
Explosive Synchronization Transitions in Scale-Free Networks
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Explosive collective phenomena have attracted much attention since the discovery of an explosive

percolation transition. In this Letter, we demonstrate how an explosive transition shows up in the

synchronization of scale-free networks by incorporating a microscopic correlation between the structural

and the dynamical properties of the system. The characteristics of the explosive transition are analytically

studied in a star graph reproducing the results obtained in synthetic networks. Our findings represent the

first abrupt synchronization transition in complex networks and provide a deeper understanding of the

microscopic roots of explosive critical phenomena.
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Synchronization is one of the central phenomena repre-
senting the emergence of collective behavior in natural and
synthetic complex systems [1–3]. Synchronization pro-
cesses describe the coherent dynamics of a large ensemble
of interconnected dynamical units, such as neurons, fire-
flies or cardiac pacemakers. The seminal works of Watts
and Strogatz [4,5] pointed out the importance of the struc-
ture of interactions between units in the emergence of
synchronization, which gave rise to the modern framework
of complex networks [6]. Since then, the phase transition
towards synchronization has been widely studied by con-
sidering nontrivial networked interaction patterns [7].
Recent results have shown that the topological features
of such networks strongly influence both the value of the
critical coupling, �c, for the onset of synchronization
[8–12] and the stability of the fully synchronized state
[13–16]. The case of scale-free (SF) networks has deserved
special attention as they are ubiquitously found to repre-
sent the backbone of many complex systems. However,
the topological properties of the underlying network
do not appear to affect the order of the synchronization
phase transition, whose second-order nature remains unal-
tered [8].

More recently, the study of explosive phase transitions in
complex networks has attracted a lot of attention since the
discovery of an abrupt percolation transition in random
[17] and SF networks [18,19]. However, several questions
about the microscopic mechanisms responsible of such an
explosive transition and their possible existence in other
contexts remain open. In this line, we conjecture that
dynamical abrupt changes occur when the local heteroge-
neous structure of networks and the dynamics on top of it,
are positively correlated. In this Letter, we prove our con-
jecture in the context of the synchronization of Kuramoto
oscillators. We show that explosive synchronization
emerges in SF networks when the natural frequencies of

the oscillators are positively correlated with their degrees.
Furthermore, we analytically study this first-order transi-
tion in a star graph and show that the combination of
heterogeneity and the above correlation is at the core of
the explosive transition.
Let us consider an unweighted and undirected network

of N coupled phase oscillators. The phase of each oscil-
lator, denoted by �iðtÞ (i ¼ 1; . . . ; N), evolves in time
according to the Kuramoto model [20]:

_�i¼!iþ�
XN
j¼1

Aij sinð�j��iÞ; with i¼1; . . . ;N; (1)

where !i stands for the natural frequency of oscillator i.
The connections among oscillators are encoded in the
adjacency matrix of the network, A, so that Aij ¼ 1

when oscillators i and j are connected while Aij ¼ 0

otherwise. Finally, the parameter � accounts for the
strength of the coupling among interconnected nodes.
The original Kuramoto model assumed that the oscilla-

tors were connected all-to-all, i.e. Aij ¼ 1 8i � j. In this

setting, a synchronized state, i.e., a state in which _�iðtÞ ¼
_�iðtÞ 8i, j and 8t, shows up when the strength of the
coupling � is larger than a critical value [20–22]. To
monitor the transition as � grows, one quantifies the degree
of synchronization among the N oscillators through [23]

rðtÞei�ðtÞ ¼ 1

N

XN
j¼1

ei�jðtÞ: (2)

The modulus of the above order parameter, rðtÞ 2 ½0; 1�,
measures the coherence of the collective motion, reaching
the value r ¼ 1 when the system is fully synchronized,
while r ¼ 0 for the incoherent solution. On the other hand,
the value of �ðtÞ accounts for the average phase of the
collective dynamics of the system. Typically, the average
(over long enough times) value of r as a function of �
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displays a second-order phase transition from r ¼ 0 to
r ¼ 1with a critical coupling �c ¼ 2=ð�gð! ¼ 0ÞÞ, where
gð!Þ is the distribution of the natural frequencies, f!ig, and
it is assumed to be unimodal and even [23].

Here we will focus on the influence of the dynamical
and topological characteristics at the local level in the
emergence of global synchronization. In particular, we
will identify the internal frequency of each node i directly
with its degree ki, so that !i ¼ ki in Eq. (1). Note that
this prescription sets that gð!Þ ¼ PðkÞ but not vice
versa [24]. To study the effects of the correlation between
dynamical and structural attributes, we simulate the
Kuramoto model on top of a family of networks generated
according to [25]. This model allows us to construct net-
works with the same average connectivity, hki, interpolat-
ing from Erdös-Rènyi (ER) graphs to Barabàsi-Albert
(BA) SF networks by tuning a single parameter � 2
½0; 1�. For � ¼ 1 one gets ER graphs with a Poissonian
degree distribution whereas for � ¼ 0 the resulting net-
works are SF with PðkÞ � k�3. Intermediate values of
� 2 ð0; 1Þ tune the heterogeneity of the network, which
increases when going from � ¼ 1 to � ¼ 0. In the four
panels of Fig. 1, we report the synchronization diagrams
of four network topologies constructed using this model.
The limiting cases of ER and BA networks correspond
to panels 1(a) and 1(d), respectively. The size of these
networks are is N ¼ 103 while hki ¼ 6.

For each panel in Fig. 1 we have computed two syn-
chronization diagrams, rð�Þ, labeled as forward and back-
ward continuations. The former diagram is computed by
increasing progressively the value of � and computing
the stationary value of the order parameter r for
�0, �0 þ ��; . . . ; �0 þ n��. Alternatively, the backward

continuation is performed by decreasing the values of �
from �0 þ n�� to �0. The panels 1(a)–1(c) show a typical
second-order transition with a perfect match between the
backward and forward synchronization diagrams.
The most striking result is however observed for the BA

network [panel 1(d)] in which a sharp, first-order synchro-
nization transition appears. In the case of the forward
continuation diagram the order parameter remains r ’ 0
until the onset of synchronization in which r jumps sud-
denly to r ’ 1 pointing out that almost all the network has
reached the synchronous motion. Moreover, the diagram
corresponding to the backward continuation also shows a
sharp transition from the fully synchronized state to the
incoherent one. The two sharp transitions takes place at
different values of r so that the whole synchronization
diagram displays a strong hysteresis.
To analyze deeply the change of the order of the syn-

chronization transition, we have computed the effective
frequency along the forward continuation (see Fig. 2) as

!eff
i ¼ 1

T

Z tþT

t

_�ið�Þd�; (3)

with T � 1. In addition, we have computed the evolution
of !eff

i within a degree class k, h!ik, by averaging over
the Nk ¼ NPðkÞ nodes that have identical degree k,
i.e., h!ik ¼

P
½ijki¼k�!eff

i =Nk. From the panels in Fig. 2

we observe that the individual frequencies and the different
curves h!ikð�Þ converge progressively to the average
frequency of the system � ¼ hki ¼ 6 until full synchroni-
zation is achieved. Panel 2(a) (ER graph) shows that
the convergence to � is first achieved by those nodes
with large degree while the small k classes achieve full
synchronization later on. As the heterogeneity of the net-
work increases [see � ¼ 0:6 and � ¼ 0:2 in panels 2(b)
and 2(c), respectively] the differences in the convergence
of the k classes decrease. Finally, for the BA network
[Fig. 2(d)], the nodes (and thus the different k classes)
retain their natural frequencies until they become locked,
which signals the abrupt synchronization observed in
Fig. 1(d). Thus, the first-order transition of the BA network
corresponds to a process in which no microscopic signals
of synchronization are observed until �c is reached.
To further explore the correspondence of the explosive

synchronization transition with the SF nature of the under-
lying graph, in Fig. 3(a) we show the synchronization
diagrams for different uncorrelated SF graphs with differ-
ent degree-distribution’ exponents. These graphs have
been constructed using the configurational model [26] by
imposing a degree distribution PðkÞ � k�� with � ¼ 2:4,
2.7, 3.0, and 3.3. The synchronization diagrams are
obtained by forward continuation (as described above)
starting at � ¼ 1 and performing adiabatic increments
of �� ¼ 0:02. Again, for each value of � the Kuramoto
dynamics is run until the value of r reaches its stationary
state. From the figure it is clear that a first-order
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FIG. 1 (color online). Synchronization diagrams rð�Þ for dif-
ferent networks constructed using the model in [25]. The �
values in each panel are (a) � ¼ 1 (ER), (b) � ¼ 0:6,
(c) � ¼ 0:2 and (d) � ¼ 0 (BA). The panels show both forward
and backward continuations in � using �� ¼ 0:02. The size of
the networks is N ¼ 103 and hki ¼ 6.
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synchronization transition appears for all the reported
values of � pointing out the ubiquity of the explosive
synchronization transition in SF networks. Moreover, the
onset of synchronization, �c, is delayed as � decreases.

Up to now, we have shown that the explosive synchro-
nization transition appears in SF when the natural frequen-
cies of the nodes are correlated with their degrees. To show
that this correlation is the responsible of such explosive
transition, in Fig. 3(b) we show the synchronization dia-
gram for the same SF networks used in Fig. 3(a), but when
the correlation between dynamics and structure is broken
in such a way that the same distribution for the internal
frequencies, gð!Þ ¼ !�� is kept. To this end, we made a
random assignment of frequencies to nodes according to
gð!Þ. The plots reveal that now all the transitions turn to be
of second order, thus recovering the usual picture of syn-
chronization phenomena in complex networks. Therefore,
the first-order transition arises due to the positive correla-
tion between natural frequencies and the degrees of the
nodes in SF networks [27].

To get analytical insights, we reduce the problem studied
to the analysis of the star configuration, a special structure
that grasp the main property of SF networks, namely, the
role of hubs. Therefore, we explore the synchronization
transition of such a configuration and show that it is indeed
explosive when the correlation!i ¼ ki holds. A star graph
[as shown in the inset of Fig. 4(a)] is composed by a central
node (the hub) and K peripheral nodes (or leaves). Each of
the peripheral nodes connects solely to the hub. Thus, the
connectivity of the leaves is ki ¼ 1 (i ¼ 1; . . . ; K) while
that of the hub is kh ¼ K. Let us suppose that the hub has
a frequency !h while all the leaves beat at the same
frequency !.

First we set a reference frame rotating with the average
phase of the system, �ðtÞ ¼ �ð0Þ þ�t, being � the
average frequency of the oscillators in the star, � ¼
ðK!þ!hÞ=ðK þ 1Þ. In the following we set �ð0Þ ¼ 0
without loss of generality so that the transformed variables
are defined as �h ¼ �h ��t for the hub and �j ¼ �j �
�t (with j ¼ 1; . . . ; K) for the leaves. Thus, the equations
of motion for the hub and the leaves read

_�h ¼ ð!h ��Þ þ �
XK
j¼1

sinð�j ��hÞ; (4)

_� j¼ð!��Þþ�sinð�h��jÞ; with j¼1.. .K: (5)

In this rotating frame Eq. (4) can be expressed as

_�h ¼ ð!h ��Þ þ �ðK þ 1Þr sinð�hÞ; (6)

note that in this new frame it is easy to identify that the
dynamics of the hub is governed by its new inherent
frequency and the superposition of a set of identical signals
from the leaves. Now, imposing that the phase of the hub is

locked, _�h ¼ 0, we obtain
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FIG. 2 (color online). The panels show the evolution of the
effective frequencies of the nodes along the (forward) continu-
ation in the model networks of Fig. 1. The colored dots account
for single-node values (colors stand for their respective degree)
while solid lines show the average value of the effective fre-
quencies of nodes having the same degree.
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FIG. 3 (color online). Panel (a) shows the synchronization
diagrams rð�Þ for several SF networks constructed via the
configurational model. All the networks have a degree distribu-
tion PðkÞ � k�� with � ¼ 2:4, 2.7, 3.0, and 3.3 while N ¼ 103.
The steps of the continuation are set to �� ¼ 0:02. In panel
(b) we show the synchronization diagrams of the same SF
networks without the local correlation between degrees and
natural frequencies, i.e., !i � ki, while gð!Þ �!��.
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sizes as indicated.
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sin�h ¼ ð!h ��Þ
�ðK þ 1Þr : (7)

Now we consider the equations for the leaves, Eq. (5),
and evaluate the expression for cos�j in the locked regime,
_�j ¼ 0. After some algebra, we get

cos�j¼ð��!Þsin�h�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½1�sin2�h�½�2�ð��!Þ2�p

�
:

(8)

The above expression is valid only when ð��!Þ � �.
From this inequality we obtain the value of the coupling �
for which the phase-locking is lost, i.e., the critical cou-
pling �c ¼ ��!. In our case, we have !h ¼ K, ! ¼ 1
and� ¼ 2K=ðK þ 1Þ so that we obtain a critical coupling
�c ¼ ðK � 1Þ=ðK þ 1Þ. On the other hand, we can derive
the value rc of the order parameter at the critical point by
using Eq. (7) and (8) to compute r ¼ hcosð�Þi at �c:

rc ¼
cosð�hÞ þ K cosð�jÞ

K þ 1

���������c

¼ K

ðK þ 1Þ : (9)

Therefore, as rc > 0, when the synchronization is lost
there is a gap in the synchronization diagram pointing
out the existence of a first-order synchronization transition.
Moreover, as K increases both �c and rc tend to 1 thus
confirming the first-order nature of the transition in the
thermodynamic limit, K ! 1. As shown in Fig. 4(a) for
the case K ¼ 10, the theoretical values of �c and rc, are in
perfect agreement with results from numerical simulations.
Finally, as shown in Fig. 4(b), the stability of the unlocked
phase regime, r ’ 0, increases with K so that we can reach
larger values of � by continuing (forward) the solution with
r ’ 0. As a result, the hysteresis cycle grow with K.

Summing up, we have shown that an explosive synchro-
nization transition occurs in SF networks when there
is a positive correlation between the structural (the de-
grees) and dynamical (natural frequencies) properties
of the nodes. This constitutes the first example of an
explosive synchronization transition in complex networks.
Moreover, we have shown that the emergence of such
transition is intrinsically due to the interplay between the
local structure and the internal dynamics of nodes rather
than being caused by any particular form of the distribution
of natural frequencies. Our findings provide with an ex-
plosive phase transition of an important macroscopic phe-
nomena, synchronization, in a widely studied dynamical
framework, the Kuramoto model, thus shedding light to the
microscopic roots behind these phenomena and paving the
way to their study in other dynamical contexts.
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Figure 1: This supplementary figure shows the synchronization diagrams of a scale-free net-
work with degree distribution P (k) ∼ k−2.4 when an intermediate degree-frequency correlation
is initially set as described in the footnote (reference [27]). In particular, the figure shows the
diagrams for the cases p = 0.1, 0.3, 0.5, 0.7, 0.9 of the frequency assignment process described
in [27].
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