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where df:g) and df;;‘) represent the Euclidean dis-
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Abstract

We show that Neural Networks, trained with a
suitable error function for backpropagation, can be
used for Metric Multidimensional Scaling (i.e. di-
mensional reduction while trying to preserve the
original distances between patterns) and are able
to outdo other standard methods mainly because
of the ability to model non-linear maps.
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1 Introduction

kS
A standard problem in Multidimensional Scaling
(MDS) (see [1], for example) consists in trying to
map a collection of patterns represented as points

in an n-dimensional space, z, € R" (a =1,...,p),
to a lower dimensional space,
T, = Y, €RT (m<n), (1)

in such a way that the distances between the pro-
jected points, y,, resemble as closely as possible the
distances between the original ones. Typical values
chosen for m are 2 or 3, since in this way the method
can be used to visualize the most relevant features
of the original n-dimensional configuration.

This can be set as a minimization problem once
an energy function is given. Since we are concerned
with the preservation of distances a natural choice
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1 n, m 2
E=- agb (dfzb) — dfzb )> , (2)

tance between patterns a and b in the original and
projected spaces, respectively.

The optimal mapped configuration will be the
one satisfying the set of p X m non-linear equa-
tions OF /8y, = 0. Solving them directly is gener-
ally out of reach and substitute approximate meth-
ods should be addressed. The standard one is just
Principal Component Analysis (PCA). With this
method one can determine, in the original space
R", the set of m principal directions (i.e. those di-
rections along which the data have the highest vari-
ance). The projection onto them gives the mapped
m-dimensional configuration, which makes actually
the optimal solution among the restricted set of or-
thogonal projections. Other methods, such as Non-
Linear PCA (NLPCA) [3, 4, 5], may be able to
perform non-linear projections. However, NLPCA
is really inappropriate for Metric MDS because it is
only concerned with the (approximate) invertibility
of the map but does not care at all of the distances
between patterns in the projected space.

2 MDS with Neural Networks

Here we will give an alternative solution to this
problem which involves the use of Neural Networks
with a suitable error function for backpropagation.
The main idea consists in building a net with n in-
put units and a number of hidden layers, containing
a bottle-neck layer with only m units and an output
layer with n units. Backpropagation is invoked with
an error function that contains, in addition to the
quadratic error term between input and output, &
new piece which is introduced to minimize the dif-
ference between the distances of pairs in the input
and neck layers, Then, when enough iterations have
been performed, the projected configuration is read
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out from the neck layer.

In order to use the net in the most efficient way it
is convenient to perform a translation and a global
scaling of the initial data:

z, — EM = \"(z, — a), (3)

s0 as to make £ € [0,1]”. Then one can use £'" as
the input to the net. The outcome of the neck layer,
£°% lives in the region [0,1]™ since we are using
sigmoid activation functions. This implies that 0 <
ik < +/m while 0 < diy < /n for any pair of
input points (£1";€,"), where d? and di} stand for
the distances between patterns ¢ and b in the neck
and initial layers, respectively.

The error function that we have considered in
the backpropagation method is given by

EBP:aE1+(1_a) E,, (4)

B=Y (e -er) )

a

where

and

5 da ) 6
By (%-%) ©
and « € [0,1] controls the relative contribution of
each part. The term E; favors those maps for which
the representation in the bottle-neck layer can be
best accurately inverted to recover the original con-
figuration. The second term, E%, is the most im-
portant one since it forces this representation in the
bottle-neck to inherit, as closely as possible, the
metric structure of the original configuration. The
different scalings for di, and dZK in this term are
introduced in order to have both numbers in the
same range. In this way we can guarantee that all
possible configurations can still be covered with the
use of sigmoids.

The various scalings performed in this process
make the outcome of the neck layer not to be di-
rectly interpretable as the final m-dimensional con-
figuration; we can undo all those scalings by setting

Yo = )\outé-zk, (7)
with A% = |/n/m A", However, a slightly better

solution can be obtained by choosing instead

/\out — Za,b dl(J,T;)dgg (8)
Tap (@)

since this is the value of A that minimizes the func-
tion E(\) = % Zayb(dfg) — Ad2¥)? for the given neck
configuration, which is what we are ultimately try-
ing to achieve with the whole procedure.

In the practical use of the neural network we
have noticed that the best results are obtained by
letting the parameter « fall to zero as the learn-
ing grows so that the error function Egp reduces
to E, after a certain number of iterations. Actu-
ally, a non-zero value of « is only useful in the early
stages of the learning, in order to speed up con-
vergence. In this situation, i.e. with Egp = E», it
is easy to prove analytically that the configuration
minimizing Egp differs from the one minimizing di-
rectly the original energy function E in eq. (2) only
by a global scaling v/n/m of all coordinates. Thus,
the (otherwise technically convenient) scalings that
we have introduced above are completely harmless
for the purpose of searching for the best mapped
configuration.

It is well known that a network with just the in-
put, output and neck layers, with linear activation
functions and subject to self-supervised backpropa-
gation is equivalent to PCA [2]. Our approach goes
beyond PCA in two important instances. First,
the presence of this new distance-error contribution,
E,, favors those configurations in the neck layer
that approximate better the original distances; and
second, the use of sigmoid activation functions and
the addition of a number of hidden layers makes
the neural net able to produce mappings which are
more general (non-linear) than just the orthogonal
projections of PCA. In fact, a comparative analysis
of both approaches over several types of configura-
tions shows that our method produces better results
in the “tougher” situations, i.e. when some of the
directions discarded by the PCA projection are still
relatively important.

3 An illustrative example

As an application of both procedures we have con-
sidered a data set! consisting of different animal
species, characterized by n = 17 attributes each (15
boolean + 2 numerical). The coordinates x, and

1Original data extracted from the ‘Zoo Database’, cre-
ated by Richard S. Forsyth (1990) (ftp://ftp.ics.uci.edu:
~ /pub/machine-learning-databases/zoo).
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distances d‘(;;) have been obtained after scaling the
numerical attributes to the range [0, 1] in order to
assign an equal weight to all amttri'butes2 (implying
that in this case we simply have £ = x,).

When using the neural net, the best scaling for
the two-dimensional neck representation is given by
A%Ut = 2946, which is in less than 1.1 % disagree-
ment with the expected value of A°U* = |/17/2.

The projected configurations obtained with each
method are drawn in figure 1. Patterns are repre-
sented by their label. As shown in the plot, both
approaches produce a fairly similar configuration.
However, the computation of the overall relative er-
ror, i.e.

S () — d)’
S (45

for each method shows that the neural network is
giving out a slightly better result,

€=

Y (9)

Erca = 02728,  Euy = 02346,  (10)

which represents a 14.00 % improvement over PCA.
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Figure 1: PCA vs. Neural Network projections
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