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Datasets in business and consumer analytics can be frequently
represented in the form of networks, in which the nodes represent

any kind of item, e.g. products, consumers, brands, firms, etc.,
while the links represent relationships between them. For example,

in co-purchasing networks, the links could account for pairs of
products bought together, whereas in international trade networks

the edges could represent the amount of a product which is
exported from one country to another one.
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The possibilities are infinite, and the extraction of information from
these networks is the object of study in several fields, from complex

networks and complex systems to data science, among others.
Here we aim at finding the most important nodes in a network,

which could be crucial in many business applications.
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The importance of a node in a complex network depends on the
structural characteristic or dynamic behavior we could be

interested in. As a consequence, the literature is full of different
definitions, all of them perfectly meaningful under specific set-ups.

Our objective is to explain the rationale behind the most widely
used centrality measures, to be able to decide which one is the

more adequate for our needs.
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Most of them are easy to describe and understand, some are also
easy to calculate with the appropriate tools, while others represent

a computational challenge which requires the use of complex
algorithms which are not easy to implement. Fortunately, there

exist several software applications and packages which simplify the
finding of the centralities of the nodes in complex networks.
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The main mathematical object in the study of complex networks is the
adjacency matrix A = (aij), which encodes the full topology of the

network or graph: aij = 1 if there is an edge from node i to node j , and
aij = 0 otherwise. We suppose the network has N nodes, thus

i , j ∈ {1, . . . ,N}, and that there are no self-loops, i.e. aii = 0. If the
direction of the links is not important, the network is called undirected,
and the adjacency matrix is symmetric, A = AT , where AT denotes the
transpose of matrix A. For undirected networks, the degree ki of a node

is its number of neighbors, and is calculated as

ki =
N∑
j=1

aij . (1)
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Directed networks require the distinction between the links that
arrive to a node and those that depart from it, therefore it is

convenient to distinguish between the output and input degrees:

kout
i =

N∑
j=1

aij , (2)

k in
i =

N∑
j=1

aji . (3)
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Of course, if the network is undirected, kout
i = k in

i = ki . We will
try to describe the centrality measures in the general case of

directed networks, since undirected networks can be considered just
as particular cases. However, there are definitions of centrality

which do not make sense or cannot be calculated for certain kinds
of networks, thus we will explicitly explain the applicability of each
centrality type. We will also suppose there are no self-loops in the
network, thus all the diagonal elements of the adjacency matrix are

zero, aii = 0.
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The number of edges is calculated by just taking the sum of all the
components of the adjacency matrix:

2L =
N∑
i=1

N∑
j=1

aij . (4)

The number of edges is L for undirected networks, but 2L for
directed ones. The reason is that the adjacency matrix of

undirected networks counts every edge twice, aij = aji = 1.
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Centrality in networks - Content outline

I Degree centrality

I Closeness centrality

I Betweenness centrality

I Eigenvector centrality

I Katz centrality

I Hubs and Authorities centrality

I PageRank centrality

I Random walk centralities



Degree centrality
Centrality in networks

The first and simplest proposal of a centrality measure for the
nodes in a network is the degree,

C
(deg)
i = ki . (5)

This is a concept which was developed in the context of social
networks long time ago [53, 29]. The idea was that a person

having many direct connections to other people must be central
with respect to the communication between them, acquiring a

sense of being in the mainstream of information. On the contrary,
people with low degree could miss most of the information flowing

in the network, thus playing a residual role.
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Nodes with high degree, clearly above the average in the network,
are called hubs. The discovery that many real-world networks have
power-law degree distributions [4], with only a few hubs collecting
a great proportion of the overall links in the network, was in fact

one of the cornerstones in the development of the actual theory of
complex networks.
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Sometimes it is useful to normalize the centralities considering
their maximum value, which for the degree equals N − 1, thus

C
(deg,norm)
i =

ki
N − 1

. (6)

However, normalization is usually not needed, since what matters is the
rank of the nodes after sorting them according to the selected centrality
measure (which does not change with normalization). Several additional
centrality measures were defined as variants of the degree (see e.g. [53,

31, 48, 44]), but they have become outdated, so we just skip them.
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The degree is a simple an effective centrality measure for
undirected networks, but not for directed ones, in which we have to

distinguish between incoming and outgoing links. A possible
approach could be to take as centrality the sum, k in

i + kout
i , i.e. the

total number of connections discarding their directionality, or the
average of both input and output degrees, (k in

i + kout
i )/2; the

average is more convenient because it coincides with the degree
when applied to undirected networks:

C
(deg,avg)
i =

k in
i + kout

i

2
. (7)
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Another alternative consists in defining two degree centralities, one for

the incoming and the other for the outgoing links, since they measure

different things: a node with high input degree centrality represents a

node which is in good position to receive information, while large output

degree centralities correspond to important sources of information:

C
(deg,out)
i = kout

i , (8)

C
(deg,in)
i = k in

i , (9)

Now, it becomes clear why the importance of a node is closely related to
the process or property we are interested in, since even degree centrality

admits several diverging interpretations in directed networks.
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If you have items distributed within a circle, its center has the
property that all the items are at a distance equal or smaller than

the radius, while other positions may be as much as twice that
distance. This suggests that a measure of centrality in networks

could consider the distances to the rest of nodes, and thus central
nodes would be close to all of them. The advantage of being
central in this way comes from the possibility of sending or

broadcasting information, being sure the time needed to reach the
whole network is as short as possible.
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Closeness centrality is based on this idea: for each node, you
calculate the distance to all the other vertices in the network, and

define a centrality in which shorter distances imply higher closeness
centrality, and vice versa. There are several ways of expressing
mathematically this concept. First, let us call dij the distance

between nodes i and j . The distance in a graph is defined as the
minimum number of hops (following links) needed to move from

one node to another, or, in other words, the length of the shortest
path between them.
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Then, the closeness centrality [9, 50] reads

C
(clos)
i =

1
N∑
j=1

dij

, (10)

which can be normalized [10] as

C
(clos,norm1)
i =

N − 1
N∑
j=1

dij

, (11)

or also as

C
(clos,norm2)
i =

N
N∑
j=1

dij

. (12)
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The difference between using N − 1 or N is irrelevant for the
ranking of the nodes. The N − 1 makes sense since the distance
from a node to itself is always zero, dii = 0, but the N provides
simpler expressions for certain analytic derivations. Here we are

supposing the network is connected (strongly connected if
directed), otherwise some of the distances are infinity and the
closeness centrality of all nodes becomes zero. To avoid these
infinities, a simple heuristic consists in replacing each infinite
distance by N, i.e. a value larger than all the finite distances.
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An alternative definition which maintains the infinities and works
even if the network is not connected is found by just swapping the

reciprocal and sum operations [24]:

C
(clos2)
i =

1

N − 1

N∑
j=1
j 6=i

1

dij
, (13)

where, by convenience, dij =∞ if there is no path between i and j , i.e.
1/dij = 0. The term 1/dii is explicitly excluded from the sum to avoid the
corresponding infinity. Equation (13) may be viewed as a centrality based
on the harmonic mean of the distances, and has the advantage that most

of the contribution comes from the distances to the closer nodes.
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Likewise degree centrality, closeness centrality also admits output
and input versions for directed networks, depending on whether the
distances are computed from or to the reference node, respectively.

Note that distances are not symmetric in directed networks.

Since we already have several definitions for the closeness
centrality, the addition of input and output closeness centralities

multiplies the options. This is important to be aware of, since
different software may choose and implement centralities in

distinctive ways, thus being not exactly comparable.
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Betweenness is another of the traditional centrality measures
developed in the study social science. Here we fix our attention in

the nodes which are crossed when you follow shortest paths. A
node which falls in the communication paths between many pairs
of nodes plays an important role, since it can control the flow of
information. Formally, the standard measure for this property is

called betweenness centrality [2, 28], and is defined as

C
(betw)
i =

1

(N − 1)(N − 2)

N∑
s,d=1
s 6=d 6=i

σsd(i)

σsd
. (14)
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The sum covers all source/target pairs of nodes, excluding node i ,
σsd represents the number of shortest paths from source node s to
destination node d , and σsd(i) is the number of those paths that

include node i . In other words, the betweenness is the average
fraction of paths that cross a node. This expression of the

betweenness is valid for both directed and undirected networks,
and includes the optional normalization factor.
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If there are no paths between the origin s and the destination d
(disconnected graph), then σsd = 0 and it becomes necessary to

define σsd(i)/σsd = 0. An example of a node with high
betweenness would be a node which is a bridge between two

disconnected parts of the network: to go from one part of the
network to the other you are forced to cross the bridge, no matter

if this node has just a few links.

Betweenness naturally appears in communication dynamics on top
of complex networks, e.g. it can be shown that the onset of

congestion in a simple model of routing is related to the maximum
betweenness of the system [33].
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The calculation of both closeness and betweenness centrality can
be very costly, since the standard Floyd-Warshall algorithm to find
all the shortest paths in a graph scales as O(N3) [26]. Fortunately,

we may apply the Brandes’ algorithm, with a cost
O(NL + N2 logN), which is reduced to O(NL) for the unweighted

networks we have considered so far [16].
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There exist some variations on the definition of betweenness, the
most remarkable one being the possibility of including node i as

both source s and destination d [43], which we have forbidden in
our previous definition. The decision of including or not the

end-points of the paths when calculating the betweenness depends
on the particular dynamics you may be interested in.

For example, in routing dynamics in which a queue is attached to
each node, it is possible to decide between putting the created

packets in the queue of the source node [55], or skipping this queue
and enqueuing them directly to the first neighbor in the path [33].
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Both alternatives are acceptable, but they lead to slightly different
values of the betweenness. Another variant of betweenness is the
one which calculates the number of shortest paths at the level of
edges, thus defining a link betweenness, the natural extension to

links of the vertex betweenness. We are not going to consider link
centralities in the rest of this chapter, but it may be useful for the

reader to know of their existence and one of their paradigmatic
examples.
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All the previous centrality measures take into account the
topological position of nodes in the network, but not the

importance of the nodes themselves. It could be desirable, for
example, that a node be considered as important if its neighbors

are also important. This leads to a recursive definition of
centrality, in which the centrality of a node depends on the

centralities of the neighbors, which are also unknown. Fortunately,
it is possible to write self-consistent equations which can be easily

solved using linear algebra techniques.
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The simplest of this kind of approaches consists in defining the
centrality of a node as proportional to the sum of the centralities

of the neighbors, so as the larger the importance of the neighbors,
the more central the node is [15, 13, 14]. In mathematical terms,

λC
(eig)
i =

N∑
j=1

ajiC
(eig)
j , (15)

where λ is the proportionality constant. The aji term emphasizes
that node i receives the contribution to centrality from its

neighbors through the incoming links.
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For example, in the World Wide Web network, building a website
with many links to important sites is easy to build and has no cost,

so it gives no information at all. However, receiving hyperlinks
from relevant sites is a good indicator of quality, and can be used

to measure the centrality of the website.
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Equation (15) is expressed in matrix form as

ATC(eig) = λC(eig) , (16)

which means the vector of centralities C(eig) is an eigenvector of AT (or
equivalently, a left-eigenvector of A) with eigenvalue λ. Since the

components of the adjacency matrix are all non-negative, we can apply
the Perron-Frobenius theorem [47, 30], which ensures that, if the matrix
is irreducible, there exists a unique solution of Eq. (16) in which all the

centralities C
(eig)
i are positive (up to positive common factors), and

which corresponds to the largest eigenvalue λ > 0.
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The matrix is irreducible if the graph is strongly connected (or
simply connected, if the network is undirected). For directed

networks this condition is difficult to be fulfilled, thus eigenvector
centrality is basically used only for undirected networks. Some
variants of the eigenvector centrality, such as Katz, HITS or

PageRank, are more adequate for directed networks.
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The calculation of the eigenvector centrality can be easily
performed by power iteration: initialize all the centralities to one,

multiply by AT , normalize the vector, and repeat the
multiplication-normalization steps until convergence. Common

normalizations used are those in which the sum of all centralities
are either 1 or N. Again, the normalization does not affect the

ranking of the nodes, thus any choice is equally acceptable.
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Katz centrality is a proposal that lays between degree and eigenvector

centrality. It was introduced as a way of generalizing the degree

centrality, taking into account not only the immediate neighbors but also

the nodes reachable in larger number of steps [35]. Since you want that

the closer the nodes, the larger their influence, a decay parameter α < 1

is introduced to weight the contributions of nodes at increasing path

lengths. It is defined in this way:

C
(katz)
i =

∞∑
k=1

N∑
j=1

αk(Ak)ji . (17)

The power matrix Ak accounts for the number of paths between every
pair of nodes, e.g. (A3)ji =

∑
r

∑
s ajrarsasi , where the paths start at

node j , then go to node r , next to s and finally arrive to i , for all possible
values of the intermediate nodes r and s.
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Denoting I the identity matrix of order N, and 1 the vector of
length N with all components equal to 1, we can write

C(katz) =
∞∑
k=1

(αAT )k1 =
(

(I − αAT )−1 − I
)

1 , (18)

which, after some algebra, becomes

C(katz) = αAT (C(katz) + 1) , (19)

or in components

C
(katz)
i = α

N∑
j=1

aji (C
(katz)
j + 1) . (20)
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Equations (19) and (20) are closely related to the eigenvector
centrality Eqs. (16) and (15), respectively. Basically, the Katz

centrality of a node is related to the centralities of the incoming
neighbors, likewise eigenvector centrality, but with the addition of

one unit per neighbor. This means all nodes have a minimum level
of centrality, different from zero, which helps to avoid the problems
of eigenvector centrality with non-strongly connected components.
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Of course, the α parameter has to be small enough to ensure the
convergence of Eq. (17), and of the iteration process. It can be

shown that proper values of the parameter must be in the interval
0 < α < 1/λ, where λ is the maximum eigenvalue of the adjacency

matrix A.
Katz centrality can be extended by replacing the vector 1 by any

other set of constants:

C(katz2) = αATC(katz) + β , (21)
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This is useful to allow each node i to have a minimum centrality
βi , which could be set even from external information of the nodes,

unrelated to the network structure.

When α approaches zero most of the contribution to the Katz
centrality comes from the constant term β, while α values close to

its upper bound 1/λ give the dominant role to the eigenvector
term. In practice, most of the authors use values of the parameter

near the upper bound.
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In directed networks, nodes can have very different roles if we
consider only the input or output links. The idea of the

Hyperlink-Induced Topic Search (HITS) approach, also known as
hubs and authorities’ algorithm [37], is to assign to each node a
couple of scores: a hub centrality, which takes into account the

role of the node in sending links, and an authority centrality,
measuring the capacity of the node to receive links. Using the
same approach that eigenvector centrality, the importance as
authority depends on the relevance of the hubs that send the

incoming links, and the other way around, important hubs give
more weight as authorities to the receiver nodes.



Hubs and Authorities centrality
Centrality in networks

Denoting C
(hub)
i and C

(auth)
i the hub and authority centralities of

node i , the following recursive definition holds:

C
(auth)
i = α

N∑
j=1

ajiC
(hub)
j , (22)

C
(hub)
i = β

N∑
j=1

aijC
(auth)
j . (23)
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In matrix form,

C(auth) = αATC(hub) , (24)

C(hub) = βAC(auth) , (25)

which can be combined to form two decoupled equations:

ATAC(auth) = γC(auth) , (26)

AATC(hub) = γC(hub) , (27)
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where γ = (αβ)−1. Applying the Perron-Frobenius theorem as for
the eigenvector centrality, and realizing that matrices ATA and

AAT are symmetric, then the authorities and hubs centralities are
given by the leading eigenvector of their respective matrices.

Moreover, it can be shown that the eigenvalues of ATA and AAT

are exactly the same, thus the two equations are consistent and γ
is the maximum eigenvalue of any of them.
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Additionally, multiplying both sides of the first equation by A and
of the second equation by AT , we get

AAT (AC(auth)) = γ(AC(auth)) , (28)

ATA(ATC(hub)) = γ(ATC(hub)) , (29)

which means that hubs and authorities centralities are related in
the following way:

C(auth) = ATC(hub) , (30)

C(hub) = AC(auth) . (31)
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This framework was designed to rank web pages, but is perfectly
valid for all kinds of directed networks, e.g. citations or trade

networks. When the network is undirected the distinction between
hubs and authorities disappears, and their centralities coincide with

those obtained by eigenvector centrality.
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PageRank has become a notorious centrality measure since it lays
at the core of the Google search engine. When you make a search

query, the PageRank score of each web page is used to sort the
results, which are then presented to the user. Of course, PageRank
is in fact used in conjunction with other heuristics and criteria, but

at least it provides a good starting point.
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The rationale behind PageRank is similar to eigenvector centrality,
but with a relevant distinction: when a node receives a link from
an important source, it is not the same if that site has many links
or just a few. If the number is large, the contribution is diluted,
and should be penalized. Thus, it seems reasonable to normalize

the score of a node by its number of outgoing links, before adding
it to the score of the receiver.
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The full equation for the PageRank centrality is the following [18]:

C
(pr)
i = α

N∑
j=1

aji
C

(pr)
j

kout
j

+
1− α
N

. (32)
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The constant term plays an equivalent role as in Katz centrality,
ensuring the equation has a unique and non-trivial solution for
directed networks, while parameter α, known as the dumping

factor, controls the fraction of contribution between the
eigenvector and constant terms.

Note that PageRank is already normalized,
∑

i C
(pr)
i = 1, as can

be easily checked by summing both sides of Eq. (32) for all the
nodes i . For nodes with no outbound links, kout

j = 0, but the
numerator is also zero, thus a simple solution is to replace kout

j by
max(kout

j , 1); otherwise, the terms 0/0 are just supposed to be 0.
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We may also write Eq. (32) in matrix form:

C(pr) = αATD−1C(pr) +
1− α
N

1 , (33)

where D is the diagonal matrix with elements Dii = max(kout
j , 1).

In this way, the solution is given by:

C(pr) =
1− α
N

(I − αATD−1)−11

=
1− α
N

D(D − αAT )−11 . (34)
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Anyhow, the common way of solving Eq. (32) is by iteration, as
explained above. The dumping factor was set by the authors to

α = 0.85, but this is a quite arbitrary selection which can be tuned
as desired.
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Looking at Eq. (32) for the PageRank, a new interpretation comes out

when we realize that

Pij =
aij
kout
i

(35)

represents the probability that a random walker follows a link from node j

to node i [39, 45, 57]. Matrix P, which may be written as

P = D−1A , (36)

is right stochastic, since
∑

j Pij = 1 for all rows i , i.e. P1 = 1. Using P,

the PageRank equation becomes

C(pr) = αPTC(pr) +
1− α
N

1 . (37)
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This equation corresponds to the dynamics of a random walker
which, with probability α follows a random link of the current

node, and with probability 1− α jumps to a random node; this
behavior justifies why the second term is also referred to as the

teleportation term, and it is necessary to escape from nodes
without output links.

Moreover, C(pr) turns out to be the occupation probability of this
random walker, thus providing a physical interpretation: PageRank

centrality is equal to the probability of the random walker being
found at each of the nodes.
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If we remove the teleportation term by setting the dumping factor
to α = 1, the PageRank equation is simplified to C(pr) = PTC(pr),

which has a simple solution for unweighted networks:
C(pr) = k = C(deg), i.e. the PageRank becomes the degree. In the

general case of directed networks and with teleportation this
solution does not hold, but it suggests that PageRank is a kind of

modified version of the degree centrality.
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We have shown so far that a random walk dynamics on complex
networks gives an alternative explanation of PageRank to the one
inspired by eigenvector and Katz centrality. However, this is not

the only centrality measure that can be defined using random
walks. In fact, random walks constitute a good proxy for the

spreading of information in networks, and we can take advantage
of it to introduce new measures of the importance of nodes. In

particular, we are going to briefly describe random-walk closeness
centrality and random-walk betweenness centrality [40].
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In the definition of betweenness centrality given in Sect. 3, only
nodes crossed by shortest paths are considered. This makes sense
for certain dynamics, e.g. vehicles trying to reach their destination
minimizing the travel distance, or servers dispatching packets using

the standard Internet protocols. The same can be said about
closeness centrality, which implicitly assumes that shortest-path

distances are the way to go from one node to another.
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However, if we consider rumors, news, fads or epidemics, to name
a few, their spreading is more random, and for sure they do not

follow shortest paths. This is where random walkers stand out, as
an alternative and often better model of information spreading,

that can help in the introduction of additional measures of
centrality. In fact, real propagation usually lays somewhere

in-between shortest paths and random walks, the two extreme
cases.
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A measure of random-walk betweenness centrality requires the
computation of the probability that a random walk crosses a

certain node while traveling between all other pairs of nodes. This
is accomplished by introducing a new transition matrix Q [d ] with
an absorbing state at the destination node d (when the random

walker arrives to d , it is removed from the system),

Q
[d ]
ij =

{
0, if i = d

Pij , otherwise,
(38)
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Calculating the expected number of times the random walker arrives to
node i (in any number of steps) when starting at node s and before

reaching the destination d ,

p
[d ]
si =

∞∑
n=0

[
(Q [d ])n

]
si

=
[
(I − Q [d ])−1

]
si
. (39)

and finally averaging over all possible origins and destinations,

C
(rwbetw)
i =

1

N(N − 1)

N∑
s,d=1
s 6=d

p
[d ]
si . (40)

In this case we have allowed i to be in the end-points of the paths, unlike
for shortest-path betweenness.
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Random-walk closeness centrality follows the same idea: the
distance between two nodes s and d is replaced by the average

time needed by a random walker to reach d when starting the walk
at s. This quantity receives the name of mean first-passage time
(MFPT), and has the property of not being symmetric even for
undirected networks. The MFPT in which origin and destination

are the same node is known as mean return time.
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The calculation of MFPTsd is quite involved [43], so we skip it,
but once we have obtained them, the average first-passage time

becomes

hd =
1

N

N∑
s=1

MFPTsd , (41)

and the random-walk closeness centrality is just

C
(rwclos)
i =

1

hi
. (42)

Note that we have based the definition on the paths arriving to the node
for which we are calculation the centrality, thus using the same choice as

for the PageRank and other centralities.
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Weighted networks are those for which a certain value is assigned
to each of the edges. The standard interpretation is that the larger

the weight, the more connected or related are the nodes. Flows,
similarities, strengths of social ties, capacities, correlations,

intensities and proximities are examples of this kind of weighted
relationships.

The matrix of weights wij may be seen as a generalization of the
adjacency matrix, in the sense that we may consider that a null

weight corresponds to the absence of a link, and in many cases we
may just replace the adjacency matrix by the weights matrix to

obtain generalizations of the unweighted concepts, centrality being
one of them [5, 1].



Centrality in Weighted Networks
Centrality in networks

Note also that the adjacency matrix is recovered if we suppose all
the weights are equal to 1. The natural generalization of the

degree is called the strength of the node and is given by

wi =
N∑
j=1

wij . (43)
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Directed networks require the distinction between input and output
strengths,

wout
i =

N∑
j=1

wij , (44)

w in
i =

N∑
j=1

wji , (45)

and the total strength of the network reads

2w =
N∑
i=1

N∑
j=1

wij . (46)
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With these ingredients, the generalization of the degree centrality
would be the strength centrality, which could be normalized using
the maximum strength. In the same way, eigenvector, hubs and

authorities, and PageRank centralities are obtained by simple
substitution of the adjacency matrix components and the degrees
by weights and strengths, respectively. The Katz centrality also

admits this treatment in its interpretation as an eigenvalue
problem, but it is questionable the meaning of the powers of the

weights matrix.
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For the random-walk centralities, the weights allow to have
different transition probabilities from a node to each of its

neighbors,

Pij =
wij

wout
i

, (47)

and once they are determined, the definitions of PageRank,
random-walk betweenness and random-walk closeness remain the

same.
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The problem arises when we want to generalize centralities based
on distances, like closeness or betweenness. The first option

consists in discarding the weights, something which also applies to
the cases above. However, when the relationship between nodes

represent distances, they cannot be ignored.

For example, in geographical and transportation networks we may
have available the distances between connected nodes. Now, the
shortest path between two nodes is not the path with the least

number of hops, but the path for which the sum of the distances
of the edges (the length of the path) is the smallest one.
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In these cases, the definition of closeness and betweenness
centralities do not need to be changed, but the algorithms to

calculate them require important modifications. For instance, while
a breadth-first traversal is enough to find the distances in

unweighted networks, a Dijkstra’s algorithm is necessary to cope
with the distances of the edges.
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Another important class of networks which deserves special
treatment with regards to centrality is that of interconnected

multilayer networks [36, 12]. In multilayer networks the nodes are
distributed in layers, with intra-layer and inter-layer links

connecting nodes in the same and different layers, respectively. If
every node represents a different entity, no matter in which layer it
is located, it is perfectly meaningful to calculate the centralities of
the nodes as if the network were not multilayer, i.e. disregarding

the structure in layers.
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Alternatively, we could just find the centralities of the nodes inside
the layers, just by considering each layer as a separate network,

ignoring the inter-layer links. These procedures lead to two
centralities per node, one global and the other local to the layer.
Thus, a node can be at the same time very central in a layer, but

not so important for the whole multilayer network.
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In interconnected multilayer networks the same node may be
present in several layers at the same time, and this fact affects the
definition of centrality itself. If one node has a different centrality

in each layer, how do we have to aggregate them to produce a
single centrality for the node?

There have been several proposals of ways to define eigenvector
centralities [54, 34] and PageRank [8] for multiplex networks,

which are the particular case of multilayer interconnected networks
in which inter-layer links only connect instances of the same node

in different layers, but not different nodes.
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A more general framework makes use of the tensorial formulation
of multilayer networks [22], which has allowed a grounded

development of the extension of centrality measures to general
multilayer networks [23, 56]. The remarkable finding is that

centrality in interconnected multilayer networks reveals the most
versatile nodes, in the sense that the highest centrality (versatility)
is assigned to nodes which are not necessarily very central in any

layer but which are fundamental for the cohesiveness and
integration of the whole structure [23].
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We are not going to develop all the theory of centrality (versatility) for
multilayer networks, but it is easy to show the main ideas with

eigenvector centrality. First, the replacement of the adjacency matrix for
multilayer networks is the adjacency tensor M iα

jβ , representing the links
between nodes i in layer α and nodes j in layer β. The eigentensor

equation becomes:

N∑
i=1

U∑
α=1

M iα
jβC

(eigvers)
iα = λC

(eigvers)
jβ , (48)

where U is the number of layers.
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After solving this equation for the largest eigenvalue, the final
eigenvector centrality (versatility) is obtained by summing up the

contributions at each layer:

C
(eigvers)
j =

U∑
β=1

C
(eigvers)
jβ . (49)

Note that Eq. (48) takes into account the complete structure of
the multilayer network, unlike some approaches in which layers are

analyzed as isolated layers, thus losing the information of the
inter-layer connectivity.
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In a similar way, centralities based on distances or random walkers
make use of the full structure of the network, but at the same time
the multiplicity of the nodes in the different layers pose restrictions

on the paths.

For example, although paths may change layer crossing inter-layer
links, it is natural to consider that shortest paths from an origin to

a destination must start and end, respectively, in the layers that
minimize the distance.



Centrality in Multilayer Networks
Centrality in networks

As a consequence, shortest paths in multilayer networks cannot be
found by iterating over all pairs of nodes, ignoring the multilayer

structure. This demonstrates the fundamental differences between
standard and interconnected multilayer networks, and how they
affect the structural and dynamical properties on top of them.
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We have designed a couple of small networks, one undirected and
the other directed, to grasp the differences between the most

central nodes according to each of the definitions of centrality we
have elaborated above. Figures 3 and 4 show them for the

undirected network, while Figures 7 and 9 for the directed network.
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In addition, Tables 1 and 2 enumerate the most, second most, and
third most central nodes for the undirected and directed networks,

respectively. These networks have been designed in such a way
that each centrality measure leads to different most central nodes,
with few coincidences, to emphasize the topological features which
distinguish them. Note that the simmetries present in the networks

are responsible of the existence of several distinct nodes with
exactly the same centrality.
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Table 1: Most central nodes of undirected network in Figs. 3 and 4.

Centrality Most cen-
tral

Second most
central

Third most cen-
tral

Degree 28 19, 24 6, 7, 10, 11, 16,
20, 22

Closeness 18 16 24
Eigenvector 19 20, 22 21, 23
Katz 28 19 20, 22
Betweenness 28 24 18
PageRank 28 24 36, 39
Random-walk be-
tweenness

28 19, 24 6, 7, 10, 11, 16,
20, 22

Random-walk close-
ness

18 16 24
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Table 2: Most central nodes of directed network in Figs. 7 and 9.

Centrality Most cen-
tral

Second most
central

Third most cen-
tral

Input degree 8, 14 25, 27 23
Output degree 13 1, 12 23, 27
Input closeness 14 22 20
Output closeness 13 19 16
Eigenvector 23 27 25
Katz 27 25 28, 29, 30, 31
Hub 13 12 1
Authority 14 8 7
Betweenness 20 23 8
PageRank 31 30 27
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Figure 1: Centralities for an undirected network. Nodes with highest centrality in dark
red (and white node label), second largest centrality in red, third largest centrality in

light red, and rest of nodes in blue. Sizes proportional to centrality with an offset.
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Eigenvector centrality Katz centrality
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Figure 2: Centralities for an undirected network. Nodes with highest centrality in dark
red (and white node label), second largest centrality in red, third largest centrality in

light red, and rest of nodes in blue. Sizes proportional to centrality with an offset.
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Betweenness centrality PageRank centrality
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Figure 3: Centralities for an undirected network. Nodes with highest centrality in dark
red (and white node label), second largest centrality in red, third largest centrality in

light red, and rest of nodes in blue. Sizes proportional to centrality with an offset.
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Random-walk betweenness centrality and Random-walk closeness
centrality
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Figure 4: Centralities for an undirected network. Nodes with highest centrality in dark
red (and white node label), second largest centrality in red, third largest centrality in

light red, and rest of nodes in blue. Sizes proportional to centrality with an offset.
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Input degree centrality Output degree centrality
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Figure 5: Centralities for a directed network. Nodes with highest centrality in dark red
(and white node label), second largest centrality in red, third largest centrality in light

red, and rest of nodes in blue. Sizes proportional to centrality with an offset.
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Input closeness centrality Output closeness centrality
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Figure 6: Centralities for a directed network. Nodes with highest centrality in dark red
(and white node label), second largest centrality in red, third largest centrality in light

red, and rest of nodes in blue. Sizes proportional to centrality with an offset.
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Eigenvector centrality Katz centrality
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Figure 7: Centralities for a directed network. Nodes with highest centrality in dark red
(and white node label), second largest centrality in red, third largest centrality in light

red, and rest of nodes in blue. Sizes proportional to centrality with an offset.
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Hub centrality Authority centrality
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Figure 8: Centralities for a directed network. Nodes with highest centrality in dark red
(and white node label), second largest centrality in red, third largest centrality in light

red, and rest of nodes in blue. Sizes proportional to centrality with an offset.
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Betweenness centrality PageRank centrality
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Figure 9: Centralities for a directed network. Nodes with highest centrality in dark red
(and white node label), second largest centrality in red, third largest centrality in light

red, and rest of nodes in blue. Sizes proportional to centrality with an offset.
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Although not directly related to the main topic of the book, we are
going to analyze now a real network which is easy to recognize for
a large audience, and whose results help in the understanding of

the different definitions of centrality in networks.

This is the Network of Thrones [11], a network compiled from the
third volume “A Storm of Swords” of the book series “A Song of
Ice and Fire”, written by the novelist and screenwriter George R.
R. Martin, and widely popularized by the HBO TV series “Games

of Thrones”, created by David Benioff and D. B. Weiss.



Examples
Centrality in networks

The network contains the 107 characters of “A Storm of Swords”
connected with 353 weighted edges. Two characters (nodes) are
linked when their names are found in the book separated by at

most 15 words, meaning they have interacted in some way. The
weight counts the number of this kind of interactions.
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Since the Network of Thrones is weighted, we have opted here to
use the weighted versions of several centrality measures, namely:

strength, weighted closeness, weighted betweenness, weighted
eigenvector and weighted PageRank. For the weighted closeness
and betweenness, we have replaced the original weights wij by
distances defined as dij = 1/wij , to take into account that the

larger the weight, the smaller the distance (or dissimilarity)
between the nodes.
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In Table 3 we show the 12 most central nodes for the degree
centrality and the five weighted centralities mentioned above.
Unlike the previous synthetic networks, several characters are

always among the most central nodes, with Tyrion Lannister in top
of them, followed by Sansa Stark, Jaime Lannister and Robb Stark,

and to lower extend Jon Snow, Tywin Lannister and Cersei
Lannister.
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Figures 11 to 15 show the centralities of the Network of Thrones
as proportional to the size of the nodes (and of the font of the

names). The colors of the nodes correspond to the seven modules
found using two different community detection approaches [20,

27], which produce exactly the same partition: modularity
optimization [42] (using a combination of extremal optimization
[25], tabu search [3] and fast algorithm [41]) and Infomap [49].

These communities are highly correlated with the different
locations where the action takes place.
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Table 3: Most central nodes of the Network of Thrones, using weighted centralities.

Rank Degree Strength Closeness Betweenness Eigenvector PageRank
1 Tyrion Tyrion Tyrion Robb Tyrion Tyrion
2 Sansa Jon Sansa Tyrion Sansa Jon
3 Jon Sansa Jaime Sansa Jaime Daenerys
4 Robb Jaime Robb Jon Joffrey Jaime
5 Jaime Bran Tywin Jaime Cersei Sansa
6 Tywin Robb Cersei Robert Robb Robb
7 Cersei Samwell Brienne Daenerys Tywin Bran
8 Arya Arya Joffrey Stannis Bran Samwell
9 Catelyn Joffrey Catelyn Samwell Arya Arya
10 Joffrey Daenerys Arya Tywin Brienne Joffrey
11 Robert Cersei Margaery Arya Catelyn Cersei
12 Samwell Tywin Bran Bran Margaery Tywin
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Figure 10: Centralities for the Network of Thrones. Nodes are colored according to the
modules found by community detection algorithms. Sizes of nodes proportional to

centrality with an offset. Width of links proportional to weights.
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Strength centrality
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Figure 11: Centralities for the Network of Thrones. Nodes are colored according to the
modules found by community detection algorithms. Sizes of nodes proportional to

centrality with an offset. Width of links proportional to weights.
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Weighted closeness centrality
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Figure 12: Centralities for the Network of Thrones. Nodes are colored according to the
modules found by community detection algorithms. Sizes of nodes proportional to

centrality with an offset. Width of links proportional to weights.
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Weighted betweenness centrality
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Figure 13: Centralities for the Network of Thrones. Nodes are colored according to the
modules found by community detection algorithms. Sizes of nodes proportional to

centrality with an offset. Width of links proportional to weights.
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Figure 14: Centralities for the Network of Thrones. Nodes are colored according to the
modules found by community detection algorithms. Sizes of nodes proportional to

centrality with an offset. Width of links proportional to weights.
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Figure 15: Centralities for the Network of Thrones. Nodes are colored according to the
modules found by community detection algorithms. Sizes of nodes proportional to

centrality with an offset. Width of links proportional to weights.



Software and Cost
Centrality in networks

Here comes a list of software tools which can be used to calculate
centralities in complex networks:

I Pajek1: Analysis and visualization tool for Windows (can be run
under Linux and MacOS using Wine) [7]. Allows the calculation of
several centralities: degree, strength, closeness, betweenness, hubs
and authorities (HITS), and a few additional ones not described
above.

I Gephi2: Visualization and exploration software [6]. Calculates
degree, strength, eigenvector, HITS and PageRank centralities.

1
Pajek: http://mrvar.fdv.uni-lj.si/pajek

2
Gephi: https://gephi.org

http://mrvar.fdv.uni-lj.si/pajek
https://gephi.org


Software and Cost
Centrality in networks

I Radatools3: Set of programs for the analysis of complex networks,
with main attention to community detection and the finding of
structural properties [32]. Calculates degree, strength, betweenness
(weighted and unweighted, directed and undirected, for nodes and
edges) and other centralities.

I Cytoscape4: Originally designed for biological research, now it is a
general platform for complex network analysis and visualization [52].
It does not directly calculate centralities, but there are plug-ins
which can be used to find some of them.

I igraph5: Collection of network analysis tools with the emphasis on
efficiency, portability and ease of use [19]. Calculates degree,
strength, betweenness, closeness, eigenvector, HITS and PageRank
centralities.

3
Radatools: http://deim.urv.cat/~sergio.gomez/radatools.php

4
Cytoscape: http://www.cytoscape.org

5
igraph: http://igraph.org

http://deim.urv.cat/~sergio.gomez/radatools.php
http://www.cytoscape.org
http://igraph.org


Software and Cost
Centrality in networks

I NetworkX6: Python software package for the creation, manipulation,
and study of the structure, dynamics, and functions of complex
networks [51]. Calculates degree, strength, closeness, betweenness,
eigenvector, HITS, Katz and PageRank centralities, and a few
additional ones.

I SNAP7: General purpose, high performance system for analysis and
manipulation of large networks [38]. Calculates degree, strength,
closeness, betweenness, eigenvector and HITS centralities.

I Visone8: Tool for the analysis and visualization of social networks
[17]. Calculates degree, strength, closeness, betweenness,
eigenvector, HITS and PageRank centralities, and a few additional
ones.

6
NetworkX: http://networkx.github.io

7
SNAP: http://snap.stanford.edu/snap

8
Visone: https://www.visone.info

http://networkx.github.io
http://snap.stanford.edu/snap
https://www.visone.info


Software and Cost
Centrality in networks

I MuxViz9: Framework for the multilayer analysis and visualization of
networks [21]. Calculates the generalizations of centralities to
multilayer networks (versatilities), including degree, eigenvector,
Katz, HITS and PageRank centralities.

I graph-tool10: Efficient Python module for manipulation and
statistical analysis of graphs [46]. Calculates PageRank,
betweenness, closeness, eigenvector, Katz, HITS and other
centralities.

The integration of some tools with Python (igraph, NetworkX,
graph-tool) and R (igraph, MuxViz) allows a high-level implementation of

the missing centralities without too much effort.

9
MuxViz: http://muxviz.net

10
graph-tool: https://graph-tool.skewed.de

http://muxviz.net
https://graph-tool.skewed.de


Conclusion

We have seen how it is possible to find the most important items
in a data set, provided we transform this data into a complex

network. The definition of “most important” is not unique, there
exist several complementary ways, each one concentrated in one

structural characteristic of the network. Degree centrality allows to
find the most connected nodes. Closeness centrality finds the

nodes which are in the “middle” of the network, i.e. at a shortest
average distance to the rest of the nodes.



Conclusion

Betweenness centrality is specialized in the nodes which are
“bridges” between separated parts of the network. Eigenvector

centrality looks for nodes whose importance is given by the sum of
the centralities of the nodes which send links to it, thus becoming

a recursive definition which is expressed as an eigenvector and
eigenvalue problem. Katz centrality represents a balance between

closeness and eigenvector centralities. Finally, the dynamics of
random walkers in the network is the basis for several centralities,
standing out PageRank, the well-known measure originally used to

rank web pages by the Google search engine.



Conclusion

We have also considered how centralities must be adapted for the
different kinds of network, e.g. by taking into account the

directionality of the links, their weights, or the multilayer structure.
In summary, centrality integrates a large set of definitions and tools

to analyze the relevance of the nodes in networks, being able to
identify the most important ones, which may constitute the first

step in many marketing and business applications, where targeted
actions increase their success rate and reduce the overall cost.
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