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Abstract 

Given a n-dimensional sample composed of a mixture of m subsamples with different probability density functions 
(p.d.f.), it is possible to build a (m - 1 )-dimensional distribution that carries all the information about the subsample 
proportions in the mixture sample. This projection can be estimated without an analytical knowledge of the p.d.f.‘s of the 
different subsamples with the aid, for instance, of neural networks. This way, if m - 1 < n it is possible to estimate the 
proportions of the mixture sample in a lower (m - 1 )-dimensional space without losing sensitivity. @ 1997 Elsevier Science 
B.V. 

PAC.9 02.5O.Ph; 07.05.Kf; 07.05.Mh 

1. Introduction 

Very often in Physics and other fields we have a sample of n-dimensional data composed of a mixture of 
m subsamples, whose proportions have to be estimated without analytical expressions for their corresponding 
probability density functions (p.d.f.), but being able to generate Monte Carlo events according to them. However, 
the estimation of these proportions is not simple and very often is done by binning the original n-dimensional 
space and performing a x2 adjustment. This means that, even for a low number of bins per dimension, large 
amounts of data are necessary since the number of data points needed to fill the bins with enough statistical 
significance grows exponentially with the number of variables. Thus, it would be of great interest to have a 
projection that could reduce the dimensionality of the original n-dimensional space without sensitivity loss, 
since this would mean that the fit in this projected space could be done with a smaller data set. 
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In Section 2 we characterize the optimal projection space which can be found imposing that no information 
is lost, and in Section 3 it is shown how neural networks may be used to implement this projection. Finally, an 
example is explained in Section 4. 

2. Optimal choice of the fitting space 

Let us suppose that we have a mixture sample {x?, e = 1,. . _ , N} where each n-dimensional x, belongs to 
one of m different classes (or subsamples) {Ci, i = 1, . . . , m}, but we do not know to which one. The p.d.f. of 
the ith subsample is pi(X), and its proportion in the mixture sample is Lyi (in probability terms, pi(X) = p( x ICi) 
and ai = P(Ci)). The maximum likelihood estimator of (Y is obtained by maximization of the log-likelihood 

with respect to (Y. The last term is a Lagrangian multiplier term to ensure that 

c (Yi = 1 
i=l 

(2.1) 

(2.2) 

However, Eq. (2.1) cannot be used if we do not have analytical expressions for the pi(X), or we do not 
know how to calculate them for the whole sample. One possibility is to bin the x space and approximate the 
probability of each bin by using Monte Carlo data, but this is not practical unless the dimensionality of the 
original space is low, since the number of Monte Carlo data needed grows exponentially with that dimension. 

Let (y, r) = F(x) be an invertible transformation with dim(y) + dim(r) = II, and let us call f the first 
components of F such that y = f(x). The p.d.f. of the ith class as a function of the y variables can then be 
written as 

qi(Y) = 
s 

drpi(F-‘(y,r))JF(Y,r) 1 (2.3) 

where JF(Y, r) is the Jacobian of the F transformation. The goal is to find a set of variables y with dim(y) < 
dim(x), not depending on (Y, for which the log-likelihood function on the transformed sample {y, = f( x,) , e = 
1 ,-.., Nl, 

(2.4) 

is the same as 1,( cy), up to a constant not depending on (Y. This will assure not only that the expected value 
of the (Y estimator will be the same, but also its variance will be as well; in other words, the fit sensitivity will 
not be reduced. 

Deriving I, and I?, with respect to ak and equaling the two expressions yields 

(2.5) 
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The only way to assure the above result (independently of the data sample under consideration) for the whole 
cx range is to impose that 

Pk(x) qk(Y) ’ 
Vy=f(x) ,V’i,k= l,..., m. (2.6) 

Not all the above equalities are independent. Fixing k to an arbitrary class (say k = m) results in the set of 
m - 1 equations 

pl~(n)_P’o=@=Lqf(y), Vy=f(x), i=l,..., m-l. 
Pm(X) q,,(y) 

(2.7) 

Equations zi =pT(x), i= 1,. . . , m - 1, map the n-dimensional vector x to the (m - 1) -dimensional space of 
Z. If n < m - 1, the z vector spans a n-dimensional manifold embedded in the (m - 1 )-dimensional space, but 
this case is of no interest. Let us then assume that II > m - 1. Due to Eqs. (2.7), it must be possible to perform 
this transformation in two steps: first, mapping the x vector to the y space (still with unknown dimension) 
using that y = f(x), and then to the z space through zi = q:(y). The dimension of y cannot be lower than the 
dimension of z. Thus, the most favorable case (such that minimizes the dimension of the projection space) is 
when the y vector is also (m - 1)-dimensional. 

A useful solution to Eqs. (2.7)) which generalizes that of [ 41, is 

yi(x) ~ 4Pi(X) , 
“l i=l,...,m-1, (2.8) 

C &qPj(x) 
j=l 

where {a:} are arbitrary positive numbers fulfilling 

5 
a3 = 1. 

j=l 

More precisely, taking into account projection (2.8) and that x = F-’ (y, r), 

it is clear that Eqs. (2.7) are satisfied, since 

YiI4 Pi(X) qi(Y) =-=- 
Y”ll41 Pm(X) %(Y) ’ 

vy=f(x), i= I,..., m- 1, 

where we have introduced for convenience a new dependent variable 1,1- I 
ynr G 1 - c Yi = 

&Pm (x> 

i=l 2 aypj(~) 

j=l 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

In addition, if we transform our variables y to other new variables y’ = g(y) through any arbitrary invertible 
transformation g, the new variables will also be solutions to Eqs. (2.7), since 
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-_ py;; _ g’($y) ;:‘,: =- / I I / I 1 Vy’=g(y), i= I ,...) m- 1. 
nt “, R “f 

(2.13) 

For instance, the variables y and z defined above are related by an invertible transformation provided that the 
proportions and p.d.f. at any point x of all the m classes are not zero. Thus, it can be said that the most general 
solution to Eqs. (2.7) is any invertible transformation of variables zi = p:(x), as one would naively expect 
from that equation. 

The advantage of projection (2.8) is that the new variables y directly represent the Bayesian a-posteriori 
probability of the different classes for some a-priori probabilities (subsamples proportions) cy”, which need not 
be the same as the unknown (Y of the mixture sample that we are trying to estimate. That is, 

yj(x) = Po(Cjlx) , i = 1,. . . ,m - 1 . (2.14) 

Therefore, if we know how to generate Monte Carlo according to pi(x) for some proportions LY’ = aMC, 
and also how to estimate the corresponding a-posteriori probabilities Pe( CilX) = P& Cilx), then we will be 
able to make the projection (2.14) and fit the LY on this lower dimensional space. 

Finally, the relationship between the log-likelihood expressions in terms of variables x and y is 

N P (xl Z,(a) = Zy((Y) + c J!!-L- 
r=, 9m(Yr) ’ 

(2.15) 

which guarantees that the maximum and the fit sensitivity is the same in both original and projected spaces. 

3. Implementation with neural networks 

It is well known that feed-forward neural networks (see e.g. [ 7,9] for an introduction) can approximate any 
sufficiently well-behaved function provided that the number of units is large enough (see Refs. [ 1,2,6,8] for 
several theorems on the approximation of functions with neural networks). Moreover, it can be proved that, 
given a training sample {(x,, d(x,)), e = 1,. . , N}, where 

I j-, -+* + 
d(x,) = t‘o’,. . ., 0 , 1 , 0 ,..., 0 ), if x, E C, , (3.1) 

the minimum of the functional 

E[“l f & 5 2 (Uj(X,) -dj(X,))2 , 
e=l ;=1 

(3.2) 

with respect to the unconstrained functions u(x) is achieved when these are the a-posteriori probabilities of 
each class [5,10,11,14], i.e. 

~!~“)(x) = P(C,,Ix) , 
J 

j = 1,. . . ,m. (3.3) 

Hence, if we are able to generate Monte Carlo data {(x,, d(x,)), e = 1,. . , N} according to certain sub- 
sample proportions aMC, and we apply for instance back-propagation (see [ 12,13,15] ) to learn this data (i.e. 
minimize (3.2)), the resulting neural network ojNN) (x) would be a good approximation to (3.3), which in 
this case is, in fact, the projection function we were looking for, 

U,jNN)(X) = PMc(Cj/X) = Y,j(X) , j = I,. . .,m. (3.4) 

It must be taken into account that the above m functions are not independent because their sum must be one. 
However, since the minimization of (3.2) may produce a neural network solution with some amount of error, 
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the sum may not be one. Two possible solutions are, thus, to discard one of the output units, or to normalize 
the output of each output unit by the sum of the outputs of all of them. 

Now, the (Y proportions can be determined by performing a simple binned log-likelihood fit (see [ 31) of 
Eq. (2.4) in the projected space of the y variables. By reducing the dimensionality of the problem from n to 
m - 1 we have won the fact that less data is needed when binning the projected space. 

Since low number of events per bin might be possible, Poisson statistics per bin is assumed and the 
corresponding log-likelihood function is given by 

l,(a) =klne 
--Nb(@) ( Nb( a))“/> 

h=l nh! 

where nb and N/, are respectively the number of observed and expected events in the bth bin, and B is the total 
number of bins in the projected y space. Nh can be expressed in terms of the unknown LY proportions as 

Nb(cY) = Nf&Pb(Ci), 
1=l 

(3.6) 

where N is the total number of available events, and Ph(C;) is the probability of the ith class events at the bth 
bin. It can be approximated making use of the Monte Carlo data, 

Pb(G) = s dYqi(Y) FS 
NfJ’c(C) 

’ NMC(C,) ’ 
bin(b) 

(3.7) 

Here, NF’(Ci) is the number of Monte Carlo events of class Ci at the bth bin, whereas NMC(Ci) is the total 
number of ith class Monte Carlo events. 

If the number of events per bin is large enough (let us say greater than 10 events/bin) Gaussian fluctuations 
can be assumed, so the proportions can be estimated by minimizing the usual x2 function, 

x2(4 = 
’ (nb - Nb(a))* 

c 
b=l Nb(a) ’ 

instead of maximizing the previous expression (3.5). 

4. Example and results 

In order to show the power of our projection method we have studied an example which is difficult to 
solve using the standard techniques. The problem consists in the determination of the proportions of 3 different 
lo-dimensional normally distributed subsamples, 

(4.1) 

whose 10 x 10 covariance matrices K have ones in their diagonals and zeros otherwise, except for V2 that 
has +20% correlations between its first three variables, and V? with those correlations equal to -20%. The 
difficulty associated to the tiny difference between the 3 classes is enlarged by the high dimensionality of the 
data, which makes the binning of the original space impossible. However, since our problem has 3 classes, our 
projection reduces the dimension of the fitting space from 10 to only 2. 
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Fig. 1. Difference between the distributions in the projected space, the expected ones above and the ones obtained with the neural network 
below. 

First, we prepared a 750000 Monte Carlo data set, with l/3 : l/3 : l/3 proportions of each class, to train 
the neural network which had to perform the projection. The neural network used had 10 input units, 2 hidden 
layers with 7 and 6 units respectively, and 2 output units which corresponded to classes Cr and Cz. After the 
training step, the neural net was able to detect the slight differences between the 3 distributions. In Fig. 1 
we have plotted the difference of the 2-dimensional distributions in the projected space as expected from the 
analytical expressions available for this example (q3 (y) - q1 (y) and qz(y) - q1 (y) >, and the ones obtained 
by the neural network (q3 ( o) - q1 (a) and q2 (0) - 41(o) ) . As can be seen, the neural network has been able 
to find the differences between the distributions in the correct place and of about the same magnitude, proving 
the goodness of the estimation of the y projection. 

Once the projection was found, we applied it to two different mixture samples, one with proportions l/3 : 
l/3 : l/3 and the other with proportions 0.4 : 0.2 : 0.4. Then, we calculated the estimated proportions given by 
binned likelihood fits to the projected spaces, and compared them with the estimations which can be derived 
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Estimated proportions for classes C2 and C3 and correlation between them using the two methods described in the text. The real proportions 
are l/3 : l/3 : l/3 over 300000 data. 

Method ff2 Correlation 

Likelihood fit to true p.d.f.‘s 0.3267 i 0.0097 0.3205 21 0.0089 0.822 
Binned likelihood fit to o(x) 0.3288 f 0.0105 0.3230 & 0.0097 0.845 

Table 2 
Estimated proportions for classes C:! and C3 and correlation between them using the two methods described in the text. The real proportions 
are 0.4 : 0.2 : 0.4 over 250000 data. 

Method Correlation 

Likelihood fit to true p.d.f.‘s 0.1929 f 0.0098 0.3874 * 0.0095 0.817 
Binned likelihood fit to o(x) 0.1933 & 0.0106 0.3870 * 0.0104 0.841 

“::: : 
0.35 - 

0.33 - 

0.32 - 

0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 
a2 

Fig. 2. Contours of one sigma level, for both proportions simultaneously, estimated by a log-likelihood fit to the true p.d.f.‘s (solid line) 
and by a binned log-likelihood fit in the bidimensional neural network output space (dashed line). The real proportions of each class are 
l/3: 113: t/3. 

by the maximization of (2.1) (this can be done in this example because we know explicitly the p.d.f.‘s). The 
results are summarized in Tables 1 and 2, and Figs. 2 and 3 represent the one sigma contour of these estimations 
of cq and cq for the two mixture samples, showing a good agreement between them. 
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0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 
a2 

Fig. 3. Contours of one sigma level, for both proportions simultaneously, estimated by a log-likelihood fit to the true p.d.f.‘s (solid line) 
and by a binned log-likelihood fit in the bidimensional neural network output space (dashed line). The real proportions of each class are 
0.4 : 0.2 : 0.4. 

5. Conclusions 

We have found the optimal projections which can be done to estimate the proportions of the subsamples of 
a given mixture sample, in such a way that the maximum likelihood estimator is the same and the sensitivity 
is not modified. These projections reduce the dimensionality of the problem from n (dimension of the data) to 
m - 1 (where m is the number of classes which form the mixture sample), and they can be performed with 
neural networks trained on Monte Carlo data. 
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