Supplemental material

Diffusion dynamics on multiplex networks

S. Gómez, A. Díaz-Guilera, J. Gómez-Gardeñes, C. J. Pérez-Vicente, Y. Moreno, A. Arenas

Figure 1: Comparison between the second smallest eigenvalues λ_{2} of the different laplacians for a multiplex network consisting of two layers with 1000 nodes in each layer. The first contains a scale-free network with degree distribution $P(k) \sim k^{-2.5}$, and the second layer a scale-free network with degree distribution $P(k) \sim k^{-3}$.

Figure 2: Comparison between the second smallest eigenvalues λ_{2} of the different laplacians for a multiplex network consisting of two layers with 1000 nodes in each layer. The first layer contains a scale-free network with degree distribution $P(k) \sim k^{-2.5}$, and the second layer contains a random Erdös-Rényi network with average degree $\langle k\rangle=8$.

Figure 3: Comparison between the second smallest eigenvalues λ_{2} of the different laplacians for a multiplex network consisting of two layers with 1000 nodes in each layer. The first contains a scale-free network with degree distribution $P(k) \sim k^{-2.5}$, and the second layer a small-world network with average degree $\langle k\rangle=8$ and a replacement probability $r=0.3$.

Figure 4: Comparison between the second smallest eigenvalues λ_{2} of the different laplacians for a multiplex network consisting of two layers with 1000 nodes in each layer. The first contains a scale-free network with degree distribution $P(k) \sim k^{-2.5}$, and the second layer a 40×25 lattice with eight neighbors per node an periodic boundary conditions.

Figure 5: Comparison between the second smallest eigenvalues λ_{2} of the different laplacians for a multiplex network consisting of two layers with 1000 nodes in each layer. The first contains a scale-free network with degree distribution $P(k) \sim k^{-2.5}$, and the second layer has been obtained from a copy of the first layer network with 400 extra random links. Here we observe the absence of super-diffusion. This is a consequence of the semi-superposition $\left(W_{1}+W_{2}\right) / 2$ being a (weighted) spanning graph of the network in the second layer W_{2}, thus according to Corollary 3.4 in [20] we have $\lambda_{2}\left(\left(L_{1}+L_{2}\right) / 2\right) \leq \lambda_{2}\left(L_{2}\right)$.

Figure 6: Comparison between the second smallest eigenvalues λ_{2} of the different laplacians for a multiplex network consisting of two layers with 1000 nodes in each layer. The first contains a network structured in 4 communities of 250 nodes each, with average internal and external degrees $\left\langle k^{\text {int }}\right\rangle=105$ and $\left\langle k^{\text {ext }}\right\rangle=105$ respectively, and the second layer is similar but with $\left\langle k^{\text {int }}\right\rangle=200$ and $\left\langle k^{\text {ext }}\right\rangle=10$. The average clustering coefficients at each layer are 0.2336 and 0.7307 respectively, and the communities in both layers match.

Figure 7: Comparison between the second smallest eigenvalues λ_{2} of the different laplacians for a multiplex network consisting of two layers with 1000 nodes in each layer. The first contains a network structured in 4 communities of 250 nodes each, with average internal and external degrees $\left\langle k^{\text {int }}\right\rangle=105$ and $\left\langle k^{\text {ext }}\right\rangle=105$ respectively, and the second layer is similar but with 17 communities, $\left\langle k^{\text {int }}\right\rangle=50$ and $\left\langle k^{\text {ext }}\right\rangle=8$. The average clustering coefficients at each layer are 0.2336 and 0.6541 respectively.

