
Analysis of community structure in networks of correlated data

Sergio Gómez,1 Pablo Jensen,2 and Alex Arenas1

1Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain
2IXXI–Institut des Systèmes Complexes, 5 rue du Vercors, 69007 Lyon, France

�Received 5 December 2008; revised manuscript received 16 March 2009; published 22 July 2009�

We present a reformulation of modularity that allows the analysis of the community structure in networks of
correlated data. The modularity preserves the probabilistic semantics of the original definition even when the
network is directed, weighted, signed, and has self-loops. This is the most general condition one can find in the
study of any network, in particular those defined from correlated data. We apply our results to a real network
of correlated data between stores in the city of Lyon �France�.
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I. INTRODUCTION

Complex networks are graphs representative of the intri-
cate connections between elements in many natural and arti-
ficial systems �1–4�, whose description in terms of statistical
properties have been largely developed looking for a univer-
sal classification of them. However, when the networks are
locally analyzed, some characteristics that become partially
hidden in the global statistical description emerge. The most
relevant is perhaps the discovery in many of them of com-
munity structure, meaning the existence of densely �or
strongly� connected groups of nodes, with sparse �or weak�
connections between these groups �5�.

The study of the community structure helps to elucidate
the organization of the networks and, eventually, could be
related to the functionality of groups of nodes �6�. The most
successful solutions to the community detection problem, in
terms of accuracy and computational cost required, are those
based in the optimization of a quality function called modu-
larity proposed by Newman and Girvan �7� that allows the
comparison of different partitioning of the network. The ex-
tension of modularity to weighted �8� and directed networks
�9,10� has been the first step towards the analysis of the
community structure in general networks. Nevertheless, we
point out that the use of modularity in community detection
suffers under a resolution limit �11�. This problem can make
modularity useless in situations where real communities
present sizes below a certain resolution scale; however the
problem is alleviated by applying multiresolution methods,
based on the same structural properties of modularity, to re-
solve these scales �9,12�.

Very often networks are defined from correlation data be-
tween elements. The common analysis of correlation matri-
ces uses classical or advanced statistical techniques �13�.
Nevertheless an alternative analysis in terms of networks is
possible. The network approach usually consists in to filter
the correlation data matrix, by eliminating poorly correlated
pairs according to a threshold, and by keeping unsigned the
value of the correlation, producing a network of positive
links and no self-loops �self-correlations�. Recently, some
authors pointed out the possibility to analyze these networks
via spectral decomposition �14,15�. We devise also the pos-
sibility to analyze them in terms of Newman’s modularity to
reveal the community structure �clusters� of the correlated

data. However, any of these approaches can be misleading
because of two facts: first, the sign of the correlation is im-
portant to avoid the mixing of correlated and anticorrelated
data, and second, the existence of self-loops is critical for the
determination of the community structure �9�. Here we pro-
pose a method to extract the community structure in net-
works of correlated data, which accounts for the existence of
signed correlations and self-correlations, preserving the
original information. To this end, we extend the modularity
to the most general case of directed, weighted, and signed
links. We will show the performance of our method in a real
network of correlations between commercial activities, pre-
viously analyzed in �16� using a Potts model.

II. GENERALIZATION OF MODULARITY

Given an undirected network partitioned into communi-
ties, the modularity of a given partition is, up to a multipli-
cative constant, the probability of having edges falling within
groups in the network minus the expected probability in an
equivalent �null case� network with the same number of
nodes, and edges placed at random preserving the nodes’
strength, where the strength of a node stands for the sum of
the weights of its connections �8�. In mathematical form,
being Ci the community to which node i is assigned, modu-
larity is expressed in terms of the weighted adjacency matrix
wij, which represents the value of the weight in the link
between i and j �0 if no link exists�, as �8�

Q =
1

2w
�

i
�

j
�wij −

wiwj

2w
���Ci,Cj� , �1�

where the Kronecker delta function ��Ci ,Cj� takes the val-
ues, 1 if nodes i and j are into the same community, 0 oth-
erwise, the strengths wi=� jwij, and the total strength 2w
=�iwi=�i� jwij.

The larger the modularity the better the partitioning since
more deviates from the null case. Note that the optimization
of the modularity cannot be performed by exhaustive search
since the number of different partitions is equal to the Bell
�17� or exponential numbers, which grow at least exponen-
tially in the number of nodes N. Indeed, optimization of
modularity is a nondeterministic polynomial-time �NP�-hard
problem �18�. Several authors have attacked the problem
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proposing different optimization heuristics �19–24�.
To demonstrate the flaws of modularity when trying to

extract the community structure of correlated data we show
the following example. Suppose we have a network with a
well-defined community structure as the one presented in
Fig. 1. Let us pretend that each community is indeed a func-
tional community, in such a way that nodes in every group
have different states. To simplify the mathematics we will
consider that the nodes in community A are in a state +1 and
nodes in community B are in a state −1. After, we define the
correlation between these data as, for example, Rij =SiSj be-
ing Si and Sj the corresponding states of nodes i and j. The
question is: can we infer communities A and B from the
correlated data represented in matrix R? The answer is that
applying modularity, no. Let us sketch the proof, the matrix
R is blockwise composed of submatrices RAA, RAB, RBA, and
RBB. The blocks RAA and RBB are all valued +1, and RAB and
RBA are valued −1. Any matrix of this form results in zero
modularity Eq. �1� for all partitions since Rij =

wiwj

2w for all
pairs.

To reveal the community structure in the network pre-
sented in Fig. 1 from its correlation matrix, it is necessary to
revise the formulation of modularity. Let us suppose we have
a weighted undirected complex network with weights wij as
above. The relative strength pi of a node

pi =
wi

2w
�2�

may be interpreted as the probability that this node makes
links to other ones, if the network were random. This is
precisely the approach taken by Newman and Girvan to de-
fine the modularity null case term, which reads

pipj =
wiwj

�2w�2 . �3�

The introduction of negative weights destroys this proba-
bilistic interpretation of pi since in this case the values of pi
are not guaranteed to be between zero and one. The problem
is the implicit hypothesis that there is only one unique prob-
ability to link nodes, which involves both positive and nega-
tive weights. However, if we suppose there are two different
probabilities to form links, one for positive and the other for
negative weights, the problem disappears.

Let us formalize this approach. First, we separate the
positive and negative weights,

wij = wij
+ − wij

− , �4�

where

wij
+ = max�0,wij	 , �5�

wij
− = max�0,− wij	 . �6�

The positive and negative strengths are given by

wi
+ = �

j

wij
+ , �7�

wi
− = �

j

wij
− , �8�

and the positive and negative total strengths by

2w+ = �
i

wi
+ = �

i
�

j

wij
+ , �9�

2w− = �
i

wi
− = �

i
�

j

wij
− . �10�

Obviously it is satisfied that

wi = wi
+ − wi

− �11�

and

2w = 2w+ − 2w−. �12�

With these definitions at hand, the connection probabili-
ties with positive and negative weights are, respectively,

pi
+ =

wi
+

2w+ , �13�

pi
− =

wi
−

2w− . �14�

Now there are two terms which contribute to modularity:
the first one takes into account the deviation of actual posi-
tive weights against a null case random network given by
probabilities pi

+, and the other is its counterpart for negative
weights. Thus, it is useful to define

Q+ =
1

2w+�
i

�
j
�wij

+ −
wi

+wj
+

2w+ ���Ci,Cj� , �15�

Q− =
1

2w−�
i

�
j
�wij

− −
wi

−wj
−

2w− ���Ci,Cj� . �16�

The total modularity must be a trade off between the ten-
dency of positive weights to form communities and that of
negative weights to destroy them. If we want that Q+ and Q−

contribute to modularity proportionally to their respective
positive and negative strengths, the final expression for
modularity Q is

Q =
2w+

2w+ + 2w−Q+ −
2w−

2w+ + 2w−Q−. �17�

An alternative equivalent form for modularity Q is

Q =
1

2w+ + 2w−�
i

�
j

wij − �wi

+wj
+

2w+ −
wi

−wj
−

2w− ����Ci,Cj� .

�18�

A B ⇒

FIG. 1. Network with well-defined community structure and its
correlation matrix.
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The main properties of Eq. �18� are: without negative
weights, the standard modularity is recovered; modularity is
zero when all nodes are together in one community; and
it is antisymmetric in the weights, i.e., Q�C , �wij	�
=−Q�C , �−wij	�.

The extension to directed networks �25� is simply ob-
tained by the substitutions

wi
� → wi

�,out = �
k

wik
�, �19�

wj
� → wj

�,in = �
k

wkj
�. �20�

III. COMPARISON WITH OTHER METHODS

In Fig. 2 we show a simple example of a network for
which the original Newman modularity Eq. �1� and the Potts
model in �16� do not yield the expected partition in two
communities, whereas our modularity Eq. �18� succeeds. It
consists in two cliques, formed by positive links, and con-
nected by two edges, one positive and the other negative. All
positive links have a weight +1, and the negative a weight
v�0. Any size of the cliques greater than or equal to three
does the job.

First, the Potts model in �16� is based on a Hamiltonian
which only takes into account the difference between posi-
tive and negative weights within the modules, and is equiva-
lent to modularity but without the null case term. In the
network Fig. 2, if �v��1, the strength between the two
cliques is 1+v�0; thus the Potts model is rewarded to join
both cliques in the same module. Clearly, the absence of the
null case is responsible of this incorrect result. On the other
hand, the original definition of modularity Eq. �1�, although
it has a null case, it was not designed to cope with negative
weights. In this example, its optimal partition is again a
single module containing all the nodes if the value of �v� is
greater than the number of positive links.

In a recent preprint �26�, the authors proposed a method
that also copes with positive and negative strengths. Al-
though in the same spirit of the current work, the authors
approach the problem differently, they propose to decompose
the positive and negative contribution at the level of mod-
ules, aggregating the link weights by addition. Given that the

structure of modularity is nonlinear �the null term is qua-
dratic�, this prescription presents important differences with
our approach, concerning normalization and the relative
strength of the positive versus the negative modularity parts.

After this work was finished, the authors became aware of
another recent preprint �27� proposing an alternative defini-
tion of modularity for positive and negative links. Their
work, based on a Potts model representation of the network
communities’ assignment �28�, is totally compatible with the
definition presented in the current work, and equivalent for
the values of their parameters �=�=1.

IV. APPLICATION TO A REAL NETWORK

We now turn to an example of community structure de-
tection using our method in a specific social network. We
deal with the spatial distribution of retail activities in the city
of Lyon, thanks to data obtained at the Lyon’s Commerce
Chamber �29�. We have shown in �16� how to transform data
on locations into a matrix of correlated data, in this case of
attractions/repulsions �i.e., positive and negative links� be-
tween retail activities. To compute the interaction between
activities A and B, the idea is to compare the concentrations
of B stores in the neighborhood of A stores to a reference
concentration obtained by locating the B stores randomly. To
compute the random reference, the idea �30� is to locate the
B stores on the array of all existing store sites. This is the
best way to take into account automatically the geographical
peculiarities of each town. The logarithm of the ratio of the
actual concentration to the reference concentration gives the
interaction coefficient, which is positive for attractions and
negative for repulsions, as anticipated.

More precisely, the �self-�interaction of NA A stores em-
bedded in a larger set of Nt locations is

aAA�r� = log10
Nt − 1

NA�NA − 1��i=1

NA NA�Ai�
Nt�Ai�

, �21�

where NA�Ai� and Nt�Ai� represent the number of A stores
and the total number of stores in the neighborhood of store
Ai, i.e., locations at a distance smaller than r. Similarly, the
coefficient characterizing the spatial distribution of the Bi
around the Ai is

aAB�r� = log10
Nt − NA

NANB
�
i=1

NA NB�Ai�
Nt�Ai� − NA�Ai�

, �22�

where NA�Ai�, NB�Ai�, and Nt�Ai� are, respectively, the A, B,
and total number of locations in the neighborhood of point Ai
�not counting Ai�. Both aAA and aAB are defined so that they
take value 0 when there are no spatial correlations. In the
case of the aAB coefficient, this means that the local B spatial
concentration is not perturbed, on average, by the presence
of A stores, and is equal to the average concentration over
the whole town,

NB

Nt−NA
. Only coefficients which deviate sig-

nificantly from 0, using a Monte Carlo sampling, are taken
into account in the adjacency matrix. The final result of the
analysis of the 11 629 stores in Lyon is a directed network
with 97 nodes �retail activities� and 1131 links, 715 positive
and 416 negative.

v

FIG. 2. Network with two well-defined communities. Solid lines
correspond to positive links, and the dashed line to the only nega-
tive link, with weight v�0.
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We analyze the community structure of the resulting net-
work using the modularity defined in Eq. �18�. The optimi-
zation method used is Tabu search �9� that for this case gave
the highest modularity when compared to others �31�. We
perform a comparison between the different partitions ob-
tained optimizing independently Eq. �1� �resulting in four
communities� and Eq. �18� �resulting in six communities�,
against the Lyon’s Commerce Chamber retail activities clas-
sification �nine communities predefined�. The similarity of
the first two partitions in front of the third one is measured
using three different indices, namely, the Rand index �32�,
the Jaccard index �33�, and the normalized mutual informa-
tion �NMI� �34� �see Table I�. The larger their values, the
more similar the partitions are. All indices show a better
performance of Eq. �18� discriminating the actual communi-
ties provided by the Lyon’s Commerce Chamber. Note that
in both modularities we have used all the positive and nega-
tive links; thus the increase in performance can only be at-
tributed to a proper use of the information embedded in the
links.

Our method is also helpful to understand the spatial orga-
nization of retail stores. To interpret the information con-
veyed by the network links, we make use of the z score �Z�
�21�. The basic idea consists in to compute the z score of the
internal strength of each node with respect to the internal
strength of the community to which is assigned. To be con-
sistent with our approach along the paper both quantities
should be evaluated consistently with the sign of the interac-
tions and with the directionality of links, then

Zi
�,in/out =

wi,int
�,in/out − 
wint

�,in/out�
��wint

�,in/out�
, �23�

where subindices “int” express that links are restricted within
the community to which node i belongs to, “in/out” refers to
the direction of links, and 
¯ � and � are the average and
standard deviation of the corresponding variables, respec-
tively.

Using the z score we can answer some questions about the
role of nodes in their communities, as for example, for each
community, which are: the most attractive retailers
�max Z+

in�, the most repulsive retailers �max Z−
out�, the most

attracted retailers �max Z+
out�, and the most repelled retailers

�max Z−
in�. In Table II we show the two highest results of

these z scores obtained for the largest community found �33
stores�. This group gathers the proximity stores, which
means mainly food stores. Here are some examples of the
understanding of the spatial organization of retail stores al-
lowed by our method. Sports facilities and funeral services

�third in list of most attractive� are peculiar because they
strongly attract �and are attracted� by some specific activities
that go along with them almost systematically, e.g., car re-
pairs and small hardware stores. Gas stations enjoy a para-
doxical situation in this group, since they represent the most
attractive and the most repelled activity. There is an interest-
ing commercial interpretation of this paradox: gas stations
tend to have the most specific commercial environment,
strongly attracting some of the group’s activities �such as
supermarkets� and being strongly repelled by others which
however are in the proximity store group �for example,
butchers or fine pastries stores almost never have gas stations
close to them�. Dairy products and fine pastries strongly re-
pel some specific of the activities that belong to their same
group, such as car repairs or firm’s restaurants.

V. CONCLUSIONS

Summarizing, we have proposed a formulation of modu-
larity that allows for the analysis of any complex network, in
general with links directed, weighted, signed, and with self-
loops, preserving the original probabilistic semantics of
modularity. With this definition one can afford the analysis of
networks coming from correlated data without the necessity
to symmetrize the network, or skipping autocorrelation, or
considering the unsigned value of the correlations. We devise
that other methods are also likely to be appropriate for this
task, after its pertinent adaptation, for example the analysis
via clique percolation �35�, or specifically methods based on
the minimization of the energy function of an equivalent
spin-glass system, where weighted signed links can be inter-
preted in terms of ferromagnetic and antiferromagnetic inter-
actions between spins �28�. It is worth mentioning that our
generalization, as well as all those measures based on modu-
larity, suffers under a resolution limit �11�. In cases where an
extra resolution is needed, one can take advantage of multi-
resolution methods �9� simply substituting the original
modularity by the general modularity presented here.

We have analyzed within the scope of the modularity an
interesting model of attraction-repulsion of retail stores in a
large city, previously reported in �16�. The results overcome
those obtained using the original definition of modularity
when compared to the Lyon Chamber of Commerce classifi-
cation, and also point out the necessity of defining new roles
of nodes based on directionality and sign of the weights of
links, as we have proposed for the z score.
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