.

• The average frequency of spurious minima. By spurious minima we mean
configurations stable under evolution which do not reproduce, however, any
of the embedded patterns. Our application of such a general definition calls
for establishing at least two separate categories here.

1. Patterns exactly opposite to the embedded ξμ, which are as stable as
the original set, since their retrieval is actually symmetrical. For this
reason they are usually counted as one-pattern retrieval states in the
classical literature.

2. Other non-retrieval stable states, including superpositions of several
embedded patterns, either with the same or different coefficients (sym-
metrical or asymmetrical mixtures).

When a cost or energy function exists, spurious configurations correspond
to local minima in the energy landscape which are different from the valleys
occupied by the ξμ themselves.

• The average frequency of oscillating states.

• The average frequency of unstable states. In principle, none of these states
repeats itself under evolution. We call oscillating the unstable situation
where a given pair of states lead one to the other endlessly, and reserve the
word unstable for any other case where the system shows its reluctance to
settle down.

Concerning the evolution of our MAMONet model, some slightly different
concepts have to be introduced.

• Fake retrievals. As already remarked, there are ξ which give rise to (iia)
states, corresponding to more than one ξμ, but this may happen in such a
manner that the OR-sum of those turns out to coincide with one single ξμ.
Under unending time evolution of the hidden network these configurations
would be unstable, but since the time is limited by the bound we have
chosen to impose, it happens that when the evolution is stopped they pop
up looking like retrieval states; thus the adjective ‘fake’.

• Hesitant configurations. This refers to all the remaining unstable set-ups.
Contrary to the previous case, the network’s indecision is this time exter-
nally noticeable. As in fake retrievals, the system hedges its bets between

22 Associative memory

Hebb rule Q−1 method AdaTron MAMONet

global retrieval 253.50 206.57 174.59 729.84
spurious 480.45 816.36 262.66
oscillating 290.05 1.07 586.30 fake 34.55
unstable 0.00 0.00 0.45 hesitant 259.61
No. of iterations 222 1002 1002 494

Table 2.1: Average frequencies for the parallel simulation corre-
sponding to the example N = 10, p = 4, by the four methods
explained in the text. The numbers of iterations quoted were the
necessary for obtaining a largest relative increase below 10−3.

two or more equi-overlapping (and thus equally close) stored patterns, but,
after being halted, it produces an OR-sum of patterns which is not necessar-
ily recognizable. At that moment, the network is caught in its ‘hesitation’.

• Spurious states. We must stress that they are absent from this scheme, as
only the stored pattern themselves are truly stable under dynamic evolution.

The rule for stopping the simulation is repetition of the average values. To
be more precise, we set upper bounds to the relative increase of the averaged
quantities rather than to their absolute increase. Usual Montecarlo algorithms
do not explore the whole input space, but produce a ‘random walk’ through the
pattern hypercube until some convergence condition is met. However, we make an
exhaustive examination of the 2N input patterns, which in fact means the actual
computation of the quenched average over the ξ space. Thus, the randomness is
limited to the generation of sets. In addition to some smaller examples, we have
studied N = 10. The information gathered is of the kind shown in Table 2.1 and
all the normalized global retrieval rates obtained are displayed in Table 2.2.

Both the Q−1 and AdaTron enhancements yield rates which fall often within
the same range as those for the original Hopfield network with the Hebb rule.
One must bear in mind that their actual use is limited to the subclass of {ξμ} sets
which allow for their application. Therefore the results shown are for mixtures
Hebb-Q−1 and Hebb-AdaTron in which the proportions are subject to variation.
For instance, the virtually equal values for Hebb and AdaTron corresponding to
α close to 1 are no coincidence, but rather the result of the (expectable) lack
of convergence of the AdaTron algorithm for large p, which gave rise to the use

2.2 Maximum overlap neural networks 23

α Hebb rule Q−1 method AdaTron MAMONet

0.2 0.35 0.36 0.35 0.82
0.3 0.22 0.32 0.18 0.75
0.4 0.25 0.20 0.17 0.71
0.5 0.18 0.12 0.13 0.69
0.6 0.21 0.07 0.20 0.67
0.7 0.20 0.03 0.18 0.65
0.8 0.18 0.03 0.19 0.63
0.9 0.18 0.02 0.17 0.62
1 0.19 0.02 0.18 0.61

Table 2.2: Global retrieval rates obtained by each procedure for
N = 10 and for different values of α = p

N
. The estimated error

is 5 × 10−2 for the first three methods and less than 10−2 for the
MAMONet figures.

24 Associative memory

of the Hebb rule almost throughout. In most of the cases studied, the unstable
configurations found are of the oscillating type. Larger numbers of embedded
patterns will surely give rise to more unstabilities of other sorts. MAMONet pro-
vides significantly larger attraction basins, while getting rid of spurious minima.
Also worthy of comment is the observed growth in the rate of fake retrievals as
α increases.

The simulations might have been continued for p larger than N , were it not for
the prohibitively long times involved. At least as far as MAMONet is concerned,
the process might go on without problems until p = 2N . The constraint that all
the ξμ should be different allows us to predict the behaviour of the retrieval rate.
When p = 2N every possible pattern must appear exactly once, and thus the rate
has to be one. On the other hand, p = 1 would also give a unit value, as no fake
retrieval or hesitation could take place either. Given the observed fall of the rate
when increasing p from p = 2, at least one minimum has to exist (and is easily
seen by doing the whole simulation for small N). The value of this minimum is
an interesting subject that can be a matter of further research.

Chapter 3

Supervised learning with discrete
activation functions

In Sect. 2.2 we have seen how multilayer neural networks can be applied to
solve the associative memory problem. However, the characteristic which has
attracted most of the interest towards them is their role as an input-output
machine: whenever an input pattern is presented it responds giving out a certain
output pattern. Thus, multilayer perceptrons may be regarded as families of
functions whose adjustable parameters are the weights and thresholds. It must
be taken into account that the architecture of the network is generally not given
beforehand. That is the reason why we are free to adjust it as necessary. The
leading criterion will be, of course, simplicity.

In this and in the next chapter we will be concerned with supervised learn-
ing , i.e. with the calculation of the parameters of multilayer feed-forward neural
networks which transform several known input patterns into their correspond-
ing output patterns (according to a given interpretation of inputs and outputs).
First, we will concentrate our attention in multilayer perceptrons made of units
with discrete activation functions and, afterwards, we will consider the continuous
and differentiable case.

3.1 Encoding of binary patterns

The original problem of encoding is to turn p possible input patterns described
by N digital units into a specified set of p patterns of M units, and to do it
with the least possible number of intermediate processing elements [17, 18]. This
may be seen as trying to condense all the information carried by the initial set of
patterns into the tiniest space possible (data compression), and then to recover
it in the form of the corresponding output patterns (decoding). For the sake of
simplicity we will deal with the case where N = M = p only, the reason being
that, for this set-up, the association between every particular pattern and the

25

26 Supervised learning with discrete activation functions

position of each excited unit is quite easy to keep in mind.

As a technical subject, data compression can play a decisive role in the issue
of encryption, as it uses many similar principles. The idea behind this is to
increase the capacity of any storage device without having to alter the actual
hardware architecture, and only by an effective reduction of the storage needs of
the user. Computer-based cryptography is a modern answer to the necessity for
keeping sensitive data on shared systems secure, as well as a resource for data
transmission, e.g. the protection of sky-to-earth station broadcasts. In addition
to storage enhancement and higher security levels, the encoding of information
prior to transmission saves transfer time, e.g. on phone lines.

3.1.1 Encoding schemes

Unary input and output sets

This is the simplest set-up, from which more involved encoding systems can be
devised, as we shall show later. Let us assume an input alphabet of N symbols,
each of them defined by a binary pattern of N units. The choice of unary patterns
(in the Ising formalism) amounts to defining every element of the input set as

ξμ ≡ (
1−, . . . ,

μ−1− ,
μ
+,

μ+1− , . . . ,
N−) , μ = 1, . . . , N , (3.1)

or, in components,

ξμ
k = 2δμ

k − 1 . (3.2)

We will start by requiring our network to turn a given unary input pattern
of N units into an output configuration reproducing the same pattern, by means
of an intermediate layer. Furthermore, for the sake of economising on memory
storage, it will be quite desirable to demand that this layer be as small as possible.

The encoding strategy to be put into practice will consist in using a hidden
layer (see Fig. 3.1) forming a binary representation of the N input characters in
terms of −1 and +1 (instead of 0 and 1). Each element of this representation
will be the binary translation of the number μ − 1, associated to every pattern
ξμ. As a result, the dimension of this representation (in fact, the effective byte
length), henceforth called R, has the following value:

R =

{
log2 N if log2 N ∈ N ,
[log2 N] + 1 if log2 N 	∈ N .

(3.3)

For instance, taking an input set of 4 unary patterns, one has to attach to
them the numbers 0, 1, 2, 3 and put them into binary form when going to the
intermediate layer, which will take up only two units:

3.1 Encoding of binary patterns 27

� � �

� � �

� � �

1 2 N ξμ

1 2 R σμ

1 2 N ξμ

�

�
. . .

. . .

. . .

�
�

�
�

�

����������

��������������������

�
�

�
�

�

���������������

��������������������

���������������

	
	

	
	

	

	
	

	
	

	

��������������������

	
	

	
	

	

���������������

��������������������

���������������

�
�

�
�

�

Figure 3.1: Scheme of a multilayer perceptron for the encoding of
N unary patterns with a ‘bottle-neck’ hidden layer of R ∼ log2 N .

μ ξμ −→ σμ

1 + − − − −→ − −
2 − + − − −→ − +
3 − − + − −→ + −
4 − − − + −→ + +

This sort of change of basis may be implemented by a number of techniques on any
ordinary (i.e. sequential) computer, but, since we are working on a neural network,
it must be achieved by just an adequate choice of the weights or connection
strengths ωjk and of the threshold constants θj , which will relate the values of
the units in both layers in the way

σj = sign

(
N∑

k=1

ωjkξk − θj

)
, j = 1, . . . , R . (3.4)

To begin with, we will tackle the previous example N = 4 (R = 2), for which

28 Supervised learning with discrete activation functions

the above relations lead to two systems of linear inequations:

σ1

ξ1) + ω11 − ω12 − ω13 − ω14 − θ1 < 0
ξ2) − ω11 + ω12 − ω13 − ω14 − θ1 < 0
ξ3) − ω11 − ω12 + ω13 − ω14 − θ1 > 0
ξ4) − ω11 − ω12 − ω13 + ω14 − θ1 > 0

⎫⎪⎪⎬⎪⎪⎭
σ2

ξ1) + ω21 − ω22 − ω23 − ω24 − θ2 < 0
ξ2) − ω21 + ω22 − ω23 − ω24 − θ2 > 0
ξ3) − ω21 − ω22 + ω23 − ω24 − θ2 < 0
ξ4) − ω21 − ω22 − ω23 + ω24 − θ2 > 0

⎫⎪⎪⎬⎪⎪⎭
The unknowns to be solved are not just the eight coefficients for the connection
strengths ωjk, but the thresholds θj , j = 1, 2 as well. A possible and relatively
simple solution of this double system is:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ω11 = −1
ω12 = −1
ω13 = +1
ω14 = +1
θ1 = 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ω21 = −1
ω22 = +1
ω23 = −1
ω24 = +1
θ2 = 0

Considering the weights as the coefficients of a connection strength or weight
matrix , this part of the solution may be put into the form:

(ωjk) =

(− − + +
− + − +

)
.

This way of writing the weights does already exhibit a key feature of the solution
we have chosen, namely, the coincidence of the weight coefficients with the values
of the intermediate units for the different input patterns in the sense that for
each pattern μ = i, we have ωij = σi

j .

In order to guess the general solution for arbitrary N , we will make one step
further and study the case N = 5. This is also of interest because it shows what
happens when log2 N is not an integer. Given that now R = 3, and in contrast
with the previous example, the intermediate layer is now, so to speak, largely
unexploited because the five patterns corresponding to the input set are only a
fraction of the 23 theoretically possible sequences that might be formed in this
substructure. However, since at present we are concerned with the configurations
coming from our unary input patterns only, we limit our requirements to this set:

3.1 Encoding of binary patterns 29

μ ξμ −→ σμ

1 + − − − − −→ − − −
2 − + − − − −→ − − +
3 − − + − − −→ − + −
4 − − − + − −→ − + +
5 − − − − + −→ + − −

Again, we look for suitable weights and thresholds leading to the ‘good’ combi-
nations of input and result. Like before, we have taken the values of the σμ to
be the translated binary digits of μ − 1, but we have not yet cared to write an
explict expression for the figures. One can observe that these numbers have to
do with the quantity μ−1

23−j , which, for the present range of μ and j takes on the
following values

μ − 1

23−j

μ\j 1 2 3

1 0
22 = 0 0

21 = 0 0
20 = 0

2 1
22 = 1

4
1
21 = 1

2
1
20 = 1

3 2
22 = 1

2
2
21 = 1 2

20 = 2

4 3
22 = 3

4
3
21 = 3

2
3
20 = 3

5 4
22 = 1 4

21 = 2 4
20 = 4

Now we can see that, if the digits of σμ were binary 0 and 1, their value would
be precisely

σμ
j bin

=

[
μ − 1

2R−j

]
mod 2 . (3.5)

When translating this back into −1 and +1, the state of each intermediate neuron
reads

σμ
j = (−1)[

μ−1

2R−j]+1 . (3.6)

Next, in the spirit of the solution found for N = 4, we will seek an answer based
on the general ansatz that the values of the weights and of the hidden neurons
for the input set can always be taken to coincide, i.e. choosing

ωjk = σk
j = (−1)[

k−1

2R−j]+1 (3.7)

30 Supervised learning with discrete activation functions

it will perhaps be possible to find thresholds allowing us to implement the desired
relations. For N = 5, this ansatz means taking the weight matrix to be

(ωjk) =

⎛⎝ − − − − +
− − + + −
− + − + −

⎞⎠ .

Proceeding similarly to the N = 4 case, we would realize that possible values for
θj , j = 1, 2, 3 do in fact exist, thus justifying the validity of the assay. A possible
solution is θ1 = 3, θ2 = θ3 = 1. What remains to be checked is the acceptability of
our assay for any N . We will show that this is sustained by finding a suitable set
of thresholds θj , j = 1, . . . , R, valid for an arbitrary number of input patterns.
Taking the expression in components for the unary patterns and making the
ansatz for the ωjk we obtain

σμ
j = sign

(
N∑

k=1

ωjkξ
μ
k − θj

)

= sign

(
N∑

k=1

(−1)[
k−1

2R−j]+1(2δμ
k − 1) − θj

)

= sign

(
2(−1)[

μ−1

2R−j]+1 −
N∑

k=1

(−1)[
k−1

2R−j]+1 − θj

)
. (3.8)

Since σμ
j = (−1)[

μ−1

2R−j]+1, the equality will be satisfied if

θj +

N∑
k=1

(−1)[
k−1

2R−j]+1 = 0 , (3.9)

i.e.

θj =
N∑

k=1

(−1)[
k−1

2R−j] . (3.10)

Since this solution does always exist, the ansatz has been proved to work for
arbitrary N , thus providing a general answer given by the weights (3.7) and the
thresholds (3.10).

The next step is to go from the intermediate layer to the output units. Given
that the output set of patterns will be identical to the input one, the whole
encoding process from one into the other means taking a certain ξμ to obtain
some ξν , where the index ν may be different from the given μ. If we demand that
the translation be injective, i.e. no pair of different input patterns can yield the
same output pattern, and bearing in mind that the number of patterns in each
set is the same, when encoding for all possible μ the relation between the set of
output indices ν and the input labels μ can be no other than a permutation of

3.1 Encoding of binary patterns 31

N elements. Selecting a translation scheme amounts to making the choice of a
specific permutation. It is therefore reasonable to make a first approach to this
problem by choosing the simplest element of the symmetric group, namely the
identity. Thus, if we denote by Sμ the output pattern resulting from entering
ξμ into the network, the situation corresponding to the identity is that in which
Sμ = ξμ, which, for instance, in the case N = 5 can be represented by

μ σμ −→ Sμ

1 − − − −→ + − − − −
2 − − + −→ − + − − −
3 − + − −→ − − + − −
4 − + + −→ − − − + −
5 + − − −→ − − − − +

The set of weights and thresholds accomplishing this for any N will be guessed
from the study of a particular case and justified in general afterwards. These
connection weights and thresholds must make possible the relation

Sμ
i = sign

(
R∑

j=1

ωijσ
μ
j − θi

)
. (3.11)

We will focus now on the set-up for N = 4. This particular case is read from
the previous table by removing the first column and the last row for the σ and
the last column and row for the S. Then, the above sign relation leads to four

32 Supervised learning with discrete activation functions

systems of inequations, i.e.

Sμ
1

ξ1) − ω11 − ω12 − θ1 > 0
ξ2) − ω11 + ω12 − θ1 < 0
ξ3) + ω11 − ω12 − θ1 < 0
ξ4) + ω11 + ω12 − θ1 < 0

⎫⎪⎪⎬⎪⎪⎭
Sμ

2

ξ1) − ω21 − ω22 − θ2 < 0
ξ2) − ω21 + ω22 − θ2 > 0
ξ3) + ω21 − ω22 − θ2 < 0
ξ4) + ω21 + ω22 − θ2 < 0

⎫⎪⎪⎬⎪⎪⎭
Sμ

3

ξ1) − ω31 − ω32 − θ3 < 0
ξ2) − ω31 + ω32 − θ3 < 0
ξ3) + ω31 − ω32 − θ3 > 0
ξ4) + ω31 + ω32 − θ3 < 0

⎫⎪⎪⎬⎪⎪⎭
Sμ

4

ξ1) − ω41 − ω42 − θ4 < 0
ξ2) − ω41 + ω42 − θ4 < 0
ξ3) + ω41 − ω42 − θ4 < 0
ξ4) + ω41 + ω42 − θ4 > 0

⎫⎪⎪⎬⎪⎪⎭
One of the simplest solutions one can think of is:⎧⎨⎩

ω11 = −1
ω12 = −1
θ1 = +1

⎧⎨⎩
ω21 = −1
ω22 = +1
θ2 = +1

⎧⎨⎩
ω31 = +1
ω32 = −1
θ3 = +1

⎧⎨⎩
ω41 = +1
ω42 = +1
θ4 = +1

Once more, we observe coincidence between the weight coefficients and the values
taken on by the intermediate units in the way

ωij = σi
j = (−1)[

i−1

2R−j]+1 . (3.12)

Next, this relationship will be assumed as tenable for arbitrary N , and its validity
demonstrated by showing the existence of possible thresholds θi fulfilling (3.11).

3.1 Encoding of binary patterns 33

By our assumption, we have

R∑
j=1

ωijσ
μ
j =

R∑
j=1

σi
jσ

μ
j ≤

R∑
j=1

(σi
j)

2 = R, (3.13)

i.e., since each term is a product of two signs, the weighted sum of the values
of the hidden units achieves a maximum equal to R when all the pairs of signs
coincide, which happens precisely for μ = i. Otherwise, there must be at least
one pair of opposed signs and therefore

R∑
j=1

ωijσ
μ
j ≤ R − 2 , for μ 	= i . (3.14)

Going back to (3.11), given that Sμ
i = ξμ

i , that has a plus sign for the unit at
i = μ and minuses elsewhere, the thresholds θi must be such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

R∑
j=1

ωijσ
μ
j − θi > 0 for the maximum (μ = i) ,

R∑
j=1

ωijσ
μ
j − θi < 0 for the rest (μ 	= i) .

(3.15)

This is compatible with (3.13) and (3.14). In fact, by simply taking the thresholds
within a certain range the fulfilment of these conditions is automatically ensured.
This range is

θi = R − 2 + ε , i = 1, . . . , N , 0 < ε < 2 , (3.16)

but, in order to work with determined objects, we content ourselves with choosing

θi = R − 1 , i = 1, . . . , N . (3.17)

For an arbitrary permutation of N elements, the picture is slightly altered to

ξμ
k −→ σμ

j −→ Si = ξν
i

ωjk

θj

ωij

θi

ν = τ(μ) , τ ∈ {permutations of N elements}
All these steps can be equally retraced with the only difference that the weights
ωij now coincide with the σ up to a label reshuffle, i.e., instead of (3.12) we have
ωτ(μ)j = σμ

j , or, equivalently,

ωμj = σ
τ−1(μ)
j = (−1)

[
τ−1(μ)−1

2R−j

]
+1

. (3.18)

Thus, our general solution is{
ωij = (−1)

[
τ−1(i)−1

2R−j

]
+1

, i = 1, . . . , N , j = 1, . . . , R ,
θi = R − 1 , i = 1, . . . , N .

(3.19)

34 Supervised learning with discrete activation functions

Arbitrary input and output sets

The obvious continuation of the work so far is an enhancement of the above
described system so as to make it capable of translating binary patterns of a given
arbitrary input set into elements of another arbitrary (but also specified) output
set. If ζμ , μ = 1, . . . , N denotes the arbitrary input set and Sμ , μ = 1, . . . , N
are the output patterns, in general different from the ζμ, we will require our
network to produce Sτ(μ) as output whenever ζμ is read as input, being τ any
specified permutation of N elements. Actually, the use of τ is redundant in the
sense that, as there is now no natural relationship between the ordering of the
input and output patterns, the use of different τ may at any rate be interpreted
as using always the identity permutation after a previous reshuffle of the labels
of the output set.

a) Five layers. A quite simple alternative is the actual enlargement of our
unary pattern permutator system, by turning the old input and output layers
into intermediate ones and adding two layers where the new arbitrary sets can
be read and written, as depicted in the following diagram:

ζμ
l −→ ξμ

k −→ σμ
j −→ ξ

τ(μ)
i −→ S

τ(μ)
h

ωkl

θk

ωjk

θj

ωij

θi

ωhi

θh

We use indices l to denote each unit of the input patterns and indices h to label
each neuron in the output layer. While the three intermediate levels work exactly
as in the previous network, two new sets of connection weights and thresholds
will have to implement the translation from arbitrary sequences to unary patterns
and the other way round.

First, we look at the step from the input layer to the first intermediate layer,
in which the weights ωkl and the thresholds θk have to satisfy

ξμ
k = sign

(
N∑

k=1

ωklζ
μ
l − θk

)
. (3.20)

It is not difficult to guess
ωkl = ζk

l , (3.21)

the reason for this choice being that it has the property of making the weighted
sum of the input ζμ achieve a maximum of value N precisely for μ = k, i.e.

N∑
l=1

ωklζ
μ
l =

N∑
l=1

ζk
l ζμ

l ≤
N∑

l=1

(ζk
l)2 = N . (3.22)

As we have seen, this type of reasoning works when we require the next layer to
be in a state where one neuron is on and the others are off, which is indeed the

3.1 Encoding of binary patterns 35

case for the unary configurations ξμ. Taking this into account, our choice of the
threshold must be such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

N∑
l=1

ωklζ
μ
l − θk > 0 for the maximum (μ = k) ,

N∑
l=1

ωklζ
μ
l − θk < 0 for the rest (μ 	= k) ,

(3.23)

because the components of ξμ have to be +1 for k = μ and −1 for k 	= μ. The
possibility that we will take is

θk = N − 1 , k = 1, . . . , N . (3.24)

As for the last step, the equality to be satisfied is

S
τ(μ)
h = sign

(
N∑

i=1

ωhiξ
τ(μ)
i − θj

)

= sign

(
N∑

i=1

ωhi(2δ
τ(μ)
i − 1) − θh

)

= sign

(
2ωhτ(μ) −

N∑
i=1

ωhi − θh

)
. (3.25)

By analogy with the calculation of the weights ωjk, we try

ωhτ(μ) = S
τ(μ)
h , (3.26)

i.e.
ωhi = Si

h , (3.27)

which leads us to an equation for the thresholds:

S
τ(μ)
h = sign

(
2S

τ(μ)
h −

N∑
i=1

S
(i)
h − θh

)
. (3.28)

Clearly, it will hold if
N∑

i=1

Si
h + θh = 0 . (3.29)

Thus,

θh = −
N∑

ν=1

Sν
h . (3.30)

This constitutes a solution. Even though we have retained both the type of
structure and the conceptual simplicity of the first network, this design has the
disadvantage that it uses up to 2N+R intermediate units in its three intermediate
layers, which can be rather wasteful as N grows larger.

36 Supervised learning with discrete activation functions

b) Three Layers. Another option is to give up the use of the reduced layer,
i.e. the one with R units. For N = 2R this substructure acts as a filter in the
sense that, even if a non-unary pattern reaches the previous layer, the possible
states of the reduced one are such that the signals sent forward to the next layer
will give rise to a unary sequence anyway. As a result of this construction, no
matter whether an input pattern belongs to the set {ζμ} or not, the corresponding
output will be one of the Sμ. Nevertheless, we shall see that, as far as the input
and output alphabets themselves are concerned, the same translation task can be
performed by a network with just one intermediate layer of N units. Although
the removal of the reduced layer may mean the loss of this sifting power, it will
no doubt be a substantial gain in memory economy.

There are several possible schemes of this sort, one of them being

ζμ
l −→ ξμ

k −→ S
τ(μ)
h

ωkl

θk

ωhk

θh

Since this is almost like cutting out two layers and two sets of connections from
the five-level device, the weights and thresholds for what remains are easily found
to be {

ωkl = ζk
l ,

θk = N − 1 ,
(3.31)

and ⎧⎪⎨⎪⎩
ωhk = S

τ(k)
h ,

θh = −
N∑

ν=1

Sν
h ,

(3.32)

respectively. Although good, this solution does not seem to be optimal, as one
might wish to do the same task with a reduced intermediate level instead of one
of N units. However, the answer we have found is a bit discouraging, and lays in
the following

Theorem: It is not possible to encode through the scheme

ζμ
l −→ σμ

j −→ S
τ(μ)
h

ωjl

θj

ωhj

θh

for arbitrary sets {ζμ
l } and {Sτ(μ)

h }.
Proof: It suffices to show particular examples of pattern sets leading to contra-
diction:

1. Special choice of output patterns

3.1 Encoding of binary patterns 37

μ σμ −→ Sμ

1
2
3
4

− −
− +
+ −
+ +

−→
−→
−→
−→

−
+
+
−

− − −
− + +
− + −
+ + −

For this choice of the output alphabet, the first column of the S patterns,
i.e. Sμ

1 , μ = 1, 2, 3, 4 (marked out in the table) happens to be the exclusive-
OR, or XOR, boolean function. As has been shown in [51] (see also [34] and
other works, or Subsect. 3.2.1), this rather elementary computation cannot
be solved by a simple perceptron, which amounts to stating that the task
of obtaining Sμ

1 from the σμ can by no means be performed by a single step
from the reduced layer to that containing the Sμ. Moreover, this sort of
inconsistency will show up whenever we take an N = 4, R = 2 system where
one of the output columns reproduces the values of the XOR function. For
arbitary N we would encounter the same hindrance if an output column
took on the values of the generalized parity (or rather oddness) function,
which is defined to be +1 when there is an odd number of plus signs in
the input and −1 otherwise, and constitutes the R-dimensional extension
of XOR.

2. Special case of input patterns

μ ζμ −→ σμ

1
2
3
4

− − + +
+ + − −
− + − +
+ − + −

−→
−→
−→
−→

−
−
+
+

−
+
−
+

Making use of our freedom to select arbitrary sets of input patterns, we
have taken one whose elements are not linearly independent. As a result, a
contradiction now arises from the ensuing expressions limiting the thresh-
olds. Consideration of the relations for μ = 1 and μ = 2 leads to θ1 > 0
whereas the unequalities for μ = 3 and μ = 4 require θ1 < 0, leaving no
chance of realizing this scheme. The same kind of reasoning is applicable
to arbitrary N .

c) Four Layers. Even though the above theorem bans the possibility of imple-
menting the theoretically optimal scheme, we can still hope to get close to it in
some sense. The difficulty found in the step from the input to the intermediate
layer will be removed by demanding that the ζμ, although arbitrary, be linearly
independent. As for the way from the σ units to the output cells, we will in-
troduce a further intermediate layer, working exactly as in the five-layer scheme,

38 Supervised learning with discrete activation functions

i.e.
ζμ
l −→ σμ

j −→ ξ
τ(μ)
i −→ S

τ(μ)
h

ωjl

θj

ωij

θi

ωhi

θh

where the only unknown things are the ωjl and θj . We will start by going back
to the solution in the five-layer network, but this time we will be a bit more
audacious and look for alternatives where the sign function be redundant. Thus,
we will look for two successive affine transformations such that

ζμ −→ ξμ −→ σμ

ξ = Aζ + B σ = Cξ + D

The advantage of doing so is that the result of composing both will be another
transformation of the same kind providing the direct passage from the ζμ to the
σμ.

The first affine map in terms of components reads

ξk =
∑

l

Aklζl + Bk , (3.33)

where the coefficients of the matrix A and of the vector B are to be found. By
recalling the form of the unary ξ patterns, we must have

ξμ
k =

∑
l

Aklζ
μ
l + Bk

= 2δμ
k − 1 . (3.34)

A solution satisfying this is{
Akl = 2(ζ)−1

kl , k, l = 1, . . . , N ,
Bk = −1 , k = 1, . . . , N ,

(3.35)

where (ζ)−1 is the inverse of the matrix

(ζ)lμ ≡ ζμ
l . (3.36)

Therefore, this solution exists only when the matrix (ζ) is inversible, thus the
necessity of requiring all the different ζμ to be linearly independent.

The conditions on the second transformation are

σj =
∑

k

Cjkξk + Dj , (3.37)

and, for each unary pattern, they lead to

σμ
j =

∑
k

Cjkξ
μ
k + Dj

=
∑

k

Cjk(2δ
μ
k − 1) + Dj

= 2Cjμ −
∑

k

Cjk + Dj , (3.38)

3.1 Encoding of binary patterns 39

which are seen to be fulfilled by the solution:⎧⎪⎨⎪⎩
Cjμ = 1

2
σμ

j , j = 1, . . . , R , μ = 1, . . . , N ,

Dj =
1

2

N∑
ν=1

σν
j , j = 1, . . . , R .

(3.39)

Composing both maps one gets

σ = Cξ + D

= (CA) ζ + (CB + D) . (3.40)

Putting this into components and replacing all the coefficients with the expres-
sions for the solutions we have just found,

σj =
∑

l

∑
ν

CjνAνl ζl +
∑

k

CjkBk + Dj

=
∑

l

∑
ν

1

2
σν

j 2(ζ)−1
νl ζl +

∑
k

1

2
σk

j (−1) +
1

2

∑
ν

σν
j︸ ︷︷ ︸

0

=
∑

l

∑
ν

σν
j (ζ)−1

νlζl . (3.41)

As we see, the resulting transformation has the appealing feature of being free
from the inhomogeneous term, which has vanished on composing the two maps.
Thus, the transformation reduces to just multiplying a matrix by the components
of ζμ. Therefore, sticking to the type of conventions used up to now, we can say
that all the thresholds are zero and the weight matrix, having ωjl as coefficients,
is specified by⎧⎪⎪⎪⎨⎪⎪⎪⎩

σj =
∑

l

ωjlζl ,

ωjl =
∑

ν

σν
j (ζ)−1

νl =

N∑
ν=1

(−1)[
ν−1

2R−j]+1(ζ)−1
νl .

(3.42)

d) Further variants. In addition to the preceding ones, we have found other
schemes which are, in fact, only variations of those already described. For in-
stance, departing from the five layer network N :N :R:N :N , we have composed
the two intermediate transformations, thus getting rid of the σ layer at the ex-
pense of using some more involved weights and thresholds, the result being an
N :N :N :N structure called a′ in the diagram. Next, we have found b′ moving
back the permutation τ in b from the second to the first transformation. Finally,
the composition of the first two steps of c gives a three-layer network N :N :N
called c′. By way of summarizing and completing this picture, all the quantities
occurring are listed in the Tables 3.1 and 3.2.

40 Supervised learning with discrete activation functions

a) ζμ
l −→ ξμ

k �−→ σμ
j −→ ξ

τ(μ)
i �−→ S

τ(μ)
h{

ωkl

θk

{
ωjk

θj

{
ωij

θi

{
ωhi

θh

a′) ζμ
l −→ ξμ

k −→ ξ
τ(μ)
i �−→ S

τ(μ)
h{

ωkl

θk

{
ωik

ηi

{
ωhi

θh

b) ζμ
l −→ ξμ

k �−→ S
τ(μ)
h{

ωkl

θk

{
ωhk

θh

b′) ζμ
l −→ ξ

τ(μ)
i �−→ S

τ(μ)
h{

ωil

κi

{
ωhi

θh

c) ζμ
l =⇒ σμ

j −→ ξ
τ(μ)
i �−→ S

τ(μ)
h{

ωjl

0

{
ωij

θi

{
ωhi

θh

c′) ζμ
l −→ ξ

τ(μ)
i �−→ S

τ(μ)
h{

Ωil

θi

{
ωhi

θh

⎧⎪⎨⎪⎩
−→ sign(x)

�−→ sign(x) =
x

2
=⇒ sign(x) = x

Table 3.1: Different network structures for encoding. The type of
arrow drawn indicates the sort of functions of the weighted sum minus
threshold that can be alternatively used to yield the same result. A
simple arrow denotes the sign function, one with tail means that the
argument is twice a sign (so instead of taking the sign we can just
divide by two). The double arrow means that the sign function is
absolutely redundant.

3.1 Encoding of binary patterns 41

R = [log2 N] + 1 − δ[N]N

ξμ
k = 2δμ

k − 1

σμ
j = (−1)[

μ−1

2R−j]+1

ωkl = ζk
l θk = N − 1

ωjk = σk
j θj = −

N∑
ν=1

σν
j (0 if N = 2R)

ωij = σ
τ−1(i)
j θi = R − 1

ωhi = Si
h θh = −

N∑
ν=1

Sν
h

ωik =
1

2

R∑
j=1

ωijωjk ηi = R − 1 −
N∑

k=1

ωik

ωhk = S
τ(k)
h θh

ωil = ζ
τ−1(i)
l κi = N − 1

ωjl =

N∑
ν=1

σν
j (ζ)−1

νl 0

Ωil =
R∑

j=1

ωijωjl θi

Table 3.2: Expressions for the weights and thresholds in the different
network structures for encoding.

42 Supervised learning with discrete activation functions

3.1.2 Accessibilities

Once an encoding scheme has been chosen, one might wonder which is the result
when the input pattern is none of the input alphabet. It may seem unjustified,
since different encoding solutions will produce different outputs. However, this
is the basis of almost all the current applications of multilayer neural networks:
first, weights and thresholds are calculated (e.g. by means of learning) and then
the network is used to predict, classify or interpolate. Lots of examples may be
given, such as hyphenation algorithms, protein secondary structure determiners
and family tree relationship predictors [67].

In what follows we shall concern ourselves with the working of the initial
unary-pattern three-layer permuter device. In fact, if the input pattern is not
unary the network does not work! The reason is that the fields

hj =

N∑
k=1

ωjkξk − θj (3.43)

may vanish for some j, and then σj = sign(hj) is no longer well defined. There
are several possible ways out:

1. Redefining the sign function, either as

sign(x) ≡
{ −1 if h < 0 ,

+1 if h ≥ 0 ,
(3.44)

or the other way around

sign(x) ≡
{ −1 if h ≤ 0 ,

+1 if h > 0 .
(3.45)

This, however, is a rather unpleasant solution because it brings about a
manifest asymmetry between the chances of obtaining −1 and +1.

2. Shifting the thresholds

θj −→ θj + ε , |ε| < 1 , (3.46)

i.e. non-integer values are now allowed. Again, we get an unwanted asym-
metry, since all the zero fields would, from now on, give a certain sign
depending on the target unit but not on the input pattern.

3. Making the intermediate σj units take on three values, −1, 0 and +1:

sign(x) ≡
⎧⎨⎩

−1 if x < 0 ,
0 if x = 0 ,

+1 if x > 0 .
(3.47)

3.1 Encoding of binary patterns 43

4. Introducing a finite (but low) temperature, and making the activations be
stochastic. Then, the sign taken on by every unit is no longer the result
of a deterministic function, but rather a random variable, for which the
probabilities of obtaining −1 or +1 are given by sigmoid curves whose
shapes depend on β ≡ 1

T
and approach that of a step function as β goes to

infinity (deterministic limit). The condition that this temperature should
be low is necessary in order to preserve (after taking an average over many
realizations) the same result as for T = 0 when the input patterns are the
ξμ.

Accessibilities of a three-valued unit intermediate layer

The third option calls for a study of the accessibility of the different σ. By
accessibility of a binary pattern, thought of as a memory , we mean the fraction
of starting arbitrary states which leads to that particular pattern [37]:

A(σ) ≡ No. of input patterns giving σ

No. of possible different input patterns
. (3.48)

Since the input layer has been supposed to have N two-state units,

A(σ) =
No. of input patterns giving σ

2N
. (3.49)

As happens in associative memory networks, different memories of the same size
may be in general not equally easy to recall. The parallel to the appearance of
spurious memories in an associative memory device is now the existence of the (to
some extent unwanted) zero states. An open question about our zero-temperature
encoding system is how to interpret the different sequences which end up in the
same σ state. These sequences, rather than resembling each other in the sense of
being close by Hamming distance (as happens in associative memory) are such
that they tend to produce a value σj in the j-th unit depending on the similarity
between the input pattern ξ and the j-th row of (ωjk), which we shall call ωj.

A most interesting property of our scheme is the vanishing of all the input
thresholds whenever the number of external units equals an exact power of two,
i.e.

θj =
N∑

k=1

(−1)[
k−1

2R−j] = −
N∑

k=1

ωjk = 0 , for N = 2R , j = 1, . . . , R , (3.50)

as can be seen by looking at the (ωjk) matrix, since for N = 2R the sum of all
the coefficients in each row is zero.

At zero temperature, the values of the σj are determined by the value of the
fields hj . A little thought shows that it can take as value any two integers between

44 Supervised learning with discrete activation functions

−N and N , and that the frequency with which every value occurs is a binomial
coefficient arising from simple combinatorics:

hj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N if ξ differs from ωj in no signs ⇒ 1 possible ξ
N − 2 if ξ differs from ωj in 1 sign ⇒ N possible ξ

N − 4 if ξ differs from ωj in 2 signs ⇒
(

N
2

)
possible ξ

...
...

2 if ξ differs from ωj in N
2
− 1 signs ⇒

(
N

N
2
− 1

)
possible ξ

0 if ξ differs from ωj in N
2

signs ⇒
(

N
N
2

)
possible ξ

−2 if ξ differs from ωj in N
2

+ 1 signs ⇒
(

N
N
2

+ 1

)
possible ξ

...
...

−(N − 2) if ξ differs from ωj in N − 1 sign ⇒ N possible ξ
−N if ξ differs from ωj in N signs ⇒ 1 possible ξ

where ξ and ωj mean the sets of signs {ξk} and {ωjk} , k = 1, . . . , N . Denoting
by f(hj) the frequency of hj , or number of possibilities that the weighted sum
equals hj , we have thus obtained

f(hj) =

(
N

N−hj

2

)
, (3.51)

and therefore

f(hj = 0) =

(
N
N
2

)
, (3.52)

f(hj 	= 0) = f(hj > 0) + f(hj < 0) = 2f(hj > 0) = 2N −
(

N
N
2

)
. (3.53)

We shall reason below that the accessibility of every non-spurious pattern (i.e.
free from zeros) may be put in terms of just the joint frequencies or probabilities
that a number of field components vanish. It is for this reason that the calculation
of these joint frequencies must be understood first. We start by considering

f(hi = 0, hj = 0) , i 	= j .

A fundamental property of our connection weight matrix is that for this same
situation, N = 2R, their rows are mutually orthogonal. Since the coefficients are

3.1 Encoding of binary patterns 45

−1 and +1, this means that for any two given rows, one half of the coefficients
coincide and the other half are just opposite.

The frequency we are going to evaluate is the total number of input possibil-
ities for the ξ, unary or not, such that the equations

ωi1ξ1 + ωi2ξ2 + · · ·+ ωiNξN = 0
ωj1ξ1 + ωj2ξ2 + · · ·+ ωjNξN = 0

}
(3.54)

are simultaneously satisfied. By the above orthogonality property, we can put

ωik1 = ωjk1 , . . . , ωikN/2
= ωjkN/2

,

ωik′
1 = −ωjk′

1 , . . . , ωik′
N/2

= −ωjk′
N/2

,
(3.55)

where we have denoted by k1, . . . , kN/2 the indices for which the coefficients co-
incide and by k′

1, . . . , k
′
N/2 those for which they are opposite. In terms of these

sets of indices, the system of two equations reads

ωik1ξk1 + · · ·+ ωikN/2
ξkN/2︸ ︷︷ ︸

A

+ ωik′
1ξk′

1
+ · · ·+ ωik′

N/2
ξk′

N/2︸ ︷︷ ︸
B

= 0

ωik1ξk1 + · · · + ωikN/2
ξkN/2

− ωik′
1ξk′

1
− · · · − ωik′

N/2
ξk′

N/2
= 0

⎫⎬⎭ (3.56)

where A and B are partial weighted sums defined as shown. The resulting system
for these two new variables is immediately solved:

A + B = 0
A − B = 0

}
⇒ A = B = 0 (3.57)

which, in turn, implies

ωik1ξk1 + · · ·+ ωikN/2
ξkN/2

= 0

ωik′
1ξk′

1 + · · ·+ ωik′
N/2

ξk′
N/2

= 0

}
(3.58)

Now, the unknowns in each equation are independent. Thus, for each of them,
we can make the same reasoning as before when hj = 0, with the only difference
that N has to be replaced with N

2
, as each identity contains just a half of the

original number of terms. Thus

fN/2(hi = 0) =

(
N
2
N
4

)
, (3.59)

and the joint frequency is found like a joint probability:

fN (hi = 0, hj = 0) = fN/2(hi = 0) fN/2(hj = 0) =

(
N
2
N
4

)2

. (3.60)

The next case is

f(hi = 0, hj = 0, hk = 0) , i, j, k all different.

46 Supervised learning with discrete activation functions

Let ωi, ωj and ωk denote the i-th, j-th and k-th rows of coefficients in the weight
matrix, which are known to be mutually orthogonal. Based on this knowledge,
we proceed analogously to the previous case, and realize that the three equations
for the field components may be put in terms of four partial weighted sums, that
we will call A, B, C and D, of the same sort that A and B above, but containing
N
4

terms each one.⎧⎪⎪⎨⎪⎪⎩
A common to ωi, ωj and ωk,
B common to ωi and ωj, and opposed in ωk,
C common to ωi and ωk, and opposed in ωj ,
D common to ωj and ωk, and opposed in ωi.

In terms of these partial sums, the equations are

A + B + C − D = 0
A + B − C + D = 0
A − B + C + D = 0

⎫⎬⎭ (3.61)

Since there are three equations and four unknowns, we can leave one as a free
variable and solve the others as a function of the first. Taking A as free, the
solution is

B = C = D = −A. (3.62)

Now, let us consider what values A can take on. This partial sum has an expres-
sion of the type

A = ωik1ξk1 + · · ·+ ωikN/4
ξkN/4

. (3.63)

Hence, if we now imagine that A is a fixed number, the possibilities that this sum
has this precise value are, by the same rule as at the beginning,

fN/4(A) =

(N
4

N
4
−A

2

)
. (3.64)

Next, we look at the three other variables. The reasoning is the same for each of
them. Since B = −A, once A takes on a given value, B is determined, and we
must therefore count in how many different ways the equality

ωik′
1ξk′

1 + · · · + ωik′
N/4

ξk′
N/4

= −A (3.65)

is accomplished. This is a weighted sum having N
4

independent terms of the kind
studied. Therefore

fN/4(B(A)) = fN/4(−A) =

(N
4

N
4

+A

2

)
=

(N
4

N
4
−A

2

)
= fN/4(A) . (3.66)

3.1 Encoding of binary patterns 47

Doing the same for the other two variables, we arrive at

f(hi = 0, hj = 0, hk = 0) =
∑

A

f(A) f(B(A)) f(C(A)) f(D(A))

=

N/4∑
A=−N/4

step 2

(N
4

N
4
−A

2

)4

=

N/4∑
k=0

(
N
4

k

)4

. (3.67)

The following joint frequency is a bit more difficult to compute, but it gives
an idea of what has to be done for any number of vanishing field components. If
we want to calculate

f(hi = 0, hj = 0, hk = 0, hl = 0) , i, j, k, l all diffferent,

after writing down the equations, we pick up the partial sums common to two or
more of them:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A common to ωi, ωj , ωk and ωl,
B common to ωi, ωj and ωk, and opposed in ωl,
C common to ωi, ωj and ωl, and opposed in ωk,
D common to ωi, ωk and ωl, and opposed in ωj,
E common to ωj , ωk and ωl, and opposed in ωi,
F common to ωi and ωj, and opposed in ωk and ωl,
G common to ωi and ωk, and opposed in ωj and ωl,
H common to ωi and ωl, and opposed in ωj and ωk.

Then, we express the equations using the variables that denote these sums

A + B + C + D − E + F + G + H = 0
A + B + C − D + E + F − G − H = 0
A + B − C + D + E − F + G − H = 0
A − B + C + D + E − F − G + H = 0

⎫⎪⎪⎬⎪⎪⎭ (3.68)

Next, we find the degree of indetermination (eight unknowns minus four equations
yield four degrees of freedom) in order to know how many unknowns remain
arbitrary. The system will be solved by putting the rest as a function of the
arbitrary ones. Considering A, B, C and D to be free, we get⎧⎪⎪⎨⎪⎪⎩

E = −2A − B − C − D ,
F = −A − B − C ,
G = −A − B − D ,
H = −A − C − D .

(3.69)

For the free variables, the same considerations are repeated. For instance, A can
take on every two integers between −N

8
and N

8

−N

8
≤ A ≤ N

8
(step 2) ,

48 Supervised learning with discrete activation functions

with frequencies

fN/8(A) =

(N
8

N
8
−A

2

)
. (3.70)

As a result, the whole joint frequency is given by

f(hi = 0, hj = 0, hk = 0, hl = 0)

=
∑

A

∑
B

∑
C

∑
D

f(A) f(B) f(C) f(D) f(E(A, B, C, D))

×f(F (A, B, C, D)) f(G(A, B, C, D)) f(H(A, B, C, D))

=

N/8∑
A=−N/8

step 2

N/8∑
B=−N/8

step 2

N/8∑
C=−N/8

step 2

N/8∑
D=−N/8

step 2

(N
8

N
8
−A

2

)(N
8

N
8
−B

2

)(N
8

N
8
−C

2

)(N
8

N
8
−D

2

)

×
(N

8
N
8

+2A+B+C+D

2

)(N
8

N
8

+A+B+C

2

)(N
8

N
8

+A+B+D

2

)(N
8

N
8

+A+C+D

2

)
,(3.71)

or, rearranging indices,

f(hi = 0, hj = 0, hk = 0, hl = 0)

=

N/8∑
a=0

N/8∑
b=0

N/8∑
c=0

N/8∑
d=0

(
N
8

a

)(
N
8

b

)(
N
8

c

)(
N
8

d

)(
N
8

2a + b + c + d − N
4

)
×
(

N
8

N
4
− (a + b + c)

)(
N
8

N
4
− (a + b + d)

)(
N
8

N
4
− (a + c + d)

)
.(3.72)

Up to this point, the binomial coefficients are to be understood in the general
sense, i.e. when the number downstairs is negative or when the difference between
upstairs and downstairs is a negative integer, they must be taken to be zero.
Otherwise we would have to explicitly state that the sum is restricted to a, b, c
and d between the bounds and also fulfilling⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ 2a + b + c + d − N
4

≤ N
8

0 ≤ N
4
− (a + b + c) ≤ N

8

0 ≤ N
4
− (a + b + d) ≤ N

8

0 ≤ N
4
− (a + c + d) ≤ N

8

(3.73)

In fact, since all the terms that fail to satisfy this give a zero contribution, the
calculation of these sums is much easier than it looks.

The procedure described is completely general. Following these steps for
any number of vanishing fields, one considers the common pieces in the initial

3.1 Encoding of binary patterns 49

equations, solves an indetermined linear system, uses the expressions of the fre-
quencies for the values of weighted sums and arrives at multiple sums involving
binomial coefficients only. The multiplicity of the final sum is always the degree
of indetermination of the linear system.

As anticipated, we are going to find the accessibilities in terms of the preceding
frequencies only, namely the f(h1 = 0, . . . , hj = 0) , 1 ≤ j ≤ R, which we shall
call orthogonalities. We start with the total number of possible different input
binary patterns, i.e. 2N . This figure must be equal to the sum of the frequencies
for all the possible sorts of field configurations for the σ level, thus

2N =

R∑
j=0

∑
{k1,...,kj}

f(h1 	= 0, . . . , hk1 = 0, . . . , hkj
= 0, . . . , hR 	= 0) , (3.74)

where {k1, . . . , kj} denotes a choice of j indices among the R existing ones. The
indices picked are those for which the associated field component vanishes, while
the rest are non-zero. f denotes the corresponding rate of occurrence, i.e. the
number of input patterns yielding that type of field configuration. Since j runs
from 0 to R, this sum ranges over all the possibilities that can take place. It
can be argued that these frequencies depend on the number of components that
vanish, but not on the position they are located at, i.e.

f(h1 	= 0, . . . , hk1 = 0, . . . , hkj
= 0, . . . , hR 	= 0)

= f(h1 = 0, . . . , hj = 0, hj+1 	= 0, . . . , hR 	= 0) (3.75)

for all possible rearrangements. Therefore,

2N =
R∑

j=0

(
R
j

)
f(h1 = 0, . . . , hj = 0, hj+1 	= 0, . . . , hR 	= 0) . (3.76)

Separating the term j = 0

f(h1 	= 0, . . . , hR 	= 0)

= 2N −
R∑

j=1

(
R
j

)
f(h1 = 0, . . . , hj = 0, hj+1 	= 0, . . . , hR 	= 0) . (3.77)

After this, the considerations made so far for all the possible configurations can
be reproduced to all the sequences for which the first j field components vanish.
Notice that this gives no information about the other h, i.e. some of them may
be vanishing as well and therefore we have to put

f(h1 = 0, . . . , hj = 0)

=

R−j∑
k=0

(
R − j

k

)
f(h1 = 0, . . . , hj+k = 0, hj+k+1 	= 0, . . . , hR 	= 0) . (3.78)

50 Supervised learning with discrete activation functions

Once more, the first term in the summatory is separated:

f(h1 = 0, . . . , hj = 0, hj+1 	= 0, . . . , hR 	= 0)

= f(h1 = 0, . . . , hj = 0)

−
R−j∑
k=1

(
R − j

k

)
f(h1 = 0, . . . , hj+k = 0, hj+k+1 	= 0, . . . , hR 	= 0) .(3.79)

Eq. (3.77), together with eqs. (3.79), constitute a set of interrelated recursive
equations, whose solution we have worked out with some labour in Appendix A,
the result being given by the beautiful expression

f(h1 	= 0, . . . , hR 	= 0) = 2N +

R∑
k=1

(−1)k

(
R
k

)
f(h1 = 0, . . . , hk = 0) (3.80)

and therefore, the accessibilities of the σ patterns are given by

A(σμ) =
1

N2N
f(h1 	= 0, . . . , hR 	= 0) , μ = 1, . . . , N . (3.81)

The calculations of this section may be useful in other fields of physics and
mathematics owing to the fact that binary input patterns may be regarded as
the vertices of an N-dimensional hypercube or, equivalently, as the vectors which
go from the center of the hypercube to its corners. Following this geometri-
cal interpretation, the orthogonality f(h1 = 0, . . . , hj = 0) counts the num-
ber of vectors perpendicular to a given set of j mutually orthogonal vectors,
j = 1, . . . , R , N = 2R, and so on. This sort of analysis is applicable, for in-
stance, to the configuration space of Ising models.

a) Example N = 4, R = 2. Taking all the possible input patterns, we have
got:

3.1 Encoding of binary patterns 51

σ f(h) A(σ)

0 0 4 0.25
+ + 2 0.125
+ − 2 0.125
+ 0 1 0.0625
− + 2 0.125
0 + 1 0.0625
− − 2 0.125
0 − 1 0.0625
− 0 1 0.0625

Table 3.3: Accessibilities for N = 4, R = 2.

ξ −→ σ
− − − − −→ 0 0

ξ4 − − − + −→ + +
ξ3 − − + − −→ + −

− − + + −→ + 0
ξ2 − + − − −→ − +

− + − + −→ 0 +
− + + − −→ 0 0
− + + + −→ + +

ξ1 + − − − −→ − −
+ − − + −→ 0 0
+ − + − −→ 0 −
+ − + + −→ + −
+ + − − −→ − 0
+ + − + −→ − +
+ + + − −→ − −
+ + + + −→ 0 0

The accessibilities for each resulting σ configuration are shown in Table 3.3. As

52 Supervised learning with discrete activation functions

we see from this table

f(hi = 0) = 6 =

(
4
2

)
, i = 1, 2 ,

f(h1 = 0, h2 = 0) = 4 =

(
2
1

)2

,

in agreement with the theoretical values (3.51) and (3.60). What is more,

f(h1 	= 0, h2 	= 0) = 8 = 24 −
(

2
1

)
f(hi = 0) +

(
2
2

)
f(h1 = 0, h2 = 0)

as predicted by (3.80).

b) Example N = 8, R = 3. From the results shown in Table 3.4 we have

f(hi = 0) = 70 =

(
8
4

)
, i = 1, 2 ,

f(hi = 0, hj = 0) = 36 =

(
4
2

)2

, i 	= j , 1 ≤ i, j ≤ 2 ,

f(h1 = 0, h2 = 0, h3 = 0) = 18 =

2∑
k=0

(
4
k

)4

,

which provide a confirmation of (3.67). From the results is also clear that

f(h1 	= 0, h2 	= 0, h3 	= 0)

= 136 = 28 −
(

3
1

)
f(hi = 0) +

(
3
2

)
f(hi = 0, hj = 0)

−
(

3
3

)
f(h1 = 0, h2 = 0, h3 = 0)

in agreement with (3.80).

c) Example N = 16, R = 4. In this case the results given by the simulations
are

f(hi = 0) = 12870 ,
f(hi = 0, hj = 0) = 4900 ,
f(hi = 0, hj = 0, hk = 0) = 1810 ,
f(h1 = 0, h2 = 0, h3 = 0, h4 = 0) = 648 ,

which does also provide a check of (3.72). Furthermore, the simulation yields

f(h1 	= 0, h2 	= 0, h3 	= 0, h4 	= 0)

= 36864 = 216 −
(

4
1

)
f(hi = 0) +

(
4
2

)
f(hi = 0, hj = 0)

−
(

4
3

)
f(hi = 0, hj = 0, hk = 0) +

(
4
4

)
f(h1 = 0, h2 = 0, h3 = 0, h4 = 0) ,

which offers a new confirmation of (3.80).

3.1 Encoding of binary patterns 53

σ f(h) A(σ)

0 0 0 18 0.0703125
+ + + 17 0.06440625
+ + − 17 0.06440625
+ + 0 4 0.015625
+ − + 17 0.06440625
+ 0 + 4 0.015625
+ 0 0 9 0.03515625
+ − − 17 0.06440625
+ 0 − 4 0.015625
+ − 0 4 0.015625
− + + 17 0.06440625
0 + + 4 0.015625
0 + 0 9 0.03515625
0 0 + 9 0.03515625
− + − 17 0.06440625
0 + − 4 0.015625
0 0 − 9 0.03515625
− + 0 4 0.015625
− − + 17 0.06440625
0 − + 4 0.015625
0 − 0 9 0.03515625
− 0 + 4 0.015625
− 0 0 9 0.03515625
− − − 17 0.06440625
0 − − 4 0.015625
− 0 − 4 0.015625
− − 0 4 0.015625

Table 3.4: Accessibilities for N = 8, R = 3.

54 Supervised learning with discrete activation functions

Accessibilities at finite temperature.

As we have seen, at zero temperature some of the ξ that do not belong to the
set {ξμ} can yield σj = 0 for one or more values of j. The chance of having
vanishing components makes the number of possible different σ patterns increase
from 2R to 3R. A way of coping with this is to introduce random noise in the
form of finite temperature. Then, the state of the unit σj is given by a stochastic
function which can take either the value of +1 or −1, with probabilities provided
by the sigmoid curve

P (σj = ±1) =
1

1 + e∓2βhj
. (3.82)

In the limit where β goes to infinity, this reproduces a deterministic step function,
associated to the 0 and 1 ‘probabilities’ (or rather certainties) when taking the
sign function, while for β → 0 both probabilities tend to 1

2
, i.e. the system behaves

absolutely randomly.
If the process is repeated for all the possible input patterns several times, we

can consider average values of each σ unit for every ξ sequence. Let 〈σ〉ξ=ξμ

denote the average of the σ pattern produced by the unary sequence ξμ over
many repetitions of the whole reading process. Obviously, the lower T , the closer
〈σ〉ξ=ξμ will be to σμ. Therefore, since we are interested in preserving the encod-
ing from ξμ to σμ (if not always at least on average) the temperature will have
to be low.

At T > 0, owing to the absence of vanishing σj , the only possible config-
urations are the σμ, for μ = 1, . . . , N . However, for any fixed μ there are ξ
other than the ξμ which end up by giving σμ. With respect to the situation at
T = 0, the accessibility of each σμ necessarily changes, as patterns which pro-
duced one or more zeros will now have to ‘decide’ among {σμ , μ = 1, . . . , N}.
Since each realization in itself is a merely stochastic result, the only meaningful
quantity to give us an idea of these new accessibilities will be the average over
many repetitions, that we define as follows

〈A(σμ)〉 ≡ Cumulative no. of input patterns which have given σμ

Cumulative no. of patterns read

=
Cumulative no. of input patterns which have given σμ

No. of repetitions × 2N
.(3.83)

The result of a simulation (see Fig. 3.2) for N = 4, R = 2 shows the tendency of
all the accessibilities to be equal as the number of repetitions increases, i.e.

〈A(σμ)〉 −→ 1

2R
. (3.84)

Contrarily to other memory retrieval systems, this network has no critical
temperature. This means that there is no phase transition in the sense that noise

3.1 Encoding of binary patterns 55

0 100 200 300 400
Iteration

0.10

0.20

0.30

0.40

A
ve

ra
ge

 a
cc

es
si

bi
lit

y

Figure 3.2: Result of a simulation for N = 4 at finite T = 0.05. The
curves represent the cumulative average accesibilities of each ξμ.

56 Supervised learning with discrete activation functions

degrades the interactions between processing elements in a continuous way, with-
out leaving any phase where the reproduction of the original process as regards
the ξμ can be (on average) exact. By (3.82) we obtain

〈σj〉ξ=ξμ = (+1) × P (σμ
j = +1) + (−1) × P (σμ

j = −1)

= tanh(βhμ
j)

= tanh

(
β

(∑
k

ωjkξ
μ
k − θj

))
. (3.85)

With the components of ξμ and the thresholds we are using, this is

〈σj〉ξ=ξμ = tanh

(
β

(∑
k

ωjk(2δ
μ
k − 1) +

∑
k

ωjk

))
= tanh(2βωjμ) . (3.86)

If we look for solutions to

〈σj〉ξ=ξμ = σμ
j = ωjμ , (3.87)

taking into account that for our choice of weights ωjμ can be either +1 or −1,
the equation for β will be in any case

1 = tanh(2β) , (3.88)

whose only solution is β → ∞, i.e. T = 0. Thus, in this sense, no critical
temperature exists. However, this reasoning allows us to find error bounds. The
difference between the average obtained and the desired result will be

〈σj〉ξ=ξμ − σμ
j = tanh(2βσμ

j) − σμ
j

=

{
tanh(2β) − 1 if σμ

j = +1 ,
− tanh(2β) + 1 if σμ

j = −1 .
(3.89)

Hence,
|〈σj〉ξ=ξμ − σμ

j | = 1 − tanh(2β) . (3.90)

If we wish to work in such conditions that

|〈σj〉ξ=ξμ − σμ
j | ≤ ε , (3.91)

for a given ε, by the above relations we find that this temperature must have a
value satisfying

β ≥ 1

4
log

2 − ε

ε
. (3.92)

For example, if, at a given moment, we want our average values to be reliable up
to the fourth decimal digit, taking ε = 10−5 we get β ≥ 3.05 or T ≤ 0.33, which
agrees quite fairly with the behaviour observed in our simulations.

3.2 Simple perceptrons 57

3.2 Simple perceptrons

Simple perceptrons constitute the simplest architecture for a layered feed-forward
neural network. An input layer feeds the only unit of the second layer, where the
output is read. Thus, there are as many weights ωk as input units (say N) and
just one threshold U . Taking the sign as the activation function which decides
the final state O of the output unit, it will be given by

O = sign(h) =

{ −1 if h < 0 ,
+1 if h ≥ 0 ,

(3.93)

where the field h is calculated, as a function of the input pattern ξ, through the
formula

h =
N∑

k=1

ωkξk − U

= ω · ξ − U . (3.94)

Therefore, supervised learning with a simple perceptron amounts to finding the
weights ω and the threshold U which map a set of known input patterns {ξμ , μ =
1, . . . , p} into their corresponding desired outputs {ζμ , μ = 1, . . . , p}.

From now on we will eliminate the constraint that only binary input vectors
(such as ξ ∈ {−1, +1}N) are possible, thus admitting as correct input any N -
dimensional real vector ξ ∈ R

N .

3.2.1 Perceptron learning rule

Putting together the expressions (3.93) and (3.94), the output O is simply

O(ξ) =

{ −1 if ω · ξ < U ,
+1 if ω · ξ ≥ U .

(3.95)

Eq. (3.95) says that, for any given values of the weights ωk and the threshold U ,
the input space R

N is divided in two zones, one for which the output of all its
patterns is −1, and the other with output +1. The border between them is the
hyperplane of equation

ω · ξ = U . (3.96)

Thus, from a geometrical point of view, a simple perceptron may be regarded
simply as a hyperplane which separates the input space into two halves. Moreover,
the weight vector ω is perpendicular to this hyperplane, and it points to the half
where the output is +1. Making use of this interpretation, supervised learning
with a simple perceptron may be viewed just as the search for a hyperplane which
separates a set of points of class +1 from another set of points of class −1.

58 Supervised learning with discrete activation functions

In 1962 Rosenblatt proposed a ‘Hebb-like’ algorithm, known as the perceptron
learning rule, which could be used to find such hyperplanes. The idea was that,
starting from random weights and threshold, they could be modified step by
step until all the patterns were correctly classified. In each step a pattern ξμ is
presented to the simple perceptron, producing an output Oμ. If Oμ = ζμ, then ξμ

lies in the expected side of the hyperplane, and nothing has to be done. However,
if Oμ 	= ζμ, the hyperplane should be moved in the direction of correcting this
mistake:{

If ζμ = +1 = −Oμ then ω −→ ω + ξμ and U −→ U − 1 ,
If ζμ = −1 = −Oμ then ω −→ ω − ξμ and U −→ U + 1 .

(3.97)

A more compact expression for this perceptron learning rule, which also includes
a parameter η called the learning rate, is{

δω = η (ζμ − Oμ) ξμ ,
δU = −η (ζμ − Oμ) ,

(3.98)

where the symbol δ indicates the variation of the weights and the threshold after
the presentation of any pattern, i.e.{

ω −→ ω + δω ,
U −→ U + δU .

(3.99)

The introduction of the learning rate is made in order to adjust the magnitude
of the changes in each iteration, which may increase the velocity of the learning
process.

A perceptron convergence theorem guarantees that the perceptron learning
rule always stops after a finite number of steps, provided a solution exists [51]. In
fact, among all the possible input-output associations, only the so-called linearily
separable problems have perceptron solutions. In Fig. 3.3 we have drawn an
instance of a linearly separable problem, with ten patterns of class +1 (the filled
dots) and nine of class −1 (the hollowed dots).

Unfortunately, the discovery of very simple problems which were not linearly
separable revealed some of the underlying limitations of the simple perceptrons,
putting an end to the study of neural networks in the late 1960s [51]. The
exponent of these examples is the well-known XOR problem: it is not possible
to constuct any simple perceptron capable of performing the exclusive-OR logical
function of Table 3.5. Looking at Fig. 3.4 it is clear that the XOR function is
not linearly separable, but other proofs are possible. For instance, it is easy to
realize that

ζμ = sign(ω1ξ
μ
1 + ω2ξ

μ
2 − U) , μ = 1, . . . , 4

leads to an incompatible system of inequations when the XOR function values

3.2 Simple perceptrons 59

◦

◦

◦

◦

◦

◦

◦

◦

◦
•

•

•

•

•

•
•

•

•

•

ω
�

���

Figure 3.3: Example of a linearly separable set of patterns. The
hollowed dots represent patterns whose desired outputs are ζμ = −1,
and the filled dots patterns whose desired outputs are ζμ = +1.

μ ξμ −→ ζμ

1 (−1,−1) −→ −1
2 (−1, +1) −→ +1
3 (+1,−1) −→ +1
4 (+1, +1) −→ −1

Table 3.5: The XOR logical function.

60 Supervised learning with discrete activation functions

◦

◦•

•
(−,−)

(−, +)

(+,−)

(+, +)

Figure 3.4: The XOR problem. There exists no line capable of
separating the hollowed dots (desired outputs ζμ = −1) from the
filled dots (desired outputs ζμ = +1).

are substituted:
− ω1 − ω2 − U < 0
− ω1 + ω2 − U ≥ 0
+ ω1 − ω2 − U ≥ 0
+ ω1 + ω2 − U < 0

⎫⎪⎪⎬⎪⎪⎭
Adding the first and the last inequations you get U > 0, while doing the same
with the second and the third the result is U ≤ 0, showing up the incompatibility.

3.2.2 Perceptron of maximal stability

Oftenly, when a set of patterns is linearly separable, the number of possible differ-
ent hyperplanes which separate them is infinite. Each running of the perceptron
learning rule finds out one of them, which depends basically on the initial values
given to the weights and the threshold, and on the order in which the patterns are
presented to the simple perceptron. Among all the different solutions, however,
there is one which has the distinguished features of being unique and more robust
than the rest: the perceptron of maximal stability .

Let us call F+ and F− the subsets of patterns with desired outputs ζμ = +1
and ζμ = −1, respectively. If F+ and F− are linearly separable, there exist ω
and U such that { ∀ξρ

− ∈ F− =⇒ ω · ξρ
− < U ,

∀ξγ
+ ∈ F+ =⇒ ω · ξγ

+ ≥ U ,
(3.100)

3.2 Simple perceptrons 61

◦

◦
◦

◦
◦

◦

◦
◦

◦
◦

•
•

•

•

•
•

•

•

�
�
�
�
�
�
�
�
�
�r1 r2

����
� ��

G1 G2

Figure 3.5: Perceptron of maximal stability. Both lines r1 and r2 are
possible solutions to the problem of separating the five hollowed dots
from the four filled dots. However, only the second one constitutes
the perceptron of maximal stability, since the gap G2 is the largest
achievable and, therefore, it is larger than G1.

Now, we can define the gap between F+ and F− as the real number

G(ω) ≡ min
ρ,γ

(
ω

‖ω‖ · (ξγ
+ − ξρ

−)

)
, (3.101)

which measures the minimum distance between pairs of patterns belonging to
different classes, calculated in the direction of ω, i.e. perpendicular to the hyper-
plane. The perceptron of maximal stability is formed, then, by the weights which
minimize the gap G(ω), plus the threshold

U ≡
max

ρ
(ω · ξρ

−) + min
γ

(ω · ξγ
+)

2
, (3.102)

which places the hyperplane in the middle of the gap. Fig. 3.5 shows two possible
separations of four patterns of F+ from five patterns of F−, the second one being
the perceptron of maximal stability.

Several procedures have been proposed to get this perceptron of maximal
stability. For instance, the MinOver [44] and the AdaTron [2] algorithms men-
tioned in Subsect. 2.1.4 can be properly modified to achieve it. Nevertheless,

62 Supervised learning with discrete activation functions

recent works have developed fast converging methods based on the techniques of
quadratic programming optimization. (e.g. the QuadProg method in [66]).

3.3 Multi-state perceptrons

The simple perceptrons of the previous section divide the input space in two
half-spaces, one for each possible value of the output. The problem of classifying
in more than two classes with the aid of a collection of perceptrons is well-known
in the literature (see e.g. [15]). Likewise, if the mapping to be learned has a
continuous output, it can be related to the previous classification scheme in two
steps: partition of the interval of variation of the continuous parameter in a finite
number of pieces (to arbitrary precision) and assignment of each one to a certain
base 2 vector (see [23]). For instance, a ‘thermometer’ representation for the
interval [0, 1] could be

ζ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(0, 0, 0, 0) for outputs in [0, 0.2) ,
(1, 0, 0, 0) for outputs in [0.2, 0.4) ,
(1, 1, 0, 0) for outputs in [0.4, 0.6) ,
(1, 1, 1, 0) for outputs in [0.6, 0.8) ,
(1, 1, 1, 1) for outputs in [0.8, 1] ,

(3.103)

which reduces the learning problem to a five classes classification one. However,
even if this four perceptrons network has learned the thermometer-like ξμ �−→
ζμ, μ = 1, . . . , p correspondence, new inputs supplied to the net may produce
ouputs such as (0, 0, 1, 1) or (1, 0, 1, 0), which cannot be interpreted within this
representation; in fact, most of the available codifying schemes suffer from the
same inconsistency.

One natural way of avoiding these problematic and rather artificial conversions
from continuous to binary data is the use of multi-state units perceptrons (see
e.g. [16, 55, 62]). With them, only the first of the two steps mentioned above
is necessary, i.e. the discretization of the continuous interval. Geometrically,
multi-state units define a vector in the input space which points to the direction
of increase of the output parameter, the boundaries being parallel hyperplanes.
That is why this method gets rid of meaningless patterns, since this partition
clearly incorporates the underlying relation of order.

3.3.1 Multi-state perceptron learning rule and convergence
theorem

A Q-state neuron may be in anyone of Q different output values or grey levels
σ1 < · · · < σQ. They constitute the result of the processing of an incoming

3.3 Multi-state perceptrons 63

stimulus through an activation function of the form

gU(h) ≡
⎧⎨⎩

σ1 if h < U1 ,
σv if Uv−1 ≤ h < Uv , v = 2, . . . , Q − 1 ,
σQ if UQ−1 ≤ h .

(3.104)

Therefore, Q−1 thresholds U1 < · · · < UQ−1 have to be defined for each updating
unit, which in the case of the simple perceptron is reduced to just the output unit.
The field now simply reads

h ≡ ω · ξ . (3.105)

Let us distribute the input patterns in the following subsets:

Fv ≡ {ξμ | ζμ = σv} , v = 1, . . . , Q . (3.106)

From a geometrical point of view [65] the output processor corresponds to the
set of Q − 1 parallel hyperplanes

ω · ξ = Uv , v = 1, . . . , Q − 1 , (3.107)

which divide the input space into Q ordered regions, one for each of the grey
levels σ1, . . . , σQ. Thus, the map ξμ �−→ ζμ, μ = 1, . . . , p, is said to be learnable
or separable if it is possible to choose parallel hyperplanes such that each Fv be
in the zone of grey level σv (see Fig. 3.6).

This picture make us realize that the fundamental parameters to be searched
for while learning are the components of the unit vector

ω̂ ≡ ω

‖ω‖ (3.108)

and not the thresholds, since these can be assigned a value as follows. If the
input-output map is learnable then

ζμ = gU(ω · ξμ) , μ = 1, . . . , p (3.109)

yields
∀ξρ

v ∈ Fv

∀ξγ
v+1 ∈ Fv+1

}
=⇒ ω · ξρ

v < ω · ξγ
v+1 (3.110)

which means that, defining ξα
v and ξβ

v by{
ξα

v ∈ Fv such that ω · ξα
v ≥ ω · ξρ

v ∀ξρ
v ∈ Fv ,

ξβ
v ∈ Fv such that ω · ξβ

v ≤ ω · ξγ
v ∀ξγ

v ∈ Fv ,
(3.111)

we get

Uv ∈
]
ω · ξα

v , ω · ξβ
v+1

]
, v = 1, . . . , Q − 1 . (3.112)

64 Supervised learning with discrete activation functions

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

4

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

F1

F2

F3

F4

Figure 3.6: Example of a multi-state-separable set of patterns. The
four sets of patterns F1, F2 F3 and F4 are separated by three parallel
lines.

3.3 Multi-state perceptrons 65

Hence, during the learning process it is possible to choose

Uv =
ω · ξα

v + ω · ξβ
v+1

2
, v = 1, . . . , Q − 1 , (3.113)

which is the best choice for the thresholds with the given ω. Here lies the dif-
ference between our approach and that of recent papers such as [49], where the
thresholds are compelled to be inside certain intervals given beforehand. Conse-
quently, we have somehow enlarged their notion of learnability.

Our proposal for the multi-state perceptron learning rule stems from the fol-
lowing
Theorem: If there exists ω∗ such that ω∗ · ξρ

v < ω∗ · ξγ
v+1 for all ξρ

v ∈ Fv and
ξγ

v+1 ∈ Fv+1, v = 1, . . . , Q − 1, then the program

Start choose any value for ω and η > 0;
Test choose v ∈ {1, . . . , Q − 1}, ξρ

v ∈ Fv and ξγ
v+1 ∈ Fv+1;

if ω · ξρ
v < ω · ξγ

v+1 then go to Test
else go to Add;

Add replace ω by ω + η(ξγ
v+1 − ξρ

v);
go to Test.

will go to Add only a finite number of times.
Corollary: The previous algorithm finds a multi-state perceptron solution to the
map ξμ �−→ ζμ, μ = 1, . . . , p whenever it exists, provided the maximum number
of passes through Add is reached. This may be achieved by continuously choosing
pairs {ξρ

v, ξγ
v+1} such that ω · ξρ

v ≥ ω · ξγ
v+1.

Proof: Define

A(ω) ≡ ω · ω∗

‖ω‖ ‖ω∗‖ ≤ 1 , (3.114)

δ ≡ min
v,ρ,γ

(
ω∗ · ξγ

v+1 − ω∗ · ξρ
v

)
> 0 , (3.115)

M2 ≡ max
v,ρ,γ

∥∥ξγ
v+1 − ξρ

v

∥∥2
> 0 . (3.116)

On successive passes of the program through Add,

ω∗ · ωt+1 ≥ ω∗ · ωt + ηδ , (3.117)

‖ωt+1‖2 ≤ ‖ωt‖2 + η2M2 . (3.118)

Therefore, after n applications of Add,

A(ωn) ≥ L(ωn) , (3.119)

L(ωn) ≡ ω∗ · ω0 + nηδ

‖ω∗‖√‖ω0‖2 + nη2M2
, (3.120)

66 Supervised learning with discrete activation functions

which for large n goes as

L(ωn) ≈ √
n

δ

‖ω∗‖M . (3.121)

However, n cannot grow at will since A(ω) ≤ 1, ∀ω, which implies that the
number of passes through Add has to be finite.

It is interesting to note that no assumption has been made on the number and
nature of the input patterns. Thus, the theorem applies even when an infinite
number of pairs of patterns is present and also to inputs not belonging to the
‘lattice’ {σ1, . . . , σQ}N .

3.3.2 Multi-state perceptron of maximal stability

In the previous subsection an algorithm for finding a set of parallel hyperplanes
which separate the Fv sets in the correct order has been found, under the as-
sumption that such solutions exist. The problem we are going to address now is
that of selecting the ‘best’ of all such solutions.

It is our precise prescription that the multi-state perceptron of maximal stabil-
ity has to be defined as the one whose smallest gap between the pairs {Fv, Fv+1},
v = 1, . . . , Q − 1 is maximal. These gaps are given by the numbers

Gv(ω) ≡ min
ρ,γ

(
ω

‖ω‖· (ξγ
v+1 − ξρ

v

))
=

ω

‖ω‖ ·
(
ξβ

v+1 − ξα
v

)
, (3.122)

where to obtain the second expression we have made use of the definitions in
(3.111). Therefore, calling D ⊂ R

N the set of all the solutions to the multi-state
perceptron problem, the function to be maximized is

G(ω) ≡
{

min
v=1,...,Q−1

Gv(ω) if ω ∈ D ,

0 if ω 	∈ D .
(3.123)

In fact, since G(λω) = G(ω) , ∀λ > 0, it is actually preferable to restrict the
domain of G to the hyper-sphere SN−1 ⊂ R

N , i.e.

G̃ : SN−1 −→ R
+

ω̂ �−→ G̃(ω̂) ≡ G(ω̂)
(3.124)

The basic properties of G̃ are:

1. G̃(ω̂) > 0 ⇐⇒ ω̂ ∈ D ∩ SN−1.

2. The set D is convex.

3.4 Learning with growing architectures 67

3. The restriction of G̃ to D ∩ SN−1 is a strictly concave function.

4. The restriction of G̃ to D ∩ SN−1 has a unique maximum.

This last property assures the existence and uniqueness of a perceptron of maxi-
mal stability, and it is a direct consequence of the preceding propositions. More-
over, it asserts that no other relative maxima are present, which is of great
practical interest whenever this optimal perceptron has to be explicitly found.

In [49] the optimization procedure constitutes a forward generalization of
the AdaTron algorithm (see Subsect. 2.1.4). Here the situation is much more
complicated because the function we want to maximize is not simply quadratic
with linear constraints, but a piecewise combination of them due to the previous
discrete minimization taken over the gaps. Thus, we have not been able to find a
suitable optimization method which could take advantage of the particularities of
this problem. Of course, the designing of such converging algorithms is an open
question which deserves further investigation.

3.4 Learning with growing architectures

Simple perceptrons, either binary or multi-state, have the limitation that only
(multi-state) linearly separable problems can be learnt, as explained in Subsects.
3.2.1 and 3.3.1. Thus, it would be desirable to find new learning rules applicable to
networks with hidden layers. Such methods exist, the most important one being
the error back-propagation. We will explain it in the next chapter. However, back-
propagation has the drawback that it can only deal with units whose activation
functions are continuous. As a consequence, other strategies have to adopted for
the learning of multilayer networks made of discrete units.

In 1989 Mézard and Nadal proposed a completely different approach [50].
Rather than starting from a certain architecture for the network, and then trying
to adjust the weights and thresholds according to the set of training patterns,
their tiling algorithm starts with no neurons, adding them one by one during the
learning process. The procedure is:

1. We add a first hidden unit, and train it with the perceptron learning rule.
If the training set turns out to be linearly separable, and we have performed
a number of iterations large enough, the problem has been solved and no
further learning is needed, so we stop. Otherwise, some patterns have been
incorrectly classified.

2. Suppose we have already added some neurons to the same hidden layer
in which the previous unit is located. It is said that the patterns form a
faithful representation in this layer if there are no patterns with different
desired outputs whose respectives internal representations at this level are
the same, where the internal representations are the activations induced in

68 Supervised learning with discrete activation functions

each hidden layer. Thus, if the representation is unfaithful, there exists a
subset of patterns which produce the same internal representation, so we
proceed to add a new unit to this layer, and train it, using once again the
perceptron learning rule, with this subset.

3. When the hidden layer ends with a faithful representation, a new layer is
started, going back to the first step.

Instead of using the perceptron learning rule as it is, Mézard and Nadal applied
a variant known as the pocket algorithm [23]. The only difference lies in the way
in which the weights are stored, which allows one to find a solution with a small
number of errors whenever the set of patterns is not linearly separable.

Mézard and Nadal proved that this method converges in the sense that it
always finds an architecture which correctly evaluates any boolean function with
a single binary output. In practice, we have tested the tiling algorithm with
several two-state valued functions with real variables, and it has also converged
in most of the cases.

Although all the hidden layers seem to play the same role, i.e. that of pro-
ducing a faithful representation of the internal states of the previous layer, the
first hidden layer is rather special: each of its units is a hyperplane, all together
defining a tiling of the input space. The important thing is that all the input
patterns belonging to the same ‘tile’ obtain always the same output, no matter
how many layers or units separate the first hidden layer from the output units. In
consequence, all the network structure beyond the first hidden layer only serves
for the purpose of assigning an output to each tile, without any capability of
modifying the shape of the tiling. This fact is crucial, since it suggests that any
learning method has to concentrate its efforts in the construction of the first hid-
den layer, and not in the rest, specially in order to improve the generalization
ability of the network. This property is completely general and independent of
the learning method (provided the activation functions were discrete).

In Fig. 3.7 we show the tiling of the input space obtained after the applica-
tion of the tiling algorithm to the learning of a two-state function with two real
variables. The training set contained 500 input patterns distributed uniformly
over the rectangle [−1, +1]× [0, 1], and whose desired outputs were +1 or −1 de-
pending on whether they were located outside or inside the two solid curves. The
resulting architecture was 2:5:1 (two input, five hidden and one output units).

Our implementation of the tiling algorithm includes several enhancements.
For example, we repeat the building of the first hidden layer several times, pre-
serving only the one with the lowest number of units. The objective is to increase
the generalization capability of the network, since it is well-known that the smaller
the number of parameters the better the performance of any fitted function (the
condition that the number of parameters is large enough is guaranteed by the
fact that the tiling always ends with all the patterns being correctly classified).

3.4 Learning with growing architectures 69

Figure 3.7: Example of a tiling of the input space. The five dashed
lines correspond to the five units built by the tiling algorithm. The
learnt network assigns an output −1 to the shadowed region, and +1
to the rest of the space. This result is in good agreement with the
theoretical limits marked out by the two curved solid lines.

70 Supervised learning with discrete activation functions

It is unnecessary to optimize the size of the rest of the layers since, as has been
said above, they do not modify the shape of the tiling of the input space.

A second modification affects the standard pocket algorithm. We found that,
when the learning is made with non-binary input patterns (i.e. not belonging
to the vertices of a hypercube), there are times in which the solutions with a
minimum number of errors are hyperplanes laying outside the training set, so
the hyperplane assigns the same output to all the input patterns. For instance, a
pattern of class +1 rounded in all directions only by patterns of class −1 have this
property. When this happens, the tiling algorithm enters an infinite loop, adding
units endlessly to the same hidden layer. Thus, we impose that each new unit (or
hyperplane) has to ‘cross’ its training set, dividing it in two non-empty subsets.
We do that by changing the threshold until at least one pattern is separated from
the rest.

Another improvement consists in the use of multi-state units replacing the
usual binary neurons. In principle, the designing of a multi-state version of the
pocket algorithm is straightforward. However, our treatment of the thresholds
gives rise to some difficulties. Namely, it is clear that eq. (3.113) is not necessarily
the optimal way of calculating the thresholds when the training set is not multi-
state linearly separable (as happens oftenly during the building of the network),
since the solution with the minimum number of errors may have a completely
different aspect. Therefore, we decided to choose the thresholds randomly within
certain intervals defined from the numbers ω · ξα

v and ω · ξβ
v+1, letting the pocket

algorithm itself find the best values for them.
We have evaluated the performance of our version of the tiling algorithm when

trained with random boolean functions, for different values of the number of input
units n1 and of the grey levels Q. We skipped the repetitions of the building of
the first hidden layer, since for boolean functions the concept of generalization
looses its meaning. In Table 3.6 we show the results for n1 = 4 and n1 = 6 with
the standard Q = 2, and those for n1 = 3 with Q = 3, and in Table 3.7 there are
the figures for n1 = 2 and n1 = 3 with Q = 4, and those for n1 = 2 with Q = 5.
The number of patterns is given by Qn1 . In all the cases the averages are taken
over 100 random boolean functions.

The main limitation of the tiling algorithm is its inability to cope with noisy
patterns. That is, if the classes we want to separate are distributed in such
a way that their domains have a non-null overlap, the tiling will try to learn
each single pattern of that region, thus putting aside patterns which should not
be separated. We express this property saying that the tiling is good for the
learning of functions, but not of probability distributions.

Other learning methods using growing architectures are the sequential learn-
ing of Marchand, Golea and Ruján [47], the growth algorithm for neural network
decision trees of Golea and Marchand [28], the method of Nadal in [54], the up-
start algorithm of Frean [22] and the cascade correlation of Fahlman and Lebiere
[20].

3.4 Learning with growing architectures 71

Q = 2 , n1 = 4 Q = 2 , n1 = 6 Q = 3 , n1 = 3

〈L〉 3.00±0.03 4.07±0.07 4.35±0.08
〈n2〉 2.78±0.07 (100%) 9.73±0.13 (100%) 7.53±0.16 (100%)
〈n3〉 1.04±0.02 (96%) 3.77±0.16 (100%) 2.88±0.11 (100%)
〈n4〉 1.00±0.00 (4%) 1.28±0.05 (90%) 1.68±0.08 (91%)
〈n5〉 1.00±0.00 (21%) 1.09±0.04 (45%)
〈n6〉 1.00±0.00 (3%)

Table 3.6: Tiling learning of random boolean functions with Q = 2
and Q = 3. For each case we show the average number of layers and
the average number of units in each hidden layer. For each layer the
average is only over the number of trials which have produced that
layer (some trials may have ended in a previous one). The numbers
in parentheses give these percentages.

Q = 4 , n1 = 2 Q = 4 , n1 = 3 Q = 5 , n1 = 2

〈L〉 4.39±0.11 9.47±0.15 6.39±0.16
〈n2〉 5.85±0.13 (100%) 14.27±0.22 (100%) 8.93±0.15 (100%)
〈n3〉 2.28±0.10 (100%) 6.45±0.12 (100%) 3.64±0.09 (100%)
〈n4〉 1.71±0.08 (83%) 7.00±0.15 (100%) 3.39±0.11 (100%)
〈n5〉 1.43±0.08 (46%) 5.68±0.11 (100%) 2.44±0.11 (95%)
〈n6〉 1.25±0.04 (12%) 5.23±0.12 (100%) 1.89±0.10 (76%)
〈n7〉 1.00±0.00 (3%) 4.27±0.14 (100%) 1.51±0.08 (45%)
〈n8〉 2.82±0.13 (99%) 1.73±0.06 (15%)
〈n9〉 2.20±0.12 (81%) 1.40±0.07 (10%)
〈n10〉 1.51±0.08 (51%) 1.33±0.06 (3%)
〈n11〉 1.42±0.08 (19%) 2.00±0.00 (1%)
〈n12〉 1.20±0.04 (5%) 2.00±0.00 (1%)
〈n13〉 1.00±0.00 (1%) 1.00±0.00 (1%)

Table 3.7: Tiling learning of random boolean functions with Q = 4
and Q = 5.

72 Supervised learning with discrete activation functions

Chapter 4

Supervised learning with
continuous activation functions

When continuous and differentiable activation functions are used, a multilayer
neural network becomes a differentiable map from a n-dimensional real input
space into a m-dimensional output one. Thus, it may seem that this sort of nets
do not deserve more attention than any other class of differentiable functions.
However, the discovery of the error back-propagation algorithm to train multi-
layer networks from examples has proved to be an excellent tool in classification,
interpolation and prediction tasks. In fact, it has been proved that any suffi-
ciently well-behaved function can be approximated by a neural network provided
the number of units is large enough. In this chapter we will explain the original
and several variants of the back-propagation method, and some of the applica-
tions we have developed. Moreover, we will give an analytical interpretation of
the net outputs obtained after the training.

4.1 Learning by error back-propagation

4.1.1 Back-propagation in multilayer neural networks

Let us consider the set

{(xμ, zμ) ∈ R
n × R

m , μ = 1, . . . , p} (4.1)

of pairs input-output and a multilayer neural network of the kind of that in
Fig. 1.3, which has L layers with n1, . . . , nL units respectively (n = n1 and
m = nL). Now the architecture is given beforehand, and it is not changed during
the learning phase. The equations governing the state of the net are the recursive
relations

ξ
(�)
i = g(h

(�)
i) , i = 1, . . . , n� , 	 = 2, . . . , L , (4.2)

73

74 Supervised learning with continuous activation functions

where the fields are given by

h
(�)
i =

n�−1∑
j=1

ω
(�)
ij ξ

(�−1)
j − θ

(�)
i . (4.3)

We shall use a different notation for the input and output patterns:{
x = ξ(1) ,

o(x) = ξ(L) .
(4.4)

Batched and online back-propagation

For any given values of the weights and thresholds it is possible to calculate the
quadratic error between the actual and the desired output of the net, measured
over the training set:

E[o] ≡ 1

2

p∑
μ=1

m∑
i=1

(oi(x
μ) − zμ

i)2 . (4.5)

Therefore, the least squares estimate is that which minimizes E[o]. Applying the
gradient descent minimization procedure, what we have to do is just to look for
the direction (in the space of weights and thresholds) of steepest descent of the
error function (which coincides with minus the gradient), and then modify the
parameters in that direction so as to decrease the actual error of the net:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δω
(�)
ij = −η

∂E

∂ω
(�)
ij

, i = 1, . . . , n� , j = 1, . . . , n�−1 ,

δθ
(�)
i = −η

∂E

∂θ
(�)
i

, i = 1, . . . , n� ,

(4.6)

with the updating rule ⎧⎨⎩
ω

(�)
ij −→ ω

(�)
ij + δω

(�)
ij ,

θ
(�)
i −→ θ

(�)
i + δθ

(�)
i .

(4.7)

The intensity of the change is controlled by the learning rate parameter η, which
plays the same role here than in the perceptron learning rule of Subsect. 3.2.1.

Substituting eqs. (4.2) and (4.3) into (4.5), and taking the derivatives, it is
easy to get (see e.g. [68])⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

δω
(�)
ij = −η

p∑
μ=1

Δ
(�)μ
i ξ

(�−1)μ
j ,

δθ
(�)
i = η

p∑
μ=1

Δ
(�)μ
i ,

(4.8)

4.1 Learning by error back-propagation 75

where the error is introduced in the units of the last layer through

Δ
(L)μ
i = g′(h(L)μ

i) [oi(x
μ) − zμ

i] , (4.9)

and then is back-propagated to the rest of the network by

Δ
(�−1)μ
j = g′(h(�−1)μ

j)

n�∑
i=1

Δ
(�)μ
i ω

(�)
ij . (4.10)

The appearence of the derivative g′ of the activation function explains why we
have supposed in advance that it has to be continuous and differentiable.

Summarizing, the batched back-propagation algorithm for the learning of the
training set (4.1) consists in the following steps:

1. Initialize all the weights and thresholds randomly, and choose a small value
for the learning rate η.

2. Run a pattern xμ of the training set using eqs. (4.2) and (4.3), and store

the activations of all the units (i.e. {ξ(�)μ
i , ∀	 ∀i}).

3. Calculate the Δ
(L)μ
i with eqs. (4.9), and then back-propagate the error using

eqs. (4.10).

4. Compute the contributions to δω
(�)
ij and to δθ

(�)
i induced by this input-

output pair (xμ, zμ).

5. Repeat the last three steps until all the training patterns have been used.

6. Update the weights and thresholds using eqs. (4.7).

7. Go to the second step unless enough training epochs have been carried out.

The adjective ‘batched’ refers to the fact that the update of the weights and
thresholds is done after all the patterns have been presented to the network.
Nevertheless, simulations show that, in order to speed up the learning, it is usually
preferable to perform this update each time a new pattern is processed, choosing
them in random order: this is known as non-batched or online back-propagation.

Momentum term

It is clear that back-propagation seeks minimums of the error function (4.5), but
it cannot assure that it ends in a global one, since the procedure may get stucked
in a local minimum. Several modifications have been proposed to improve the
algorithm so as to avoid these undesired local minimums and to accelerate its
convergence. One of the most successful, simple and commonly used variants is

76 Supervised learning with continuous activation functions

the introduction of a momentum term to the updating rule, either in the batched
or the online schemes. It consists in the substitution of (4.6) by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δω
(�)
ij = −η

∂E

∂ω
(�)
ij

+ α δω
(�)
ij (last) ,

δθ
(�)
i = −η

∂E

∂θ
(�)
i

+ α δθ
(�)
i (last) ,

(4.11)

where ‘last’ means the values of the δω
(�)
ij and δθ

(�)
i used in the previous updating

of the weights and thresholds. The parameter α is called the momentum of the
learning, and it has to be a positive number smaller than 1.

Local learning rate adaptation

For most of the applications online back-propagation (with or without a momen-
tum term) suffices. However, lots of variants may be found in the literature (see
[74] for a comparative study), some of them quite interesting. For instance, Silva
and Almeida proposed a local learning rate adaptation procedure which works
well in many situations. The main idea is the use of separate learning rates for
each of the parameters to be adjusted, and then to increase or decrease their
values according to the signs of the last two gradients. More precisely, the set
(4.6) has to be substituted by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δω
(�)
ij = −η

(�)
ij

∂E

∂ω
(�)
ij

, i = 1, . . . , n� , j = 1, . . . , n�−1 ,

δθ
(�)
i = −η

(�)
i

∂E

∂θ
(�)
i

, i = 1, . . . , n� ,

(4.12)

and a new step has to be added to the main scheme just before the updating of
the weights and thresholds, which reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η
(�)
ij =

⎧⎪⎨⎪⎩
u η

(�)
ij (last) if

∂E

∂ω
(�)
ij

∂E

∂ω
(�)
ij

(last) ≥ 0 ,

d η
(�)
ij (last) otherwise ,

η
(�)
i =

⎧⎨⎩ u η
(�)
i (last) if

∂E

∂θ
(�)
i

∂E

∂θ
(�)
i

(last) ≥ 0 ,

d η
(�)
i (last) otherwise ,

(4.13)

where the parameters u > 1 and 0 < d < 1 could be chosen, for example, as
u = 1

d
= 1.2. Thus, if two successive gradients have the same sign, the local

learning rate is increased (we are still far from the minimum, so we want to reach
it sooner), and if the signs are the opposite, it is decreased (we have crossed over
the minimum, so we have to do the search with smaller movements).

4.1 Learning by error back-propagation 77

Back-propagation with discrete networks

In the previous chapter we discussed the problem of supervised learning with
discrete activation functions, but we did not provide any learning algorithm for
multilayer networks: the perceptron learning rule or the pocket algorithm can
only deal with simple perceptrons, while the tiling algorithm generates its own
architecture. Since eq. (1.6) shows that the sigmoids are approximations to the
step function, one possible way out consists in the realization of the training using
back-propagation (with sigmoidal activation functions), and when it is finished
we use the obtained weights and thresholds as if they were the solution in the
discrete case.

We have studied a very simple problem to compare the performance of this
‘discretized’ back-propagation with the tiling algorithm, and also with the non-
discretized back-propagation. It consists in the discrimination between patterns
inside and outside a ring, centered in the square [−1, 1]2. A number of points,
ranging from 50 to 500, were randomly generated in the square, and the desired
output is assigned to be 1 if the point is inside the ring, and 0 otherwise. The
radii of the ring were chosen as 0.3 and 0.7. After the learning, the solutions
found were tested with 10 000 new patterns, and the proportion of successfully
classified patterns, called generalization, was stored. Fig. 4.1 shows the mean
of the generalization over 25 realizations for different learning parameters and
architectures. The best behaviour corresponds, as expected, to continuous back-
propagation, since discrete networks cannot produce ‘curved tilings’ of the input
space. In the discrete case, the tiling algorithm always works much better than
the discretized back-propagation. We believe that this fact is due to the ability
of the tiling algorithm to find out the right number of units in the first hidden
layer, which in the discretized back-propagation has to be ‘guessed and set’ in
advance.

4.1.2 Back-propagation in general feed-forward neural nets

The back-propagation algorithm of the previous subsection is applicable not only
to multilayer neural networks but also to a larger class of architectures, which
we will refer to as general feed-forward neural networks. In this class the units
are also distributed in layers, but there may be also connections between non-
consecutive layers. For instance, some weights may connect the input neurons
with the ones in the second, third and fourth layers, but ‘lateral’ weights within
a single layer or connections to previous layers are still forbidden.

Suppose that we have a general feed-forward neural network made of N units,
and that we have numbered them in the order in which they are updated. The
condition of being feed-forward means that the i-th neuron can only receive sig-
nals from the previous neurons, i.e. only weights ωij satisfying i > j are possible.
Let us call Ji the set of units with weights which end in the i-th one. With this

78 Supervised learning with continuous activation functions

0 100 200 300 400 500
Number of learning patterns

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
ea

n
ge

ne
ra

liz
at

io
n

Tiling
BP (2:5:3:1)
dBP (2:5:3:1)
dBP (2:5:5:3:1)
dBP (2:10:3:1)
dBP (2:10:10:5:1)

Figure 4.1: A comparison between the tiling algorithm, back-
propagation (BP) and a discretized back-propagation (dBP).

4.1 Learning by error back-propagation 79

notation, the state of the network is given by

ξi = gi(hi) , i = 1, . . . , N , (4.14)

where the fields are

hi = xi 1{i∈I} +
∑
j∈Ji

ωij ξj − θi . (4.15)

Notice that we have enlarged the definition of the network in two ways: we let
each unit have a different activation function gi, and the inputs {xi , i ∈ I} are
considered as external additive fields which can enter the network at any unit. A
standard input unit is recovered if it has no incoming weights, its threshold is null
and its activation function is the identity (ξi = gi(hi) = gi(xi) = xi , i ∈ I). The
symbol 1{i∈I} has been introduced to emphasize that only the neurons numbered
in the set I have external inputs.

A further generalization consits in the possibility of ‘reading’ the output any-
where in the network: {oi(x) , i ∈ O}. Hence, the error function acquires the
form

E[o] ≡ 1

2

p∑
μ=1

∑
i∈O

(oi(x
μ) − zμ

i)2 . (4.16)

Calling Kj the set of units which receive a connection from the j-th one, the
formulas of the batched back-propagation algorithm with momentum are⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

δωij = −η

p∑
μ=1

Δμ
i ξμ

j + α δωij(last) , j ∈ Ji , i = 1, . . . , N ,

δθi = η

p∑
μ=1

Δμ
i + α δθi(last) , i = 1, . . . , N ,

(4.17)

where eqs. (4.9) and (4.10) have to be replaced by

Δμ
j = g′

i(h
μ
j)

⎡⎣∑
i∈Kj

Δμ
i ωij + Dμ

j 1{j∈O}

⎤⎦ , j = N, . . . , 1 , (4.18)

and the output errors are introduced through

Dμ
j = oj(x

μ) − zμ
j , j ∈ O . (4.19)

The online version is recovered by elimination of the summatories over the train-
ing set.

80 Supervised learning with continuous activation functions

4.1.3 Back-propagation through time

The algorithms in the previous subsections are useful for the learning of static
pairs input-output. However, in prediction tasks it is usually necessary to deal
with time series. For instance, the demand of consumer and industrial goods
depends, among other factors, on the evolution of the market during the last
hours, days, weeks, months or years. Thus, it would be desirable to introduce
into the training patterns all such information.

Let {st , t ∈ N} be a time series, so the value of st depends on those of
s1, . . . , st−1 and, probably, on some other unknown variables and on some noise.
The easiest solution consists in the use of ordinary multilayer neural networks,
with an input layer which permits the introduction of k consecutive elements of
the series, xμ = (sμ−k, . . . , sμ−1), and an output one where the desired output
is zμ = sμ. For example, in [79] Weigend, Rumelhart and Huberman apply this
method (which we will refer to as time-delay neural networks), to the prediction
of the well-known ‘sunspots’ time series.

Nevetheless, time-delay neural networks have several important drawbacks
which may complicate their application to real problems. First, the delay k has
to be chosen in advance, even if we do not know which value is the more efficient
one. And if the optimal k happens to be too big, the size of the network may
become too large rendering the learning not possible. Moreover, all the training
patterns have to have the same delay.

An alternative to time-delay nets is the use of recurrent neural networks. In a
recurrent net the connections within a single layer or ending in a previous one are
allowed. For instance, a fully connected network is a special case of a recurrent
one. It is easy to realize that recurrent networks are equivalent to feed-forward
ones which include as many copies of the initial basic structure as time steps
are being considered. This unfolding of time gives rise to the back-propagation
through time algorithm [68].

Before the explanation of our version of the algorithm, let us consider the
network of Fig. 4.2. There are three layers, the first and the third being the
input and the output ones respectively. The hidden layer is recurrent, in the
sense that its state depends not only on the inputs from the first layer but also
on its own state in the last time step. The unfolding of this net for three time
steps is given in Fig. 4.3. It shows that, for each time t, all the neurons of
the net have to be updated in the usual form, but with some units receiving
additional signals from the previous time step. Thus, we distinguish two types of
weights: the standard feed-forward ones (represented by horizontal arrows) and
the weights connecting states at different consecutive times (the vertical arrows).

More involved examples could be given, e.g. having connections between states
at non-consecutive times, or such that a single update of all the units requires
more than one time step (this happens if one considers that units at different

4.1 Learning by error back-propagation 81

ξ(1) � ξ(2)

��
�

� ξ(3)

Figure 4.2: Example of a multilayer neural network with a recurrent
layer.

ξ(1) � ξ(2) � ξ(3) t = 3

�

ξ(1) � ξ(2) � ξ(3) t = 2

�

ξ(1) � ξ(2) � ξ(3) t = 1

Figure 4.3: Unfolding of the network of Fig. 4.2 for three time steps.

82 Supervised learning with continuous activation functions

layers are updated at different time steps). Nonetheless, these complications are
rather artificial since the combination of an ordered updating of all the units and
the existence of one time delayed weights suffice to give sense to any conceivable
architecture. Thus, our back-propagation through time gets rid of the presence
of other kinds of weights different to the two ones described above.

Let {ωij , j ∈ Ji , i = 1, . . . , N} denote the standard feed-forward weights
of the net (j < i), and let {ωij , j ∈ J i , i = 1, . . . , N} be the set of one step
delayed weights (no restrictions apply to the sets J i). Then, the evolution of the
network for training series of length T is controlled by

ξi(t) = gi(hi(t)) , i = 1, . . . , N , t = 1, . . . , T , (4.20)

with fields given by

hi(t) = xi(t) 1{i∈I(t)} +
∑
j∈Ji

ωij ξj(t) +
∑
j∈J i

ωij ξj(t − 1) − θi . (4.21)

A further initial condition is needed:

ξi(0) = 0 , i = 1, . . . , N . (4.22)

The fact that the sets I(t) are not always the same means that we admit that
the input units be different at each time step. The same is valid for the output
units and the corresponding sets O(t).

The error function has now to take into account the time evolution:

E[o] ≡ 1

2

p∑
μ=1

T∑
t=1

∑
i∈O(t)

(oi(x
μ, t) − zμ

i (t))
2

. (4.23)

Therefore, the formulas for the batched back-propagation through time with mo-
mentum terms are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δωij = −η

p∑
μ=1

T∑
t=1

Δμ
i (t) ξμ

j (t) + α δωij(last) , j ∈ Ji , i = 1, . . . , N ,

δωij = −η

p∑
μ=1

T∑
t=1

Δμ
i (t) ξμ

j (t − 1) + α δωij(last) , j ∈ J i , i = 1, . . . , N ,

δθi = η

p∑
μ=1

T∑
t=1

Δμ
i (t) + α δθi(last) , i = 1, . . . , N .

(4.24)
where

Δμ
j (t) = g′

i(h
μ
j (t))

⎡⎣∑
i∈Kj

Δμ
i (t) ωij +

∑
i∈Kj

Δμ
i (t + 1) ωij + Dμ

j (t) 1{j∈O(t)}

⎤⎦ , (4.25)

4.2 Analytical interpretation of the net output 83

the output errors through time are

Dμ
j (t) = oj(x

μ, t) − zμ
j (t) , j ∈ O(t) , (4.26)

and the contour condition

Δμ
j (T + 1) = 0 , j = 1, . . . , N (4.27)

is fulfilled. Once again, the online version is recovered when the sums over the
whole training set are suppressed. The computation of the Δμ

j (t) has to be done
in the only possible order, i.e. proceeding from t = T to t = 1, and for each step
back-propagating in the network from j = N to j = 1.

4.2 Analytical interpretation of the net output

Among the different types of neural networks, the ones which have found more ap-
plications are the multilayer feed-forward nets trained with the back-propagation
method of Subsect. 4.1.1. This algorithm is based on the minimization of the
squared error criterion of eq. (4.5). From the point of view of Statistics, super-
vised learning is, then, just a synonymous of regression, and it is well-known that
the regression ‘line’ which minimizes the quadratic error is the function formed
by the expectation values of the outputs conditioned to the inputs.

In this section we are going to make use of functional derivatives to find
this unconstrained global minimum, which easily allows for the minimization of
more involved error criterions [26, 29] (we exclude from this study the recurrent
nets). Next, we will investigate the role played by the representation given to
the training output patterns, specially whenever the number of different possible
outputs is finite (e.g. in classification tasks).

The interest in this study lies in the fact that multilayer neural networks
trained with back-propagation really find good approximations to the uncon-
strained global minimum of eq. (4.5). In fact, neural nets can approximate any
sufficiently well-behaved function provided the number of units is large enough
(see [4, 8, 32, 39] for several theorems on the approximation of functions with
neural networks).

It must be stressed that the results will be derived with the only assumption
that global minima are possible to be calculated, without any reference to the
intrinsic difficulty of this problem nor to its dependence on the shape of the net;
in fact, it need not be a neural network. That is, in this section the word ‘net’
should be understood as a short for ‘big enough family of functions’.

4.2.1 Study of the quadratic error criterion

Let (ξ, ζ) ∈ X ×Z denote a certain pair of input-output patterns which has been
produced with a given experimental setup. Since the sets X and Z are arbitrary,

84 Supervised learning with continuous activation functions

it is convenient to represent each pattern by a real vector in such a way that
there is a one-to-one correspondence between vectors and feature patterns. We
will make use of the vectors x ∈ R

n for the input patterns and z(x) ∈ R
m for

the output ones.
If {(xμ, zμ), μ = 1, . . . , p} is a representative random sample of pairs input-

output, our goal is to find the net

o : x ∈ R
n �−→ o(x) ∈ R

m (4.28)

which closely resembles the unknown correspondence process. The least squares
estimate is that which produces the lowest mean squared error E[o], where

E[o] ≡ 1

2p

p∑
μ=1

m∑
i=1

λi(z
μ, xμ) (oi(x

μ) − zμ
i)

2
. (4.29)

Usually the λi functions are set to 1. However, there are times in which
it is useful to weight each contribution to the error with a term depending on
the pattern. For instance, if the values of the desired outputs are known with
uncertainties σi(z

μ, xμ), the right fitting or ‘chi-squared’ error should be

E[o] ≡ 1

2p

p∑
μ=1

m∑
i=1

(
oi(x

μ) − zμ
i

σi(zμ, xμ)

)2

. (4.30)

Under the three hypothesis that:

1. the different measurements (μ = 1, . . . , p) are independent (i.e., viewed as
probability theory objects, they define independent random variables),

2. the underlying probability distribution of the differences oi(x
μ) − zμ

i has
zero mean, mμ = 0 , ∀μ, and

3. the mean square deviations σμ are uniformily bounded, σμ < K, for all
μ = 1, . . . , p (actually, in order to make use of Kolmogorov’s theorem it is

enough that

p∑
μ=1

σμ

μ2
< +∞, for any p),

the Strong Law of Large Numbers applies (see e.g. [21, 27]). It tells us that, with
probability one (i.e., in the usual almost-everywhere convergence, common to the
theory of functions and functional analysis) the limiting value of (4.29) for large
p is given by

E[o] =
1

2

m∑
i=1

∫
Rn

dx

∫
Rm

dz p(z, x) λi(z, x) [oi(x) − zi]
2

=
1

2

m∑
i=1

∫
Rn

dx p(x)

∫
Rm

dz p(z|x) λi(z, x) [oi(x) − zi]
2 , (4.31)

4.2 Analytical interpretation of the net output 85

where p(z, x) is the joint probability density of the random variables z and x
in the sample, p(x) stands for the probability density of x, and p(z|x) is the
conditional probability density of z knowing that the former random variable
has taken on the value x.

Notice that the first two of the conditions for the validity of the strong law of
large numbers are naturally satisfied in most cases. In fact, while the first one is
equivalent to the usual rule that the practical measurements must always be done
properly (which is generally assumed), the second just tells us that the net is also
to be constructed conveniently in order to fulfil the goal of closely resembling the
unknown correspondence process (see above). But we also take for granted that
we will be always able to do this, in the end. The third condition, however, is
of a rather more technical nature and seems to be difficult to realize from the
very begining (or even at the end, in a strict sense!). In practice, the thing to
do is obviously to check a posteriori that it is fulfilled for p large enough, and to
convince ourselves that there is no reason (in the case treated) for it to be violated
at any value of p. We do think that this condition prevents one from being able
to consider the use of the strong law of large numbers as something that can
be ‘taken for granted’ in general, in the situation described in this section. This
comment should be considered as a warning against the apparently indiscriminate
application of the law which can be found sometimes in the related literature.

Assuming no constraint in the functional form of o(x), the minimum o∗(x)
of E is easily found by annulling the first functional derivative:

δE[o]

δoj(x)
=

m∑
i=1

∫
Rn

dx′ p(x′)
∫

Rm

dz p(z|x′) λi(z, x′) [oi(x
′) − zi] δij δ(x − x′)

= p(x)

∫
Rm

dz p(z|x) λj(z, x)[oj(x) − zj]

= p(x) [oj(x)〈λj(z, x)〉x − 〈λj(z, x) zj〉x] = 0 (4.32)

implies that the searched minimum is

o∗j(x) =
〈λj(z, x) zj〉x
〈λj(z, x)〉x

, ∀x ∈ R
n such that p(x) 	= 0 , j = 1, . . . , m , (4.33)

where we have made use of the conditional expectation values

〈f(z, x)〉x ≡
∫

Rm

dz p(z|x) f(z, x) (4.34)

i.e. the average of any function f of the output vectors z once the input pattern
x has been fixed. Eq. (4.33) is the key expression from which we will derive the
possible interpretations of the net output (an alternative proof can be found for
instance in [58]).

86 Supervised learning with continuous activation functions

From a practical point of view unconstrained nets do not exist, which means
that the achievable minimum õ(x) is in general different to the desired o∗(x).
The mean squared error between them is written as

ε[õ] ≡ 1

2

m∑
i=1

∫
Rn

dx p(x)

∫
Rm

dz p(z|x) λi(z, x) [õi(x) − o∗i (x)]2 . (4.35)

However, it is straightforward to show that

E[o] = ε[o] +
1

2

m∑
i=1

∫
Rn

dx p(x)

∫
Rm

dz p(z|x) λi(z, x) [zi − o∗i (x)]2 , (4.36)

and, since the second term of the sum is a constant (it does not depend on the
net), the minimizations of both E[o] and ε[o] are equivalent. Therefore, õ(x) is
a minimum squared-error approximation to the unconstrained minimum o∗(x).

In the rest of this subsection we will limit our study to problems for which
it is satisfied that λi(z, x) = 1 , ∀i , ∀z , ∀x. In fact, they cover practically all
the applications of back-propagation, since the training patterns are most of the
times implicitly regarded as points without error bars. Then, eq. (4.33) gains the
simpler form

o∗j (x) = 〈zj〉x =

∫
Rm

dz p(z|x) zj , j = 1, . . . , m , (4.37)

whose meaning is that the unconstrained minimum of

E[o] =
1

2p

p∑
μ=1

m∑
i=1

(oi(x
μ) − zμ

i)2 , (4.38)

is, for large p, the conditional expectation value or mean of the output vectors in
the training sample for each input pattern represented by x ∈ R

n.

As a particular case, if the output representation is chosen to be discrete, say

z(x) ∈ {z(1), z(2), . . . , z(a), . . .} , (4.39)

then eq. (4.37) reads

o∗j(x) =
∑

a

P (z(a)|x) z
(a)
j , j = 1, . . . , m (4.40)

where P (z(a)|x) is the probability of z(a) conditioned to the knowledge of the
value of the input vector x.

4.2 Analytical interpretation of the net output 87

4.2.2 Unary output representations and Bayesian decision
rule

It is well known that nets trained to minimize (4.38) are good approximations
to Bayesian classifiers, provided a unary representation is taken for the output
patterns [25, 64, 78]. That is, suppose the input patterns have to be separated
in C different classes Xa , a = 1, . . . , C, and let

z(a) ≡ (
1

0, . . . ,
a−1

0 ,
a

1,
a+1

0 , . . . ,
m

0) (4.41)

be the desired output of any input pattern x ∈ Xa. This assignment specializes
each output component to recognize a distinct class (m = C). Substituting (4.41)
in eq. (4.40) we get

o∗a(x) =
∑

b

P (z(b)|x)z(b)
a = P (z(a)|x) , (4.42)

i.e. the a-th component of the net output turns out to be a minimum squared
approximation to the conditional probability that pattern x belong to class Xa.
Therefore, if õ(x) is the output of the net once the learning phase has finished,
a good proposal for an almost Bayesian decision rule would be:

x is most likely a member of class Xb, where õb(x) is the largest
component of the output vector õ(x).

The applicability of eq. (4.42) goes beyond classifications. For example, sup-
pose that you have a certain Markov chain {st , t ∈ N} of discrete states with
constant transition probabilities, and you train a net to learn st as a function
of st−1, . . . , st−τ . Hence, the output of the net will tend to give these transition
probabilities P (st|st−1, . . . , st−τ), which by hypothesis do not depend on t.

4.2.3 Other discrete output representations

In the previous subsection we showed how nets can solve, among others, classifi-
cation problems through the use of unary output representations. The role played
by these representations is fundamental, not because they easily give the right
solution but because the output contains all the information needed to make a
Bayesian decision. In fact, it is easy to find other representations for which some
of the information will be unavoidably losen. For instance, consider a binary
representation for a four classes classification task:⎧⎪⎪⎨⎪⎪⎩

z(1) ≡ (0, 0)
z(2) ≡ (1, 0)
z(3) ≡ (0, 1)
z(4) ≡ (1, 1)

(4.43)

88 Supervised learning with continuous activation functions

Then, eq. (4.40) leads to{
o∗1(x) = P (z(2)|x) + P (z(4)|x)
o∗2(x) = P (z(3)|x) + P (z(4)|x)

(4.44)

with the normalization condition

4∑
a=1

P (z(a)|x) = 1 . (4.45)

Eqs. (4.44) and (4.45) constitute an indeterminated linear system of three equa-
tions with four unknown conditional probabilities. The situation will be the same
whenever a binary output representation is taken. Thus, they should be avoided
if useful solutions are required.

Of course, unary representations are not the only possible choice to find useful
solutions. For example, a ‘thermometer’ representation [23] for the same problem
could be ⎧⎪⎪⎨⎪⎪⎩

z(1) ≡ (0, 0, 0)
z(2) ≡ (1, 0, 0)
z(3) ≡ (1, 1, 0)
z(4) ≡ (1, 1, 1)

(4.46)

which has as solution ⎧⎪⎪⎨⎪⎪⎩
P (z(1)|x) = 1 − o∗1(x)
P (z(2)|x) = o∗1(x) − o∗2(x)
P (z(3)|x) = o∗2(x) − o∗3(x)
P (z(4)|x) = o∗3(x)

(4.47)

The interest towards these representations comes from the need of discretizing
continuous output spaces. Simulations have shown that binary representations
are more difficult to be learnt than thermometer-like ones. However, it is not so
clear that those who selected them have interpreted their results in the proper
way, putting the outputs in terms of conditional probabilities, and deciding as
true output the class of maximal probability.

The final conclusion which could be extracted from what has been said is
that, in the discrete and finite case, it is always possible to make an approximated
Bayesian decision provided the representation {z(1), . . . , z(C)} is chosen such that
the linear system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

C∑
b=1

P (z(b)|x) z(b)
a = o∗a(x) , a = 1, . . . , d , d ∈ {C − 1, C}

C∑
b=1

P (z(b)|x) = 1 needed if d = C − 1

(4.48)

has a non null determinant.

4.2 Analytical interpretation of the net output 89

Class m σ

1 0.0 0.997
2 0.8 0.878
3 4.0 2.732
4 −0.8 1.333

Table 4.1: Averages and standard deviations of the normal proba-
bility densities for the four gaussians problem.

4.2.4 An example of learning with different discrete out-
put representations

In order to compare what happens when different discrete output representations
are considered we have designed the following example, which from now on we
will refer to as the ‘four gaussians problem’. Suppose we have one-dimensional
real patterns belonging to one of four possible different classes. All the classes are
equally probable, P (class a) = 1/4, a = 1, . . . , 4, and their respective distribu-
tions p(x|class a) are normal N(m, σ) with averages m and standard deviations
σ given in Table 4.1 (see Fig. 4.4). Knowing them, the needed conditional prob-
abilities are given by the Bayes theorem:

P (class a|x) =
p(x|class a)
4∑

b=1

p(x|class b)

, a = 1, . . . , 4. (4.49)

We have trained three neural networks to classify these patterns using as
many different output representations: unary, binary and real, as defined in Table
4.2. All the networks had one input unit, two hidden layers with six and eight
units respectively, and four output units in the unary case, two in the binary
case and one in the real case. The activations functions were sigmoids, and back-
propagation was not batched, i.e. the weights were changed after the presentation
of each pattern.

In Fig. 4.5 we have plotted the expected Bayesian classification (solid line),
which according to eq. (4.42) should coincide with the minimum using unary
output representation, together with a solution given by the back-propagation
algorithm using that representation (dashed line). Both lines are almost the

90 Supervised learning with continuous activation functions

-4.0 0.0 4.0 8.0 12.0
Input

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

de
ns

ity

Class 1
Class 2
Class 3
Class 4

Figure 4.4: Probability densities for the four gaussians problem.

4.2 Analytical interpretation of the net output 91

Class Unary Binary Real

1 (1,0,0,0) (0,0) (1/8)
2 (0,1,0,0) (0,1) (3/8)
3 (0,0,1,0) (1,0) (5/8)
4 (0,0,0,1) (1,1) (7/8)

Table 4.2: Three representations for the four gaussians problem.

same, but the net assigns the forth class to patterns lower than −5.87 when it
should be the third one. This discrepancy is easily understood if one realizes that
the probability of having patterns below −5.87 is about 4.92×10−8, which means
that the number of patterns generated with such values is absolutely negligible.
Thus, the net cannot learn patterns which it has not seen! This insignificant
mistake appears several times in this subsection, but will not be commented any
more. The conclusion is, then, that prediction and simulation agree fairly well,
and since the theoretical output is the Bayes classifier, neural nets achieve good
approximations to the best solution provided the different classes are encoded
using a unary output representation.

To show that neural nets really approach eq. (4.42) we have added Fig. 4.6,
which is a plot of both the predicted conditional probability and the learnt output
of the first of the four output units. It must be taken into account that to make
approximations to Bayesian decisions you just have to look at the unit which
gives the largest output, but you do not need their actual values. However, in
the Markov chain example previously proposed, those values would be certainly
necessary.

When using binary and real representations, one has to decide which outputs
should go to each class. For instance, the most evident solution for the binary
case is to apply a cut at 0.5 to both output units, assigning 0 if the output is
below the cut and 1 otherwise. For the real representation a logical procedure
would be the division of the interval [0, 1] in four parts of equal length, say
[0, 0.25], [0.25, 0.50], [0.50, 0.75] and [0.75, 1], and then assign 1/8, 3/8, 5/8 and
7/8 respectively. These interpretations have been exploited in Fig. 4.7, where
we have plotted the expected results for the four gaussians problem in the three
cases of Table 4.2, according to eq. (4.40). The three lines coincide only in the
input regions in which the probability of one class is much bigger than that of the
rest. Both binary and real cases fail to distinguish the first class in the interval

92 Supervised learning with continuous activation functions

-8.0 -4.0 0.0 4.0 8.0
Input

1

2

3

4

C
la

ss

Unary predicted = Bayes
Unary NN

Figure 4.5: Predicted and neural network classifications for the four
gaussians problem using unary output representations.

4.2 Analytical interpretation of the net output 93

-4.0 0.0 4.0 8.0 12.0
Input

0.0

0.1

0.2

0.3

0.4

0.5

1s
t o

ut
pu

t u
ni

t

Predicted
NN

Figure 4.6: First output unit state for the four gaussians problem
using the unary output representation.

94 Supervised learning with continuous activation functions

[−0.76, 0.29]. Moreover, the real case incorrectly assigns the third class in the
interval [−2.27,−0.84] instead of the forth. The narrow peak at [2.20, 2.27] of
the binary representation is just an effect of the transition between the third and
the second classes, which are represented as (1, 0) and (0, 1) respectively, making
very difficult that both output units cross the cut simultaneously in opposite
directions.

Figs. 4.8 and 4.9 show predicted and neural networks classifications when
binary and real representations are employed. Two examples for the binary neural
network outputs are shown, with the expected peaks around 2.23, either as a
transition through (1, 1), as in NN1, or through (0, 0), as in NN2.

4.2.5 Continuous output representations

Discrete and finite output representations arise quite naturally in the treatment
of classification problems. For each class, an arbitrary but different vector is
assigned and, taking into account the system (4.48), the best way of doing it
so is by imposing linear independence of this set of vectors. Now, with the aid
of a sample of patterns, we will be able to determine good approximations to
the conditional probabilities that the patterns belong to each class and, knowing
them, Bayesian decisions will be immediate.

On the other hand, prediction and interpolation tasks usually amount to
finding the ‘best’ value of several continuous variables for each given input. One
possible but unsatisfactory solution is the discretization of these variables, which
has to be made carefully in order to skip various problems. If the number of bins
is to big, the number of training patterns should be very large. Otherwise, if the
size of the bins is relatively big, the partitioning may fail to distinguish relevant
differences, specially if the output is not uniformly distributed. Therefore, it may
be stated that a good discretization needs a fair understanding of the unknown
output distribution!

Fortunately, neural nets have proved to work well even when the output rep-
resentation is left to be continuous, without any discretization. For instance,
feed-forward networks have been applied to time series prediction of continuous
variables, outperforming standard methods [79]. The explanation to this success
lies precisely in eq. (4.37), which reveals the tendency of nets to learn, for each
input, the mean of its corresponding outputs in the training set. Thus, the net is
automatically doing what everyone would do in the absence of more information,
i.e. substituting the sets of points with common abcise by their average value.

To illustrate that learning with neural networks really tends to give the mini-
mum squared error solution given by eq. (4.37) we have trained them with a set of
patterns distributed as the dots in Fig. 4.10. The solid line is the theoretical limit,
while the dashed lines are two different solutions found by neural nets. The first
one has been produced using the ordinary sigmoidal activation function, while
in the second they have been replaced by sinusoidal ones (scaled between 0 and

4.2 Analytical interpretation of the net output 95

-8.0 -4.0 0.0 4.0 8.0
Input

1

2

3

4

C
la

ss

Unary predicted = Bayes
Binary predicted
Real predicted

Figure 4.7: Predicted classifications for the four gaussians problem.
Only the unary output representation achieves the desired Bayesian
classification, whereas both binary and real representations give the
wrong answer for certain values of the inputs.

96 Supervised learning with continuous activation functions

-8.0 -4.0 0.0 4.0 8.0
Input

1

2

3

4

C
la

ss

Binary predicted
Binary NN1
Binary NN2

Figure 4.8: Predicted and neural network classifications for the four
gaussians problem using binary output representations.

4.2 Analytical interpretation of the net output 97

-8.0 -4.0 0.0 4.0 8.0
Input

1

2

3

4

C
la

ss

Real predicted
Real NN

Figure 4.9: Predicted and neural network classifications for the four
gaussians problem using real output representations.

98 Supervised learning with continuous activation functions

1). In most of the input interval the three curves are very similar. However, the
sigmoidal one fails to produce the peak located at about −0.5. This is in favour
of recent results [76] which show that sinusoidal activations can solve difficult
task which sigmoidal cannot, or can but with much more epochs of training.

4.2.6 Study of other error criterions

In all the previous subsections the study has been concentrated in the minimiza-
tion of the quadratic error function eq. (4.38). However, other quantities may
serve for the same purpose, such as

Eq[o] ≡ 1

q p

p∑
μ=1

m∑
i=1

|oi(x
μ) − zi(x

μ)|q . (4.50)

For instance, in [42] Karayiannis and Venetsanopoulos modify the error measure
during the learning in order to accelerate its convergence, changing in a continu-
ous way from E2[o] to E1[o].

Repeating the scheme of Subsect. 4.2.1, the large p limit of eq. (4.50) is

Eq[o] =
1

q

m∑
i=1

∫
Rn

dx p(x)

∫
Rm

dz p(z|x) |oi(x) − zi|q , (4.51)

and its unconstrained minimum o∗(x; q) is found by annulling the first func-
tional derivative. The solutions for the different values of q satisfy the following
equations:

q−1∑
k=0

(−1)k

(
q − 1

k

)
o∗j(x; q)q−k−1

〈
(zj)

k
〉

x
= 0 if q even,

q−1∑
k=0

(−1)k

(
q − 1

k

)
o∗j(x; q)q−k−1

〈
sign(o∗j(x; q) − zj) (zj)

k
〉

x
= 0 if q odd.

(4.52)
The most interesting case is when q = 1 due to the fact that eq. (4.52) acquires

the simplest form 〈
sign(o∗j(x; 1) − zj)

〉
x

= 0 , (4.53)

which may be written as∫ o∗j (x;1)

−∞
dzj p(j)(zj |x) =

∫ ∞

o∗j (x;1)

dzj p(j)(zj|x) , j = 1, . . . , m, (4.54)

where p(j)(zj, x) is the j-th marginal distribution of p(z, x). Therefore, the min-
imization of E1[o] has as solution the function that assigns, for each input x, the
median of its corresponding outputs in the training set.

4.2 Analytical interpretation of the net output 99

-1.0 -0.5 0.0 0.5 1.0
Input

0.0

0.2

0.4

0.6

0.8

1.0

O
ut

pu
t

Predicted
NN sigmoidal
NN sinusoidal

Figure 4.10: Predicted and neural network outputs. Two different
nets have been tested, one with ordinary sigmoidal activation func-
tions and the other with sinusoidal ones.

100 Supervised learning with continuous activation functions

4.3 Applications

4.3.1 Reconstruction of images from noisy data

A typical problem which appears when one wants to make use of images for scien-
tific purposes is the existence of different kinds of noise which reduce their quality.
For instance, astronomical photographs from the Earth are usually contaminated
by the atmosphere, while the Hubble space telescope has suffered from a disap-
pointing spherical aberration which has severely damaged the results obtained
during a large period of time. The same happens with all sorts of images, since
‘perfect’ cameras do not exist.

Taking for granted the presence of noise, several techniques have been pro-
posed for the reconstruction of the original images from the noisy ones. In particu-
lar, Bayesian, maximum entropy and maximum likelihood estimators are among
the most successful methods (see e.g. [56] for a particular iterative algorithm
called FMAPE). Most of them share the characteristic of being very time con-
suming, by involving several Fast Fourier Transforms over the whole image at
each iteration. In this subsection we are going to show how neural networks can
be easily applied for image reconstruction, giving rise to a method which, once
the learning has been done, it is almost instantaneous.

Let us consider the 500×500 aerial image of Fig. 4.11, having 256 grey levels.
The noise has made it look blurred, avoiding the possibility of distinguishing
the details. Fig. 4.12 shows the same image but reconstructed with the aid of
the FMAPE algorithm. Now the whole image looks sharper, and some details
previously hidden become visible. Using the standard online back-propagation
method we have trained a multilayer neural network, with architecture 49:10:3:1,
in the following way: the input patterns were subarrays (or cells) of 7 × 7 pixels
of the noisy image of Fig. 4.11, chosen randomly, whose corresponding desired
outputs were the central pixel of each subarray, but read in the reconstructed
image of Fig. 4.12. Sigmoidal activation functions were used, and the pixels were
linearly scaled between 0 and 1. Thus, it may be stated that we have ‘trained
the net to eliminate the noise’.

Fig. 4.13 shows the result of applying the learnt network to the noisy image
of Fig. 4.11. It looks like very much to Fig. 4.12, which has been used as the
prototype of noiseless image. However, the key of this method consists in the
realization that we can apply this network to any other image, without having to
perform a new learning process. For instance, the reconstruction of the image of
Fig. 4.14 with the previous net is given in Fig. 4.16, which compares favourably
with the FMAPE solution shown in Fig. 4.15. Therefore, a single standard image
reconstruction plus a single back-propagation learning generate a multilayer neu-
ral network capable of reconstructing a large number of images. Since the learnt
network has been trained to eliminate the noise of a particular image, good results
are expected if the new images presented to the net have similar characteristics

4.3 Applications 101

to it and, in particular, if the structure of the noise is not too different.
Several improvements could be introduced to our method. For instance, if we

have a family of images, all taken with the same camera and in similar circum-
stances, the training could be done not with a single and whole image but with
a selection of the most significative parts of several images. Another possiblity
is the pre-selection of the training patterns within a single image so as to con-
centrate the learning on the structures we are more interested in. This happens,
for instance, when the image to be reconstructed is too big that the standard
methods cannot process the whole image, so they are applied only to smaller
subimages. Finally, in the case of color images the procedure would be the same,
but reconstructing separately each of the three color channels.

4.3.2 Image compression

The increasing amount of information which has to be stored by informatic means
(e.g. in data bases) and the need of faster data transmissions has risen the interest
towards data compression. Among the different existing methods it is possible
to distinguish two big classes: those which are completely reversible, and those
which may result in a certain information loss. Usually, the modification or loss of
a single byte is unacceptable. However, there are situations in which a certain loss
of ‘quality’ of the item to be stored is greatly compensated by the achievement
of a large enough compression rate. This is the case, for instance, of digitalized
images, since each one spends a lot of disk space (a typical size is 1Mb), and the
reversible compression methods cannot decrease their size in, roughly speaking,
more than a half.

Self-supervised back-propagation

Suppose that we want to compress a n-dimensional pattern distribution. We
start by choosing a multilayer neural network whose input and output layers
have n units, and with a hidden layer of m units, with m < n, thus known as
a bottle-neck layer. Using a self-supervised back-propagation [70], which consists
in a standard back-propagation with a training set formed by pairs for which
the desired output members are chosen to be equal to the corresponding input
patterns, two functions f1 and f2 are found:

Input ∈ R
n f1−→ Compressed ∈ R

m f2−→ Output ∈ R
n .

The first function, f1, transforms the n-dimensional input data into compressed
patterns, the neck units activation, with a lower dimension (m < n). Thus, f1

may be considered a projector of the input space into a smaller intermediate
subspace. The second function, f2, transforms the compressed data into the
output data, which has the same dimension as the input (n). Therefore, f2 may

102 Supervised learning with continuous activation functions

Figure 4.11: A noisy image.

4.3 Applications 103

Figure 4.12: Reconstruction of the image of Fig. 4.11 using the
FMAPE algorithm.

104 Supervised learning with continuous activation functions

Figure 4.13: Reconstruction of the image of Fig. 4.11 using a neural
network trained with the reconstructed image of Fig. 4.12.

4.3 Applications 105

Figure 4.14: Another noisy image.

106 Supervised learning with continuous activation functions

Figure 4.15: Reconstruction of the image of Fig. 4.14 using the
FMAPE algorithm.

4.3 Applications 107

Figure 4.16: Reconstruction of the image of Fig. 4.14 using a neural
network trained with the reconstructed image of Fig. 4.12.

108 Supervised learning with continuous activation functions

be viewed as an embedding operator of the previous subspace into the initial
input space. Since self-supervised back-propagation requires these functions to
minimize the euclidean distance between each input point and its output, what
we are doing is to approximate the identity function by the composite map f2◦f1,
where f1 makes the compression and f2 the decompression. The quality of the
whole process depends basically on the freedom given to these functions during
the training of the network, the ability to find a good minimum of the error
function, and the difference of dimensions between the input distribution and the
bottle-neck layer.

In the simplest case, i.e. with just a hidden layer and linear activation func-
tions, it is possible to show that self-supervised back-propagation is equivalent to
principal component analysis [70]. This means that the solution found is the best
possible one, if the search is restricted to linear compressions and decompressions.
One step forward consists in the use of sigmoidal activation functions, thus in-
troducing non-linearities [71]. However, the best way of improving the results is
through the addition of new hidden layers before and after the bottle-neck layer,
thus giving more freedom to the functions f1 and f2 [57].

The compression method

The application of self-supervised back-propagation for image compression could
be done, for instance, in the following way (we will suppose, for simplicity, that
the image is 1024 × 1024 with 256 grey levels):

1. A 16:25:12:2:12:25:16 multilayer neural network is initialized. In this case,
the bottle-neck layer is the fourth one.

2. A cell of 4×4 pixels is chosen at random on the image, then being introduced
to the net as an input pattern.

3. Next, the error between the output and the input patterns is back-propagated
through the net.

4. The last two steps are repeated until enough iterations have been performed.

5. The f1 is read as the half of the network from the input layer to the two neck
units, and the f2 as the other half from the bottle-neck layer to the output
units. Thus, the compression transforms a 16-dimensional distribution into
a simpler 2-dimensional one.

6. The original image is divided in its 65 536 cells of 4×4 pixels each, and f1 is
applied to all these subarrays. The two outputs per cell (the neck states) are
stored, constituting the compressed image. Thus, 16 pixels will have been
replaced by two numbers, which if they are stored with a precision of a byte
each, the minimum compression rate achieved is of 8 (a further reversible

4.3 Applications 109

compression could be applied to this compressed image, increasing in some
amount the final compression rate).

7. Once the image has been compressed, the f1 is discarded or used for the
compression of other similar images, likewise what was done for the recon-
struction of images in Subsect. 4.3.1. Of course, the decompression function
f2 has to be stored together with the compressed image.

Similar improvements to those mentioned in Subsect. 4.3.1 could be proposed,
such as the training using more than one images, or the preprocessing of the
patterns to get rid of the dependence on the contrast and brightness of the image.
Another possibility is the substitution of the f2 function by a new decompressing
function which would take into account the neighbouring cells (in its compressed
format). That is, a new 10:12:25:16 network could be trained to decompress the
image, using as input the neck-states of a cell plus those of their four neighbours,
and as outputs the pixel values of the central cell itself.

Maximum information preservation and examples

In Fig. 4.17 we have plotted the 2-dimensional compressed distribution which cor-
responds to a 16-dimensional data distribution (obtained from four radiographies
of the sort described above) after a large enough number of training steps. It is
clear that this result is not optimal since most of the space available is free, and
the distribution is practically 1-dimensional. The reason why this distribution
acquires this funny shape lies in the saturation of the output sigmoids of f1, i.e.
the signal which arrives at the neck units is far beyond the ‘linear’ regime of the
sigmoids. Consequently, the loss of information is greater than desirable.

To accomplish a maximum information preservation, the compressed distri-
bution should be uniform in the unit [0, 1]2 square. Our first proposal is the
introduction of a repulsive term between pairs of compressed patterns, together
with periodic boundary conditions. More precisely, calling ξ(neck)1 and ξ(neck)2 the
states of the m-dimensional bottle-neck layer of two different cells, an external
error of the form

E(neck) = −λ

2

m∑
k=1

min
{∣∣∣ξ(neck)1

k − ξ
(neck)2
k

∣∣∣a ,
(
1 −

∣∣∣ξ(neck)1
k − ξ

(neck)2
k

∣∣∣)a}
(4.55)

is added to the usual squared error function, being back-propagated during the
training process (the only difference to standard back-propagation is that the

Δ
(neck)μ
k variables have an extra contribution). Since the state of the neck units

only depends on f1, this modification does not affect the decompression function
f2. The new λ parameter takes into account the relative importance of the
repulsive term in front of the quadratic error. In computer simulations, we have

110 Supervised learning with continuous activation functions

Figure 4.17: Compressed images distribution obtained with the self-
supervised back-propagation.

4.3 Applications 111

found that good results are obtained if the λ is chosen such that both errors are
of the same order of magnitude, and with a = 1.

Fig. 4.18 shows the compressed distribution of the same data that in Fig. 4.17,
but with our first modified version of the learning. Although Fig. 4.18 is not a
true uniform distribution, at least its appearance is now really 2-dimensional. The
benefits are evident: not only the error between inputs and outputs is reduced to
less than a half (from E = 115.0 in Fig. 4.17 to E = 56.9 in Fig. 4.18) but also
the quality of the decompressed image is clearly superior.

A second method of eliminating the dangerous saturations is much more sim-
ple: the replacement of the sigmoidal activation functions by sinusoidal ones.
The sinus function cannot saturate because of its periodicity and the fact that it
has no ‘flat’ zones, whereas the sigmoids are only not constant in a small interval
around the origin. Fig. 4.19 shows the compressed distribution with a network
made of sinusoidal units, producing a final error of E = 36.2, even better than
that with the first method.

The lowering of the error means that our methods have been able to move the
learning away from a local minimum. This is a quite remarkable achievement,
since it opens the application of these methods to more general problems. In
particular, they may be applied to any layer of a network which suffers from
saturation problems.

In order to compare the performances of the different methods proposed in
this subsection we have applied them to the thorax in Fig. 4.20. For instance, Fig.
4.21 shows the result of compressing it with the repulsive term and decompressing
it taking into account the neighbours of the cells. Since the differences are hard
to see, it is better to compute them (between each decompressed image and the
original one) and show them directly. Thus, Fig. 4.22 corresponds to a standard
self-supervised learning, Fig. 4.23 to a learning using the neighbours, Fig. 4.24
to a learning without neighbours but with the repulsive term, and Fig. 4.25 to a
learning using both the neighbours and the repulsive terms. They make it clear
that both modifications (neighbours and repulsive term) significantly improve the
quality of the compressions. The comparison between the success of the repulsive
term and of the sinusoidal activation functions is given in Figs. 4.26 and 4.27, the
second one seeming to produce better results. Finally, the result obtained by the
standard image compression method known as JPEG is given in Fig. 4.28. The
compression rates in all these cases have been about 13.

4.3.3 Time series prediction

The proliferation of mathematical models for the description of our world reveals
their success in the prediction of the behaviour of a huge variety of systems.
However, there exist situations in which no valid model can be found, or in which
they cannot give quantitative answers. For instance, the evolution of the stock
exchange is basically unpredictable, since the number of influencing variables is

112 Supervised learning with continuous activation functions

Figure 4.18: Compressed images distribution obtained with our self-
supervised back-propagation with a repulsive term.

4.3 Applications 113

Figure 4.19: Compressed images distribution obtained with our self-
supervised back-propagation with sinusoidal units.

114 Supervised learning with continuous activation functions

Figure 4.20: Thorax original.

4.3 Applications 115

Figure 4.21: Thorax compressed with the repulsive term and de-
compressed using the neighbours.

116 Supervised learning with continuous activation functions

Figure 4.22: Difference between the original of the thorax and the
compressed and decompressed with standard self-supervised back-
propagation.

4.3 Applications 117

Figure 4.23: Difference between the original of the thorax and the
decompressed making use of the neighbours.

118 Supervised learning with continuous activation functions

Figure 4.24: Difference between the original of the thorax and the
compressed using the repulsive term.

4.3 Applications 119

Figure 4.25: Difference between the original of the thorax and the
learnt using the repulsive term and the neighbours.

120 Supervised learning with continuous activation functions

Figure 4.26: Difference between the original of the thorax and the
learnt using four different images, the repulsive term and the neigh-
bours.

4.3 Applications 121

Figure 4.27: Difference between the original of the thorax and the
learnt using four different images and sinusoidal activation functions.

122 Supervised learning with continuous activation functions

Figure 4.28: Difference between the original of the thorax and the
compressed and decompressed with the JPEG algorithm.

4.3 Applications 123

too large and some of them are not numerical. A possible approach to these
problems consists in the recording of some of the most relevant variables during
a period of time large enough, and then to look for some regularities within these
experimental data. Usually, the variable to be predicted is supposed to have a
certain functional dependence on the last values of the series, and afterwards the
function which best fits the data is calculated.

The autoregressive integrated moving average (ARIMA) models are among
the most commonly used methods for time series prediction. They suppose that
the dependence between a number of consecutive members of the series is linear,
taking also into account that a random noise acts at each time step. The ad-
vantage of neural networks in front of these models is its non-linearity. In fact,
in [79] Weigend, Rumelhart and Huberman show that their tapped-delay neural
networks with weight-elimination are even better than other non-linear methods
when applied to the bench mark sunspots series.

Although tapped-delay neural nets have proved to work well, it seems that
recurrent networks should be more adequate than feed-forward ones to deal with
time series. We have tested them using the same scheme that in [79], i.e. we have
trained feed-forward and recurrent networks with the yearly sunspots data from
1700 to 1920, and the data from 1921 to 1955 has been used for the evaluation
of the predictions.

In Fig. 4.29 we show a comparison between the predictions of feed-forward nets
obtained with the Weigend, Rumelhart and Huberman architecture 12:8:1 (solid
lines), and two different sorts of trainings with a recurrent architecture 1:3:4d:3:1
(‘4d’ means a four units layer with additional one time delayed weights between
all of them), using the back-propagation through time of Subsect. 4.1.3. In the
case termed as ‘next’ the error function has contributions from all the times steps,
since at each time step the desired output is the sunspots number which follows
that of the input (dashed lines), whereas in the ‘last’ case the desired output is
shown only after the previous 12 sunspots number have been introduced to the
net (dotted lines). In the horizontal axis we have put the number of steps-ahead
of the prediction, and in the vertical the average relative variance. Each line is
the result with lowest error among five different repetitions of the training, once
the learning parameters have been properly adjusted. The plot shows that our
recurrent nets perform better either at short and long-term predictions, and that
the ‘next’ method is preferable for one-step-ahead predictions. The same applies
to Fig. 4.30, obtained with the architecture 1:3d:4:3d:1, which has two recurrent
layers. Finally, a typical example of the run of a recurrent solution over the whole
sunspots series is given in Fig. 4.31.

It should be emphasized that recurrent nets do not learn when sigmoidal
activation functions are used. Thus, taking advantage of the results of Sopena et
al (see e.g. [76]), we have substituted them by linear ones in the recurrent units,
and by sinusoidal ones in the rest of the neurons.

124 Supervised learning with continuous activation functions

2 6 10 14 18 22
Steps-ahead iterations

0.0

0.2

0.4

0.6

A
ve

ra
ge

 r
el

at
iv

e
va

ria
nc

e

12:8:1
1:3:4d:3:1 ‘next’
1:3:4d:3:1 ‘last’

Figure 4.29: Average relative variance of the predictions of the
sunspots series at different numbers of step-ahead iterations.

4.3 Applications 125

2 6 10 14 18 22
Steps-ahead iterations

0.0

0.2

0.4

0.6

A
ve

ra
ge

 r
el

at
iv

e
va

ria
nc

e

12:8:1
1:3d:4:3d:1 ‘next’
1:3d:4:3d:1 ‘last’

Figure 4.30: Average relative variance at different numbers of step-
ahead iterations.

126 Supervised learning with continuous activation functions

1700 1750 1800 1850 1900 1950
Year

0

40

80

120

160

S
un

sp
ot

s
nu

m
be

r

Observed
Predicted

Figure 4.31: A single step-ahead prediction of the sunspots series.

Chapter 5

Conclusions

The main results that we have obtained and which are presented in this work are
the following:

• Three different multilayer solutions to the problem of associative memory
have been constructed, all of them sharing unlimited storage capacity, per-
fect recall and the removal of spurious minima and unstable states. Their
retrieval power is optimal in the sense that the network’s answer is selected
by the maximal overlap criterion. The original contribution of these solu-
tions has been the realization of such designs without introducing types of
units different from those currently used in most neural network architec-
tures.

• Neural network techniques for encoding-decoding processes have been de-
veloped. We have proved that it is not possible to encode arbitrary patterns
with the minimal architecture, thus other non-optimal set-ups have been
studied. In the simplest case of unary patterns, the accessibilities of the
outputs have been calculated in two different situations: with and without
thermal noise.

• A new perceptron learning rule which can be used with perceptrons made
of multi-state units has been derived, and its corresponding convergence
theorem has been proved. The definition of a perceptron of maximal stabil-
ity has been enlarged in order to include these new multi-state perceptrons,
and a proof of the existence and uniqueness of such optimal solutions has
been outlined.

• The importance of the first hidden layer when multilayer neural networks
with discrete activation functions are considered has been explained. As a
consequence, several enhancements to the tiling algorithm have been pro-
posed so as to increase the generalization ability of the trained nets.

127

128 Conclusions

• The unconstrained global minimum of the squared error criterion used in
the back-propagation algorithm has been found using functional deriva-
tives. The role played by the representation of the output patterns has
been studied, showing that only certain output representations allow the
achievement of the optimal Bayesian decision in classification tasks. More-
over, other error criterions have been analyzed.

• A method for the reconstruction of images from noisy data has been in-
troduced and applied to two aerial images, showing that the results have a
very competitive quality.

• Several methods based on self-supervised back-propagation have been de-
vised for the compression of images. The new strategies admit more general
applications, specifically to the diminishing of the loss of information pro-
duced by the saturation of the sigmoids.

• The performances of multi-layer feed-forward and recurrent networks have
been compared when applied to time series prediction, showing that the
second ones give, if proper activation functions are chosen, better predic-
tions.

Appendix A

Accessibilities in terms of
orthogonalities

Substituting (3.79) into (3.77) we obtain

f(h1 	= 0, . . . , hR 	= 0)

= 2N −
R∑

j=1

(
R
j

)
f(h1 = 0, . . . , hj = 0) + (−1)2

R∑
j=1

R−j∑
k=1

(
R
j

)(
R − j

k

)
×f(h1 = 0, . . . , hj+k = 0, hj+k+1 	= 0, . . . hR 	= 0) . (A.1)

By recurrent iterations of this sort of substitution in the last term each time, we
finally end up with

f(h1 	= 0, . . . , hR 	= 0)

= 2N +

R∑
l=1

(−1)l

R∑
k1=1

R−k1∑
k2=1

R−k1−k2∑
k3=1

· · ·
R−k1−···−kl−1∑

kl=1

(
R
k1

)(
R − k1

k2

)
×
(

R − k1 − k2

k3

)
· · ·

(
R − k1 − · · · − kl−1

kl

)
f(h1 = 0, . . . , hk1+···+kl

= 0)

≡ 2N +
R∑

l=1

(−1)lSl , (A.2)

where we have introduced Sl as a shorthand for each l-dependent term in the
multiple summatory. Defining the new indices⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

j1 ≡ k1 + · · · + kl

j2 ≡ k1 + · · · + kl−1

j3 ≡ k1 + · · · + kl−2
...

jl ≡ k1

129

130 Accessibilities in terms of orthogonalities

and observing that their respective ranges are⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

l ≤ j1 ≤ R
l − 1 ≤ j2 ≤ j1 − 1
l − 2 ≤ j3 ≤ j2 − 1

...
1 ≤ jl ≤ jl−1

we can put Sl as

Sl =

R∑
j1=l

j1−1∑
j2=l−1

j2−1∑
j3=l−2

· · ·
jl−1−1∑
j1=l

(
R
jl

)(
R − jl

jl−1 − jl

)(
R − jl−1

jl−2 − jl−1

)
· · ·

(
R − j2

j1 − j2

)
×f(h1 = 0, . . . , hj1 = 0) . (A.3)

Multiplying and dividing each term by j1! j2! · · · jl−1!, this becomes

Sl =
R∑

j1=l

(
R
j1

)
f(h1 = 0, . . . , hj1 = 0)

j1−1∑
j2=l−1

(
j1

j2

) j2−1∑
j3=l−2

(
j2

j3

)
· · ·

jl−1−1∑
jl=1

(
jl−1

jl

)
.

(A.4)

Next, successively recalling that
k∑

j=0

(
k
j

)
= 2k and exercising due care with the

missing terms in each of the sums occurring, we get

Sl =
R∑

j1=l

(
R
j1

)
f(h1 = 0, . . . , hj1 = 0)

j1−1∑
j2=l−1

(
j1

j2

)
· · ·

jl−2−1∑
jl−1=2

(
jl−2

jl−1

)
×(2jl−1 − 2)

=

R∑
j1=l

(
R
j1

)
f(h1 = 0, . . . , hj1 = 0)

j1−1∑
j2=l−1

(
j1

j2

)
· · ·

jl−3−1∑
jl−2=3

(
jl−3

jl−2

)
×(3jl−2 − 3 × 2jl−2 + 3)

=
R∑

j1=l

(
R
j1

)
f(h1 = 0, . . . , hj1 = 0)

j1−1∑
j2=l−1

(
j1

j2

)
· · ·

jl−4−1∑
jl−3=4

(
jl−4

jl−3

)
×(4jl−3 − 4 × 3jl−3 + 6 × 2jl−3 − 4)

...

=
R∑

j1=l

(
R
j1

)
f(h1 = 0, . . . , hj1 = 0)

[
(−1)l

l∑
k=1

(−1)k

(
l
k

)
kj1

]
. (A.5)

Now, let us focus on the quantity in square brackets. Using the notation

S(l, j) ≡
l∑

k=1

(−1)k

(
l
k

)
kj , (A.6)

Accessibilities in terms of orthogonalities 131

one can check the quite remarkable properties

S(l, j) = 0 , for 1 ≤ j < l , (A.7)
j∑

l=1

S(l, j) = (−1)j , for 1 ≤ j . (A.8)

whose proofs are given in Appendix B. Then, in terms of S(l, j),

R∑
l=1

(−1)lSl =
R∑

l=1

R∑
j=1

(
R
j

)
f(h1 = 0, . . . , hj = 0)S(l, j) , (A.9)

where, by the first property, the range of the sum over j has been extended from
j = 1 to R changing nothing. As a result we can write

R∑
l=1

(−1)lSl =
R∑

j=1

(
R
j

)
f(h1 = 0, . . . , hj = 0)

R∑
l=1

S(l, j) . (A.10)

Moreover, by virtue of the same property the sum over l can be restricted to the
range from 1 to j, because the remaining terms give zero contribution, and then,
applying the second one,

R∑
l=1

(−1)lSl =
R∑

j=1

(
R
j

)
f(h1 = 0, . . . , hj = 0)(−1)j . (A.11)

Consequently,

f(h1 	= 0, . . . , hR 	= 0) = 2N +

R∑
j=1

(−1)j

(
R
j

)
f(h1 = 0, . . . , hj = 0) , (A.12)

which is (3.80).

132 Accessibilities in terms of orthogonalities

Appendix B

Proof of two properties

B.1 Proof of S(l, j) = 0 , 1 ≤ j < l

We start by considering the function

y(l,0) ≡ (1 − x)l =
l∑

k=1

(−1)k

(
l
k

)
xk . (B.1)

Then, we make the definitions

y(l,1) ≡ d

dx
y(l,0)(x) =

l∑
k=1

(−1)k

(
l
k

)
kxk−1 , (B.2)

y(l,j+1) ≡ d

dx
(xy(l,j)(x)) j ≥ 1 , (B.3)

the second one being a recurrent, constructive rule. In terms of these functions,
the S(l, j) of (A.6) is given by

S(l, 0) = y(l,0)(1) − 1 , l ≥ 1 , (B.4)

S(l, j) = y(l,j)(1) , j ≥ 1 , l ≥ 1 . (B.5)

Since y(l,0) = 0, one realizes that

S(l, 0) = −1 , l ≥ 1 . (B.6)

The next step is to show that S(l, j) = 0 for 1 ≤ j < l. By taking sucessive
derivatives, it is not difficult to notice that y(l,k)(x) is a sum of terms proportional
to (1 − x)l−k, with 1 ≤ k < l. Therefore

y(l,j)(1) = 0 = S(l, j) , for 1 ≤ j < l . (B.7)

133

134 Proof of two properties

B.2 Proof of

j∑
l=1

S(l, j) = (−1)j , j ≥ 1

We want to know the value of

j∑
l=1

S(l, j) =

j∑
l=1

l∑
k=1

(−1)k

(
l
k

)
kj . (B.8)

Given that the binomial coefficients vanish for l < k, the second sum can be
extended to the range from k = 1 to j and interchanged with the first afterwards

j∑
l=1

S(l, j) =

j∑
k=1

(−1)kkj

j∑
l=1

(
l
k

)
. (B.9)

Further, by the same reasoning the l-summatory may now be restricted to k ≤ l.
Then, we obtain

j∑
l=k

(
l
k

)
=

(
j + 1
k + 1

)
. (B.10)

Replacing this into the previous expression and making the index renaming{
N ≡ j + 1
r ≡ k + 1,

(B.11)

we arrive at

j∑
l=1

S(l, j) =

N∑
r=2

(−1)r−1(r − 1)N−1

(
N
r

)

= −
N∑

r=0

(−1)r(r − 1)N−1

(
N
r

)
+ (−1)N−1

(
N
0

)
. (B.12)

The first term vanishes by a known property ([30] formula [0.154(6)]) and what
remains reads

j∑
l=1

S(l, j) = (−1)j . (B.13)

Bibliography

[1] D.J. Amit, H. Gutfreund and H. Sompolinsky, Statistical mechanics
of neural networks near saturation, Ann. Phys. (N.Y.) 173 (1987) 30.

[2] J.K. Anlauf and M. Biehl, The AdaTron: an adaptive perceptron algo-
rithm, Europhys. Lett. 10 (1989) 687.

[3] S. Bacci, G. Mato and N. Parga, Dynamics of a neural network with
hierarchically stored patterns, J. Phys. A: Math. Gen. 23 (1990) 1801.

[4] A.R. Barron, Universal approximation bounds for superpositions of a sig-
moidal function, IEEE Trans. Information Theory 39 (1993) 930.

[5] E.R. Caianiello, Outline of a theory of thought processes and thinking
machines, J. Theor. Biol. 1 (1961) 204.

[6] G.A. Carpenter and S. Grossberg, A massively parallel architecture
for a self-organizing neural pattern recognition machine, Computer vision,
graphics and image processing 37 (1987) 54.

[7] G.A. Carpenter and S. Grossberg, ART2: self-organization of stable
category recognition codes for analog input patterns, Appl. Optics 26 (1987)
4919.

[8] G. Cybenko, Approximations by superpositions of a sigmoidal function,
Math. Contr. Signals, Syst. 2 (1989) 303.

[9] B. Denby, Neural networks for high energy physicists, Fermilab preprint
Conf-90/94.

[10] B. Denby, M. Campbell, F. Bedeschi, N. Chris, C. Bowers and F.

Nesti, Neural networks for triggering, Fermilab preprint Conf-90/20.

[11] J.S. Denker, D. Schwartz, B. Wittner, S. Solla, R. Howard, L.

Jackel and J. Hopfield, Large automatic learning, rule extraction, and
generalization, Complex Systems 1 (1987) 877.

135

136 Bibliography

[12] B. Derrida, E. Gardner and A. Zippelius, An exactly solvable asym-
metric neural network model, Europhys. Lett. 4 (1987) 167.

[13] S. Diederich and M. Opper, Learning of correlated patterns in spin-glass
networks by local learning rules, Phys. Rev. Lett. 58 (1987) 949.

[14] E. Domany and H. Orland, A maximum overlap neural network for pat-
tern recognition, Phys. Lett. A 125 (1987) 32.

[15] R.O. Duda and P.E. Hart, Pattern classification and scene analysis, Wi-
ley, New York (1973).

[16] E. Elizalde and S. Gómez, Multistate perceptrons: learning rule and
perceptron of maximal stability, J. Phys. A: Math. Gen. 25 (1992) 5039.

[17] E. Elizalde, S. Gómez and A. Romeo, Encoding strategies in multilayer
neural networks, J. Phys. A: Math. Gen. 24 (1991) 5617.

[18] E. Elizalde, S. Gómez and A. Romeo, Methods for encoding in multi-
layer feed-forward neural networks. In Artificial Neural Networks, A. Prieto
(ed.), Lecture Notes in Computer Science 540, Springer-Verlag (1991) 136.

[19] E. Elizalde, S. Gómez and A. Romeo, Maximum overlap neural net-
works for associative memory, Phys. Lett. A 170 (1992) 95.

[20] S.E. Fahlman and Lebiere, The cascade-correlation learning architecture.
In Advances in neural information processing systems II, D.S. Touretzky
(ed.), Morgan Kaufmann, San Mateo (1990) 524.

[21] W. Feller, An introduction to probability theory and its applications, Wi-
ley, New York (1971).

[22] M. Frean, The upstart algorithm: a method for constructing and training
feedforward neural networks, Neural Computation 2 (1990) 198.

[23] S.I. Gallant, Perceptron-based learning algorithms, IEEE Trans. Neural
Networks 1 (1990) 179.

[24] E. Gardner, The space of interactions in neural network models, J. Phys.
A: Math. Gen. 21 (1988) 257.

[25] Ll. Garrido and V. Gaitan, Use of neural nets to measure the τ polar-
ization and its Bayesian interpretation, Int. J. of Neural Systems 2 (1991)
221.

[26] Ll. Garrido and S. Gómez, Analytical interpretation of feed-forward nets
outputs after training, preprint UB-ECM-PF 94/14, Barcelona (1994).

Bibliography 137

[27] B. Gnedenko, The theory of probability , Mir, Moscow (1978).

[28] M. Golea and M. Marchand, A growth algorithm for neural network
decision trees, Europhys. Lett. 12 (1990) 205.

[29] S. Gómez and Ll. Garrido, Interpretation of BP-trained net outputs.
In Proceedings of the 1994 International Conference on Artificial Neural
Networks, M. Marinaro and P.G. Morasso (eds.), Springer-Verlag, Vol. 1,
London (1994) 549.

[30] Gradshteyn and Ryzhik, Table of Integrals, Series and Products, Aca-
demic Press, New York (1980).

[31] D.O. Hebb, The organization of behaviour: a neurophysiological theory ,
Wiley, New York (1949).

[32] R. Hecht-Nielsen, Neurocomputing , Addison-Wesley, Reading MA
(1991).

[33] A.V.M. Herz, Z. Li and J.L. van Hemmen, Statistical mechanics of
temporal association in neural networks with transmission delays, Institue
for Advanced Study preprint IASSNS-HEP-90/67, Princeton (1990).

[34] J.A. Hertz, A. Krogh and R.G. Palmer, Introduction to the theory of
neural computation, Addison-Wesley, Redwood City, California (1991).

[35] J.J. Hopfield, Neural networks and physical systems with emergent col-
lective computational abilities, Proc. Nat. Acad. Sci. USA 79 (1982) 2554.

[36] J.J. Hopfield, Neurons with graded response have collective computational
properties like those of two-state neurons, Proc. Nat. Acad. Sci. USA 81
(1984) 3088.

[37] J.J. Hopfield, D.I. Feinstein and R.G. Palmer, ‘Unlearning’ has a
stabilizing effect in collective memories, Nature 304 (1983) 158.

[38] J.J. Hopfield and D.W. Tank, ‘Neural’ computation of decisions in op-
timization problems, Biol. Cybern. 52 (1985) 141.

[39] K. Hornik, M. Stinchcombe and H. White, Multi-layer feedforward
networks are universal approximators, Neural Networks 2 (1989) 359.

[40] D.H. Hubel and T.N. Wiesel, Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex, J. Physiol. 160 (1962) 106.

[41] I. Kanter and H. Sompolinsky, Associative recall of memories without
errors, Phys. Rev. A 35 (1987) 380.

138 Bibliography

[42] N.B. Karayiannis and A.N. Venetsanopoulos, Artificial neural
networks: learning algorithms, performance evaluation and applications,
Kluwer Academic Publishers, Boston (1993).

[43] T. Kohonen, Self-organized formation of topologically correct feature
maps, Biol. Cybern. 43 (1982) 59.

[44] W. Krauth and M. Mézard, Learning algorithms with optimal stability
in neural networks, J. Phys. A: Math. Gen. 20 (1987) L745.

[45] R.P. Lippmann, An introduction to computing with neural nets, IEEE
ASSP Mag., april (1987), 4.

[46] W.A. Little, The existence of persistent states in the brain, Math. Biosci.
19 (1974) 101.

[47] M. Marchand, M. Golea and P. Ruján, A convergence theorem for
sequential learning in two-layer perceptrons, Europhys. Lett. 11 (1990) 487.

[48] W.S. McCulloch and W. Pitts, A logical calculus of the ideas immanent
in nervous activity, Bull. Math. Biophys. 5 (1943) 115.

[49] S. Mertens, H.M. Köhler and S. Bos, Learning grey-toned patterns in
neural networks, J. Phys. A: Math. Gen. 24 (1991) 4941.

[50] M. Mézard and J.P. Nadal, Learning in feedforward layered networks:
the tiling algorithm, J. Phys. A: Math. Gen. 22 (1989) 2191.

[51] M. Minsky and S. Papert, Perceptrons , MIT Press, Cambridge MA, USA
(1969).

[52] B. Müller and J. Reinhardt, Neural networks: an introduction,
Springer-Verlag, Berlin (1991).

[53] T. Nakamura and H. Nishimori, Sequential retrieval of non-random pat-
terns in a neural network, J. Phys. A: Math. Gen. 23 (1990) 4627.

[54] J.P. Nadal, Study of a growth algorithm for a feedforward network, Int.
J. of Neural Systems 1 (1989) 55.

[55] J.P. Nadal and A. Rau, Storage capacity of a Potts-perceptron, J. Phys.
I France 1 (1991) 1109.

[56] J. Nuñez and J. Llacer, A general bayesian image reconstruction algo-
rithm with entropy prior. Preliminary application to HST data, Publ. As-
tronomical Soc. of the Pacific 105 (1993) 1192.

Bibliography 139

[57] E. Oja, Artificial neural networks. In Proceedings of the 1991 International
Conference on Artificial Neural Networks, T. Kohonen, K. Mäkisara, O.
Simula and J. Kangas (eds.), North-Holland, Amsterdam (1991) 737.

[58] A. Papoulis, Probability, random variables and stochastic processes,
McGraw-Hill, New York (1965).

[59] N. Parga and M.A. Virasoro, The ultrametric organization of memories
in a neural network, J. Phys. France 47 (1986) 1857.

[60] D.B. Parker, Learning logic: casting the cortex of the human brain in
silicon, MIT Tech. Rep. TR-47 (1985).

[61] L. Personnaz, I. Guyon and G. Dreyfus, Information storage and
retrieval in spin-glass-like neural networks, J. Phys. France 46 (1985) L359.

[62] H. Rieger, Properties of neural networks with multi-state neurons. In Sta-
tistical mechanics of neural networks, L. Garrido (ed.), Lecture notes in
Physics, Springer-Verlag 368 (1990).

[63] F. Rosenblatt, Principles of neurodynamics, Spartan, New York (1962).

[64] D.W. Ruck, S.K. Rogers, M. Kabrisky, M.E. Oxley and B.W.

Suter, The multilayer perceptron as an approximation to a Bayes optimal
discriminant function, IEEE Trans. Neural Networks 1 (1990) 296.

[65] P. Ruján, Learning in multilayer networks: a geometric computational ap-
proach. In Statistical mechanics of neural networks, L. Garrido (ed.), Lecture
notes in Physics, Springer-Verlag 368 (1990).

[66] P. Ruján, A fast method for calculating the perceptron with maximal sta-
bility, preprint (1991).

[67] D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learning represen-
tations by back-propagating errors, Nature 323 (1986) 533.

[68] D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learning internal
representations by error propagation. In Parallel Distributed Processing, D.E.
Rumelhart and J.L. McClelland (eds.), MIT Press, Vol. 1, Cambridge, MA
(1986) 318.

[69] D.E. Rumelhart and D. Zipser. Feature discovery by competitive learn-
ing. In Parallel Distributed Processing, D.E. Rumelhart and J.L. McClelland
(eds.), MIT Press, Vol. 1, Cambridge, MA (1986) 151.

[70] T.D. Sanger, Optimal unsupervised learning in a single-layer linear feed-
forward neural network, Neural Networks 2 (1989) 459.

140 Bibliography

[71] E. Saund, Dimensionality-reduction using connectionist network, IEEE
Trans. Pattern Analysis and Machine Intelligence 11 (1989) 304.

[72] W. Schempp, Radar ambiguity functions, the Heisenberg group, and holo-
morphic theta series, Proc. of the AMS 92 (1984) 345.

[73] W. Schempp, Neurocomputer architectures, Results in Math. 16 (1989)
103.

[74] W. Schiffmann, M. Joost and R. Werner, Comparison of optimized
backpropagation algorithms. In Prooceedings of the European Symposium on
Artificial Neural Networks, M. Verleysen (ed.), D Facto, Brussels (1993) 97.

[75] S.M. Silva and L.B. Almeida, Speeding up backpropagation. In Advanced
neural computers, R. Eckmiller (ed.), (1990) 151.

[76] J.M. Sopena and R. Alquezar, Improvement of learning in recurrent net-
works by substituting the sigmoid activation function. In Proceedings of the
1994 International Conference on Artificial Neural Networks, M. Marinaro
and P.G. Morasso (eds.), Springer-Verlag, Vol. 1, London (1994) 417.

[77] G. Stimpfl-Abele and L. Garrido, Fast track finding with neural nets,
Comp. Phys. Comm. 64 (1991) 46.

[78] E.A. Wan, Neural network classification: a Bayesian interpretation, IEEE
Trans. Neural Networks 1 (1990) 303.

[79] A.S. Weigend, D.E. Rumelhart and B.A. Huberman, Backpropaga-
tion, weight elimination and time series prediction. In Connectionist Models,
R. Touretzky, J. Elman, T.J. Sejnowsky and G. Hinton (eds.), Proceedings
of the 1990 Summer School, Morgan Kaufmann.

[80] P. Werbos, Beyond regression: new tools for prediction and analysis in the
behavioral sciences, Ph.D. thesis, Harvard University (1974).

