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Impact of origin-destination 
information in epidemic spreading
sergio Gómez  1, Alberto Fernández  2, sandro Meloni  3,4 & Alex Arenas  1

the networked structure of contacts shapes the spreading of epidemic processes. Recent advances 
on network theory have improved our understanding of the epidemic processes at large scale. the 
relevance of several considerations still needs to be evaluated in the study of epidemic spreading. 
One of them is that of accounting for the influence of origin and destination patterns in the flow of the 
carriers of an epidemic. Here we compute origin-destination patterns compatible with empirical data 
of coarse grained flows in the air transportation network. We study the incidence of epidemic processes 
in a metapopulation approach considering different alternatives to the flows prior knowledge. The 
data-driven scenario where the estimation of origin and destination flows is considered turns out to be 
relevant to assess the impact of the epidemics at a microscopic level (in our scenario, which populations 
are infected). However, this information is irrelevant to assess its macroscopic incidence (fraction of 
infected populations). these results are of interest to implement even better computational platforms 
to forecast epidemic incidence.

The worldwide simulation of diseases spreading is a challenge involving many scales of complexity1–4. These scales 
are progressively taken into account by introducing, every time, more realistic elements in the description of the 
whole scenario. Relatively recent advances on this specific goal came from the consideration of the specific topol-
ogy of mobility networks that represent main carriers of epidemics at the global scale4–6. The worldwide airports 
network has been identified as the fastest interaction mechanism between humans living very far apart. In this 
context, metapopulation models constitute a natural approach for the analysis of epidemic spreading processes, 
since they combine in a single framework the local contagions in the so-called reaction phase, and the mobility of 
the individuals in the diffusion stage7–12.

Although metapopulation models have shown its predictive power in recent outbreaks, it has been recognized 
the crucial role played by the mobility patterns13–15. A common hypothesis in metapopulation simulations is that 
the diffusion through the links of the network is markovian, i.e., each individual willing to move to a neighbor-
ing node will choose the destination according to certain fixed probabilities assigned to each of the links9,11,12,16. 
Usually this method is complemented with memory of the origin node, thus making the individuals come back 
to their respective residences in a home-to-work travel pattern15,17. Another possible extension is the selection of 
a random destination instead of a neighbor, e.g. with probability proportional to the strength of the node, thus 
allowing for longer trips18. This hypothesis is a shortcut on the difficult problem of assessing how many people 
travel from a certain origin to a certain destination. Although this information is probably registered by every 
air carrier, its recollection at world wide scale is not easy. Data scientists usually have at disposal the amounts of 
(usually annual) accumulated number of passengers between two connected places, that is the weight of the link, 
but no information about initial origin or final destination is provided.

In this work we present a methodology to assess origin-destination flows in the air transportation networks, 
and after we analyze the results obtained with these more realistic flows of passengers on the incidence of epi-
demic spreading considering metapopulation models7,10. Our results reveal that the consideration of real flow 
patterns affect the microscopic description of the incidence at the level of cities, while the statistical aggregated 
incidence is similar to those predicted without considering origin-destination flows.

Essentially, we could summarize that the hard problem of estimating origin-destination patterns can be 
avoided if the interest is focused on macroscopic details of the epidemic spreading, however it should be consid-
ered when microscopic details about the epidemic spreading are needed. In the following we present the method 
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used to estimate the data-driven origin-destination patterns, the metapopulation model, and the comparison of 
the different routing flow strategies compared to the data-driven scenario. To conclude we present a discussion 
about the convenience of using origin-destination data-driven flows in the assessment of epidemic spreading.

Results
estimation of an origin-Destination matrix. For most kind of analyses in transportation networks, 
there is a need for origin-destination (O-D) matrices, which specify the travel demands between the origin and 
destination nodes in the network. Here we wonder up to which point the estimation of O-D matrices are essential 
factors to determine the outcome of a certain epidemic process that uses the transportation network as the sub-
strate for the carriers. Let us first determine what is the mathematical problem we are facing.

Given a transport network with n nodes and m links, an Origin-Destination (O-D) matrix T is a 
two-dimensional trip table whose entries tij represent the number of trips going from origin node i to destination 
node j. Let va be the observed trip volume on link a of the network, and let pij

a be the proportion of trips going 
from origin node i to destination node j that use link a. For the latter proportions we assume that travelers follow 
shortest-path routes and, in case of several alternatives, any of them is selected at random with equal probability.

The base constraints to be satisfied for an O-D matrix estimated from link counts state that the sum of all the 
trips crossing a given link must be equal to the link counts observed on that link,
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and we have to add the lower bounds for the number of trips,
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The system of equations formed by Eqs (1) and (2) has always more unknowns to estimate (n × n O-D cells) 
than base constraints (m links), the only exception being the complete networks (cliques); in fact, most real net-
works are sparse, thus the number of unknows is much larger than the number of equations, n m2 . Given the 
possibility of existence of multiple solutions, additional considerations to select a preferred O-D matrix are 
needed. Several approaches have been traditionally used to solve this problem, from which we have selected a 
maximum entropy model that estimates the most likely trip matrix consistent with observed link counts. The 
application of the entropy maximization principles to the O-D estimation problem was initially proposed by 
Willumsen19 and Van Zuylen20. In the maximum entropy approach, the most likely trip matrix is the one having 
the greatest number of microstates associated with it, what is equivalent to estimate an O-D matrix that adds as 
little information as possible to the knowledge contained in the link counts.

Let t be the total number of O-D trips traversing a network. Then the number of ways, defined as entropy, in 
which t trips can be divided into groups of tij trips can be computed as
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To be able to compute the derivatives needed to optimize the objective function (3), we take first the natu-
ral logarithm of the function and make use of Stirling’s approximation of the factorials, ln(t!) ≈ t ln(t) − t, thus 
obtaining a more computationally convenient objective function:
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Assuming that t is constant and changing the sign of the function, the first two terms can be dropped and the 
goal becomes to minimize the function
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subject to the constraints in Eqs (1) and (2).

epidemic spreading model. The epidemic spreading model we use is based on the well-known 
reaction-diffusion11 and metapopulation12 models, but incorporating a routing scheme for the moving individu-
als similar to those in18,21. The main ingredients are the sites or nodes (e.g. cities or airports), where the individu-
als of the global population are located, and the links between these nodes, which represent the communication 
channels (e.g. roads or airways). Each link has an associated weight which accounts for the traffic, the number 
of individuals moving between nodes in a certain amount of time. The contagion model we have chosen is the 
standard susceptible-infected-removed (SIR) one, a good proxy for diseases in which the individuals acquire 
immunization after being infected. In this model individuals may be in three different states: infected (I), those 
who have got the disease; susceptible (S), healthy but which may become ill by contacts with infected individuals; 
and removed (R), once they have recovered from the disease and become immune to it. The dynamics of the 
epidemic spreading consists of two alternating phases, a reaction in which the individuals in the nodes’ subpopu-
lations merge, and a diffusion of some individuals through the communication channels. In the reaction step the 
subpopulation is considered as well-mixed, i.e., every individual is in contact with the rest in the same node, and 
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here is where the contagions and recoveries take place. There are no contagions between individuals at different 
nodes, but the disease spreads due to the mobility in the diffusion step.

In the standard metapopulation model12 the diffusion is just a Markovian process, where individuals move 
to neighboring nodes with a probability proportional to the weight of the link; we call this a Random Diffusion 
(RD) process. A more realistic mobility is obtained if every individual has a “home” node, it travels to a selected 
destination, and finally comes back home after spending some time in the destination. It would be possible to 
choose uniformly Random Destinations (RU), however it is more plausible a selection proportional to the strength 
of each possible target subpopulation as in21, what we call here the Strength Proportional (SP) scheme. Finally, the 
information in the O-D matrix defines a new diffusion model (OD), since it directly tells the number of trips from 
any origin to any destination.

In all the diffusion models where the destinations are not bound to be neighbors of the origin, it is necessary 
to establish the paths followed by the travelers, i.e., a routing algorithm. We have decided just to select the shortest 
path (in number of hops) and, if it is not unique, one of them is chosen at random with equal probability. It is 
possible to improve this routing algorithm taking into account geographic and economic constraints that restrict 
the feasible available paths, e.g. travel times and costs; however, this would only affect the availability and priority 
of paths, not the results and conclusions from this work.

Microscopic analysis. First, we analyze the results obtained from our metapopulation spreading models at 
the microscopic level of nodes and links. We make use of the World Air Transportation Network (ATN)22, consid-
ered as a directed and weighted network. For the calculation of its O-D matrix, we have only considered trips of 
length lower or equal to three, both for computational reasons and also because longer trips are rarely observed in 
real life (see Methods). All the presented results come from averages over 150 randomly chosen initial conditions 
in the Monte Carlo simulations. In all the cases, the mobility parameters have been chosen to ensure that at every 
time step the average number of circulating individuals is the same for all the mobility strategies. See Methods for 
a full description of the implementation details of our metapopulation epidemic spreading dynamics.

In Fig. 1 we plot the outgoing fluxes obtained with Random Diffusion and Strength Proportional schemes, 
comparing them to the ones obtained with O-D flows. At the level of nodes, both the Random Diffusion and the 
Strength Proportional strategies show fluxes clearly related to the O-D strategy ones. However, when we take 
into consideration the link fluxes, we can see that the behavior of the two strategies is different. In the case of the 

Figure 1. Node and link output fluxes. Histogram of the registered outgoing fluxes at node level (left) and at 
link level (right), comparing the two strategies Random Diffusion (top) and Strength Proportional (bottom) 
with respect to the O-D strategy. The color accounts for the number of nodes (left) or links (right) in each bin 
of the histogram. The values of the Pearson correlation are 0.998 (RD) and 0.952 (SP) for node flux, and 0.979 
(RD) and 0.304 (SP) for link flux. The network is the World ATN, and the measured normalized fluxes do not 
depend on the details of the epidemic process.
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Random Diffusion process, link fluxes also show a linear relation with the O-D fluxes. On the contrary, the link 
fluxes obtained with the Strength Proportional strategy are not related at all with the O-D ones. The different 
behavior between the two strategies is explained because both the O-D and the Random Diffusion strategies 
satisfy constraints (1): the O-D matrix satisfies them explicitly as a result of a constrained optimization problem, 
and the Random Diffusion strategy satisfies them implicitly by the Markovian diffusion process that takes into 
account the weights of the links. On the contrary, the routing strategy used in the Strength Proportional approach 
sends travelers through shortest paths without taking into account the weights of the links. Therefore, according 
to the observed fluxes, we can conclude that travelers pass through the same airports independently of the diffu-
sion strategy used, albeit the routes followed are completely different.

Although the Random Diffusion and the Strength Proportional strategies show different routing dynamics, it 
should be analyzed whether these differences are relevant for the epidemic spreading process. With this purpose, 
we compute the fraction of recovered individuals R at each node (remember that a node is a population) for both 
diffusion strategies, and we compare them to the ones obtained with the O-D flows. We can see in Fig. 2 the dis-
tribution of R for the three mobility schemes. We observe that, the larger the population size in the node (which 

Figure 2. Incidence of the epidemics on the nodes. Left: distribution of the incidence of the epidemics R across 
the nodes, as a function of the out strength of the node, for the different routing schemes, O-D strategy (top), 
Random Diffusion (middle), and Strength Proportional (bottom). The value of the incidence for each node has 
been obtained by averaging over 150 Monte Carlo simulations. Right: the corresponding estimated errors on the 
previous mean values. The color encodes the number of nodes in each bin (left) and the average error in the 
epidemic incidence for the nodes in each bin (right). The network is the World ATN, and the parameters of 
epidemic spreading process are μ = 0.04, R0 = 2.0, and λ = ⋅ −5 10 6.
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is proportional to its strength, see Methods), the larger the incidence of the epidemics, with a non-linear depend-
ency and an important dispersion between nodes of similar strength. The three schemes show a similar distribu-
tion profile, thus we need a more direct comparison of incidences node to node. Since the estimated errors on the 
mean incidence values at each node are mostly below 0.03 (see Fig. 2), differences in the incidence about or larger 
than 0.1 (in absolute value) can be considered as statistically significant. In the left plots of Fig. 3 we can observe 
an increasing difference as a function of the out strength of the node up to values about 104, and then the differ-
ences start to decrease. The right plots of Fig. 3 show the fraction of recovered individuals R from the Random 
Diffusion and the Strength Proportional strategies comparing them with respect to the ones obtained with the 
O-D flows. Again, we do not observe any difference between the patterns followed by the Random Diffusion and 
the Strength Proportional approaches, but it has become evident that the routing strategies greatly affect the epi-
demic spreading at the level of nodes. Therefore, the availability of O-D information is completely necessary to be 
able to have good predictions of the microscopic incidence of the epidemics.

Macroscopic analysis. According to the results presented in Figs 1 and 3, the different routes that travelers 
follow in the Random Diffusion and the Strength Proportional strategies show the same patterns of discrepancies 
when we compare them to the O-D flows in epidemic spreading terms at the microscopic level. Next, we analyze 
whether these microscopic differences have any significant effect at the macroscopic level.

In Fig. 4 we show both the fraction of recovered individuals R and the fraction of subpopulations that expe-
rienced and outbreak D/V as a function of the traffic generation rate λ. The results show that, especially for the 
fraction of recovered individuals, the deviations observed between the O-D matrices and the Random Diffusion 
and Strength Proportional strategies are minimal at the macroscopic level. However, the Strength Proportional 
strategy seems to predict a slightly lower value of D/V than the other two strategies, with a deviation which 
increases for high values of the mobility.

Analyzing the effect of the reproductive number at the macroscopic level gives similar results. In Fig. 5 we 
show the fraction of recovered individuals R and the fraction of subpopulations that experienced and outbreak 
D/V as a function of the reproductive number R0. Taken together the results of Figs 4 and 5, they confirm that 
only minimal differences are present between the three diffusion strategies in terms of epidemic spreading at the 
macroscopic level. In the same figure we also show that this behavior observed for the Random Diffusion and the 
Strength Proportional strategies cannot be generalized to the Random Destination strategy, which does not take 

Figure 3. Comparison of the incidence of the epidemics on the nodes. Left: Differences in the fraction of 
recovered individuals per node, as a function of the out strength of the node, comparing the two strategies, 
Random Diffusion (top) and Strength Proportional (bottom), with respect to the O-D strategy. Right: 
Histogram of the fraction of recovered individuals R at → ∞t  comparing the two strategies, Random Diffusion 
(top) and Strength Proportional (bottom), with respect to the O-D strategy. The network is the World ATN, and 
the parameters of epidemic spreading process are μ = 0.04, R0 = 2.0, and λ = ⋅ −5 10 6.
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into account the weights of the links in the network. The Random Destination strategy shows a slight reduction in 
the fraction of recovered individuals, but an enormous overestimation of the fraction of infected subpopulations, 
thus discarding it as a feasible mobility method.

Discussion
We have analyzed the influence of the three different mobility models in a metapopulation model of epidemic 
spreading. Two of them, the Random Diffusion and Strength Proportional routing strategies, have been tra-
ditionally used in the simulation of epidemic spreading processes. Here, we have compared them against the 
more realistic O-D matrix scheme, which is able to capture not only the observed fluxes through the links of the 
network, but also the fraction of individuals moving between each origin-destination pair. We have shown how 
the origin-destination matrix can be calculated, and the differences between using these three different models.

Although the three methods show equivalent fluxes per node, the Strength Proportional clearly deviates at 
the level of fluxes per link, thus indicating the routes that travelers follow are completely different. These differ-
ences have an important impact on the epidemic spreading at the microscopic level of nodes, with significant 
departures in the incidence of the epidemics in the subpopulations at each node, and being especially impor-
tant for nodes with intermediate values of the output strength. The observed deviations affect both the Strength 
Proportional and Random Diffusion models when compared with the more reasonable O-D matrix scheme, and 
with a very similar deviation pattern.

When we consider the epidemic spreading at the macroscopic level of the whole World ATN network, we 
realize the differences almost vanish, thus making the Random Diffusion, the Strength Proportional and the O-D 
matrix approaches basically equivalent. This means it is safe to use any of the three mobility models if the interest 
just lays on the global incidence of the epidemics, but care must be taken when the details are needed at the level 
of nodes, where only origin-destination information is able to provide the desired quality of the predictions.

Methods
o-D matrix of air transportation network. The World Air Transportation Network (ATN) data set used 
in this work is composed of passenger flights operating between November 1, 2000 and October 31, 2001 as com-
piled by the OAG Worldwide (Downers Grove, IL) and analyzed previously in22. The network is formed by 3618 
different airports, that means the existence of a total of 13086306 possible O-D trips. The analysis of all the short-
est paths using the Floyd-Warshall algorithm23 shows that there are 27028 (0.21%) direct connections (shortest 
paths of length one), 440038 (3.36%) connections with one transfer (length two), and 2463230 (18.82%) with 
two transfers (length three). These are the only trips considered here, since longer air trips are rarely observed in 

Figure 4. Global incidence of the epidemics for varying mobility. Fraction of recovered individuals R (top) and 
fraction of subpopulations that experienced an outbreak D/V (bottom) as a function of the traffic generation 
rate λ. The network is the World ATN subnetwork, and the epidemic spreading process has a recovery rate 
μ = 0.04.
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real life. Additional cost factors cij (equal to 1, 2, or 3), accounting for the length of the route from origin node i 
to destination node j, have been added to the objective function E in Eq. (5) in order to avoid the dominance of 
longer trips:

∑∑= − .
= =

E c t t t( ln( ) )
(6)

c
i

n

j

n

ij ij ij ij
1 1

With this final formulation of the objective function Ec, the O-D matrix estimation problem becomes a sep-
arable convex optimization problem that we have solved using MOSEK24, a software especially designed for 
large-scale mathematical optimization problems.

epidemic spreading model implementation. The epidemic model is implemented as follows. Each sim-
ulation starts with a small fraction of infected individuals, I0. Namely, we randomly choose a small fraction of sites 
(less than 1%) and within these subpopulations only the 1% of the individuals is infected, ensuring that the con-
dition > μ

β
I0  is fulfilled, where β and μ are the infection and recovery rates, respectively, and = β

μ
R0  is the 

so-called reproductive number. In the simulations the diffusion and reaction dynamics have the same time scale 
so, at each time step, first a movement step is performed and then the SIR dynamics takes place.

In the diffusive phase, for each possible pair of origin-destination nodes (i, j), the number of individuals start-
ing a trip from node i towards node j is given by a binomial distribution with parameters the subpopulation size 
Ni(t) and the probability λ=

∑
pij

t

t
ij

k ik
, where 0 ≤ λ ≤ 1 is a mobility rate to distinguish between different traffic 

regimes, and tij is the (i, j)-th entry of the O-D matrix. To simulate the Strength Proportional and Random 
Destinations schemes, the O-D matrix is substituted respectively by a Strength-Destination matrix S whose ele-
ments are equal to the input strength of the destination node, = = ∑s w wij j

in
k kj

( ) , and by an uniform 
Random-Destination matrix U in which all the elements equal the unity, uij = 1. Once the number of traveling 
individuals and their respective destinations have been chosen, they start a shortest path trip to their destination, 
making one hop to a neighboring node at each time step. When the individuals arrive to their destinations, they 
come back to their home nodes, also following a shortest path, with one hop per time step. This travel pattern 
yields and almost stationary size of the subpopulations for all the mobility schemes, provided the mobility rate is 
not too large.

After the diffusive step, the reaction dynamics is evaluated. As a proxy of the initial population of each node 
Ni(0) we use node’s strength wi calculated in the original ATN data22, which amounts a total of . ⋅5 82 107 individ-

Figure 5. Global incidence of the epidemics for varying reproductive number. Fraction of recovered 
individuals R (top) and fraction of subpopulations that experienced an outbreak D/V (bottom) as a function of 
the reproductive number R0 for different routing strategies. The network is the World ATN, and the parameters 
of epidemic spreading process are μ = 0.04 and λ = ⋅ −5 10 6.
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uals in the network. The distribution of subpopulation sizes (i.e., strengths) approximately follows a power-law 
distribution, with sizes ranging between 10 and . ⋅3 05 106 individuals. When time goes on, Ni(t) changes accord-
ing to the chosen destination selection scheme and routing strategy. Within the nodes, one step of a SIR process 
takes place, supposing a well-mixed population. The state of every individual inside a node i is modified accord-
ing to the following probabilities: a susceptible individual becomes infected with probability 

= − − β→ ( )p 1 1S I
N

I
( )

i

i
, and an infected one recovers with probability μ=→p I R( ) . Specifically, the exact num-

ber of individuals that change their state is determined by binomial distributions with probabilities →p S I( ) and 
→p I R( ), and population sizes Si(t) and Ii(t) of susceptible and infected individuals, respectively. Note that in this 

scenario, R0 only participates in the internal nodes’ dynamics; individuals traveling through node i are involved 
in the epidemic dynamics and thus they can change their state while at node i. Finally, simulations end when the 
stationary state I(t) = 0 is reached.
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