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Abstract

A new error term for dimensionality reduc

tion� which clearly improves the quality of
NLPCA neural networks� is introduced� and
some illustrative examples are given� The
method tries to maintain the original data
structure by preserving the distances be

tween data points�

� Introduction

One of the standard problems in the anal

ysis of multidimensional data is that of di

mensionality reduction� i�e� the elaboration
of a map � � Rn �� R

m which transforms a
collection of n
dimensional points xa � R

n

�a � �� � � � � p� to a lower dimensional space
�m � n�� in such a way that the distribu

tion of the projected points ��xa� is similar
to that of the original set� Tipically� m is
chosen to be two or three in order to make
available a graphical representation of the
projected con�guration� This can help vi

sualize an underlying structure that might
be obscured by the cluttering of data in the
original space�

Principal Component Analysis �PCA�
stands out among the most popular dimen

sionality reduction methods� Its aim is

to �nd the linear projection that accounts
for as much as possible of the data�s vari

ance� Several learning rules� based either on
hebbian learning or back
propagation� have
been proposed to train simple feed
forward
neural networks to perform PCA �see e�g�
��� ���� The generalization of these meth

ods to more sophisticated architectures of
the nets gives rise to di�erent versions of
Non
Linear PCA �NLPCA� �
� �� �� �� 	��
which get rid of the unnecessary linearity
constraint of PCA�

A typical implementation of NLPCA
makes use of a multilayer neural network
with sigmoidal units and several hidden lay

ers� one of which has a small number of units
and is known as the bottle
neck layer� as
shown in Fig� �� This net is trained through
self
supervised back
propagation �i�e� in

puts considered as well as desired outputs��
and the projection mapping � is �nally read
as the part of the network going from the in

put to the bottle
neck layer�

The main problem of NLPCA is its exces

sive freedom in the selection of the bottle

neck representation of the data� since the
only training condition is the minimization
of the quadratic error at the output layer�
the net can choose any bottle
neck distribu

tion which allows a satisfactory approximate
inversion of �� no matter if it resembles or

�



� � �

� � �

� � �

� � �

Input layer

Neck layer

Output layer

Figure �� Architecture of NLPCA neural
networks�

not to the original distribution�
In this article we review our technique

exposed in ���� and provide two exam

ples which show the improvement obtained
over PCA and NLPCA� Our main idea
is borrowed from Multidimensional Scaling
�MDS�� a set of methods to assign coor

dinates to points when only their relative
mutual distances are known beforehand ����
However� the standard approach to MDS�
known as Classical Scaling� also reduces to
PCA once the coordinates of the points are
already known�

� The method

Let d
�n�
ab be the euclidean distance between

patterns a and b�

d
�n�
ab �

p
�xa � xb��� ���

and let d
�m�
ab be their euclidean distance in

the projected space�

d
�m�
ab �

p
���xa�� ��xb���� �
�

If we want to impose that the sets fxag and
f��xa�g approximately share the same dis

tribution� a suitable condition could be the
minimization of

E� �
�




X
a�b

�
d
�n�
ab � d

�m�
ab

��
� ���

When � is restricted to linear functions� it
can be shown that the minimization of E�
reduces to PCA� Thus� Eq� ��� constitutes a
good starting point for a non
linear general

ization of PCA�
Our projection method consists basically

in the use of the neural network implemen

tation of NLPCA explained above� properly
modi�ed so as to minimize E�� However�
several additional aspects have to be ex

plained to deal with the bounded nature of
sigmoids�

It is convenient to perform �rst a transla

tion and a global scaling of the initial data�

xa �� �ina � �in�xa � a�� ���

to make �ina � ��� ��n� where ��� �� is the in

terval we have chosen for the outcome of
the sigmoids� Let us call �outa � ��� ��n and
�nka � ��� ��m respectively the output and
the neck layer activation when �ina is pre

sented to the net� Thus� it is satis�ed that
� � dinab �

p
n and � � dnkab �

p
m� which

means Eq� ��� is not directly applicable�

The error function we propose for the
back
propagation method is

ENNDP � � E������� E� � � � ��� �� ���

where

E� �
X
a

�
�outa � �ina

��
���

favours those maps for which the represen

tation in the bottle
neck layer can be best
accurately inverted to recover the original
con�guration� and

E� �
X
a�b

�
dinabp
n
� dnkabp

m

��

� �	�

forces the representation in the bottle
neck
to inherit� as closely as possible� the metric
structure of the original con�guration� E�

departs from E� in the di�erent scalings of
dinab and dnkab � which have been introduced to
have them in the same range�

The various scalings involved in this pro

cess make the outcome of the neck layer not
to be directly interpretable as the �nal an

swer� we can bring it back to the original
scale by setting

�NNDP�xa� � �out�nka � ���






with �out �
p
n�m �in� However� a slightly

better solution can be obtained by choosing
instead

�out �

P
a�b d

�n�
ab d

nk
abP

a�b

�
dnkab
�� � ���

since this is the value of � that minimizes
the function E��� � �

�

P
a�b�d

�n�
ab ��dnkab �� for

the given neck con�guration� which is what
we are ultimately trying to achieve with the
whole procedure�
In the practical use of the neural net


work we have noticed that the best results
are obtained by letting the parameter �
fall to zero as the learning grows so that
the error function ENNDP reduces to E� af

ter a certain number of iterations� Actu

ally� a non
zero value of � is only useful in
the early stages of the learning� in order to
speed up convergence� In this situation� i�e�
with ENNDP � E�� it is easy to prove ana

lytically that the con�guration minimizing
ENNDP di�ers from the one minimizing E�
only by a global scaling

p
n�m of all coordi


nates� Thus� the �otherwise technically con

venient� scalings that we have introduced
above are completely harmless for the pur

pose of searching for the best mapped con

�guration�

� Two benchmarks

To show the bene�ts of our method we have
applied it to two simple examples having
n � � and m � 
� comparing our NNDP re

sults with those obtained by PCA and stan

dard NLPCA� To measure the overall rela

tive distance error we will use

� �

vuuuut
P

a�b

�
d
�n�
ab � d

�m�
ab

��
P

a�b

�
d
�n�
ab

�� � ����

The �rst example consists in a set of
points which form the twisted band of Fig� 
�
They are �� ��	��� points laying on equally
spaced ���
long segments �� points per seg

ment� spacing of ��
�� The �rst segment is
at y � ��� and the last one at y � ���� Seg

ments rotate with constant speed� so that
the �rst one is parallel to the x axis� and
so is the last one� with a 	 rotation be

tween them� The whole �gure �ts in the
cube ����� ������

When PCA is applied to it� the result is
that of Fig� �� which displays an arti�cial
singular point absent in the original data� A
typical run of NLPCA� in Fig� �� shows its
ability to avoid the �cticious singular point�
by adapting the projection to the geometry
of the band� However� our NNDP projec

tion� in Fig� �� is even capable of keeping
the relative distances between most of the
points� To show the highly non
linear na

ture of this mapping we have included in
Figs� �� 	 and � the projections of nine ref

erence planes which are parallel to the main
coordinate planes�

The errors obtained for each method are

�PCA � ��
��� �
�NLPCA � ��
��� �
�NNDP � ���	

 �

The second example consists in two or

thogonally chained elliptic rings as shown in
Fig� �� so that the whole �gure �ts exactly
in the ����� ����� cube� Each ring contains ��
points� crossing the other one at its center�

Now� PCA� in Fig� ��� perfectly projects
one of the rings� but the other one degener

ates to a line� Again� NLPCA is much bet

ter as it avoids degeneration� Fig� ��� How

ever� the lack of an objective function for
the bottle
neck produces a large variety of
projected shapes� which only have in com

mon the topology �two closed curves inter

secting in two points�� and with errors cov

ering a wide range� NNDP generates more
coherent con�gurations� all of them similar
to the one in Fig� �
� in which the simme

try of the original data is clearly manifested�
This projection is not very far from being a
linear one� as re�ected by the projection of
the nine reference planes shown in Figs� ���
�� and ��� yet it could not be obtained by
PCA�

In this example� the errors obtained for
each method are

�PCA � ����
� �
�NLPCA � ��
��� �
�NNDP � ������ �

All the errors computed in this section
correspond to the projections obtained once
the optimal scaling of Eq� ��� has been per

formed� whereas the plots are shown un

scaled�
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Figure 
� Twisted band�
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Figure �� PCA of the twisted band�
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Figure �� NLPCA of the twisted band�
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Figure �� NNDP of the twisted band�
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Figure �� NNDP of XY planes of the twisted
band�
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Figure 	� NNDP of YZ planes of the twisted
band�
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Figure �� NNDP of ZX planes of the twisted
band�

Figure �� Chained rings�
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Figure ��� PCA of the chained rings�

�



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1
2

3

4

5

6

7

8

9

10

11

12

13
14

1516171819
20
21
22
23

24

25

26

27

28

29

30

31

32

33

34

35
36

37 38 39 40 41

42
43

44
45

46
47

48
49 50 51 52 53 54 55 56

57
58

59

60

61

62

63

64

65

66
67

68697071
72

73
74

75

76
77
78
79
80

81
82

Figure ��� NLPCA of the chained rings�
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Figure �
� NNDP of the chained rings�
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Figure ��� NNDP of XY planes of the
chained rings�
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Figure ��� NNDP of YZ planes of the
chained rings�
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Figure ��� NNDP of ZX planes of the
chained rings�
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