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We show that neural networks, with a suitable error function for back-
propagation, can be successfully used for metric multidimensional scal-
ing (MDS) (i.e., dimensional reduction while trying to preserve the origi-
nal distances between patterns) and are in fact able to outdo the standard
algebraic approach to MDS, known as classical scaling.

1 Introduction

A standard problem in multidimensional scaling analysis is to map a col-
lection of patterns, represented as points in an n-dimensional space

{xa ∈ Rn; a = 1, . . . , p},

to a lower-dimensional space in such a way that the distances between the
projected points resemble as closely as possible the distances between the
original ones.

More precisely, given the collection {xa}, with Euclidean distances be-
tween pairs (a, b) of patterns:

d(n)ab =
√
(xa − xb)

2,

one has to find a map, ϕ : Rn → Rm,with m < n, such that it minimizes the
quadratic distance-error function

Eϕ = 1
2

∑
a,b

(
d(n)ab − d(m)ab

)2
,
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where d(m)ab are the Euclidean distances computed in the projected space

d(m)ab =
√
(ϕ(xa)− ϕ(xb))

2 .

Typically, m is chosen to be two or three in order to make available a
graphical representation of the projected configuration. This can help visu-
alize an underlying structure that might be obscured by cluttered data in
the original space.

It is not known in general how to find the exact expression of the best
map ϕ. Yet there is a standard method to approximate it, known as classical
scaling (CLS), which involves the diagonalization of the symmetric matrix
S of scalar products

Sab = xa · xb,

by means of an orthogonal matrix C. Taking {xa} to be centered at the origin,
that is,

∑
a xa = 0, and assuming that p > n, it is easy to show that S can have

at most n nonzero eigenvalues. Each of these eigenvalues can be regarded
as the typical scale of a principal direction. If we denote by 31, . . . , 3m the
m largest eigenvalues, the resultant mapping to Rm is given by

ϕαCLS(xa) = 31/2
α Caα α = 1, . . . ,m.

(See Cox & Cox, 1994, for a detailed description of this method.)
CLS can be used in a broader context, when only a matrix of dissimi-

larities δab is known, as a tool to assign coordinates to the patterns. Once
coordinates are already known for patterns, as in our case, CLS reduces to
principal component analysis (PCA).

2 Multidimensional Scaling with Neural Networks

In this article, we provide an alternative solution to this problem, which
involves the use of neural networks. The main idea consists of building a
net with n input units and a number of hidden layers, containing a bottleneck
layer with only m units and an output layer with n units. A modified version
of the standard backpropagation algorithm is then invoked (Rumelhart,
Hinton, & Williams, 1986). In addition to the quadratic error term between
input and output, it contains a new term that is introduced to minimize the
difference between the distances of pairs in the input and neck layers. When
enough iterations have been performed, the projected configuration is read
out from the neck layer.

In order to use the net in the most efficient way, it is convenient to perform
a translation and a global scaling of the initial data,

xa −→ ξin
a = λin(xa − a),
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so as to make ξin
a ∈ [0, 1]n. Then one can use ξin

a as the input to the net.
The outcome of the neck layer, ξnk

a , lives in the region [0, 1]m since we are
using sigmoid activation functions. This implies that 0 ≤ dnk

ab ≤
√

m while
0 ≤ din

ab ≤
√

n for any pair of input points (ξin
a , ξ

in
b ), where dnk

ab and din
ab stand

for the distances between patterns a and b in the neck and initial layers,
respectively.

The error function that we have considered in the backpropagation
method is given by

E = α E1 + (1− α) E2,

where

E1 =
∑

a

(
ξout

a − ξin
a

)2
and E2 =

∑
a,b

(
din

ab√
n
− dnk

ab√
m

)2

,

and α ∈ [0, 1] controls the relative contribution of each part. The term E1
favors those maps for which the representation in the bottleneck layer can be
best accurately inverted to recover the original configuration. The second
term, E2, is the most important one since it forces this representation in
the bottleneck to inherit, as closely as possible, the metric structure of the
original configuration. The different scalings for din

ab and dnk
ab in this term are

introduced in order to have both numbers in the same range. In this way,
we can guarantee that all possible configurations can still be covered with
the use of sigmoids.

The various scalings involved in this process make the outcome of the
neck layer not to be directly interpretable as the final answer; we can bring
it back to the original scale by setting

ϕNN(xa) = λoutξnk
a ,

withλout = √n/m λin. A slightly better solution can be obtained by choosing
instead

λout =
∑

a,b d(n)ab dnk
ab∑

a,b
(
dnk

ab

)2 ,

since this is the value of λ that minimizes the function E(λ) = 1
2
∑

a,b(d
(n)
ab −

λdnk
ab )

2 for the given neck configuration, which is what we are ultimately
trying to achieve with the procedure.

In the practical use of the neural network, we have noticed that the best
results are obtained by letting the parameter α fall to zero as the learning
grows so that the error function E reduces to E2 after a certain number of
iterations. Actually, a nonzero value of α is useful only in the early stages of
the learning, in order to speed up convergence. In this situation, with E = E2,



598 Lluı́s Garrido, Sergio Gómez, & Jaume Roca

it is easy to prove analytically that the configuration minimizing E differs
from the one minimizing directly

∑
(din−dnk)2 only by a global scaling

√
n/m

of all coordinates. Thus, the (otherwise technically convenient) scalings that
we have introduced are completely harmless for the purpose of searching
for the best mapped configuration.

It is commonly known that a network with just the input, output, and
neck layers, with linear activation functions and subject to self-supervised
backpropagation, is equivalent to PCA (Sanger, 1989). Our approach goes
beyond PCA, not only because of the use of sigmoid (nonlinear) activation
functions and the addition of a number of hidden layers, but essentially for
the presence of this new distance-term contribution, E2, which favors those
configurations in the neck layer that approximate the original distances
better.

One may wonder how our method compares to nonlinear PCA (NLPCA)
(Kramer, 1991; DeMers & Cottrell, 1994; Kambhatla & Leen, 1995; Garrido,
Gaitán, Serra-Ricart, & Calbet, 1995; Garrido, Gómez, Gaitán, & Serra-Ricart,
1996). Actually, NLPCA can be recovered as a particular case of our ap-
proach by setting α = 1 in the error function (i.e., with E = E1). NLPCA will
generally do better than ordinary PCA in the minimization of the term E1
because of the ability to model nonlinear configurations. However, NLPCA
does not care at all about the distances between patterns in the bottleneck
representation: any two neck configuration are equally good for NLPCA if
both provide the same result in the output layer. Hence, the comparison of
NLPCA with our approach is inappropriate because both methods are in
fact designed for different purposes (minimizing E1 and E2, respectively).
On the contrary, the projected configuration of standard PCA still retains
part of the metric structure of the initial configuration since it is just a linear
orthogonal projection onto the largest-variance axes, and hence it produces
better results for E2 than NLPCA. This is why we will compare the perfor-
mance of our method with CLS (i.e., PCA) and not with NLPCA.

A comparative analysis of both approaches over several types of con-
figurations shows that our method produces better results in the tougher
situations, when some of the discarded directions in the CLS method still
have relatively large associated eigenvalues. Finally, it is worth stressing
that CLS provides only a linear orthogonal projection, whereas the neural
net is able to produce more general (nonlinear) mappings.

Example. As an illustration of both procedures, we have considered a
data set1 consisting of different animal species, characterized by n = 17 at-
tributes each (15 boolean + 2 numerical). The coordinates xa and distances
d(n)ab have been obtained after scaling the numerical attributes to the range

1 Extracted from the Zoo Database created by Richard S. Forsyth (1990)
(ftp://ftp.ics.uci.edu: ˜ /pub/machine-learning-databases/zoo).



Improved Multidimensional Scaling Analysis 599

−2.5 −1.5 −0.5 0.5 1.5 2.5
−2.5

−1.5

−0.5

0.5

1.5

2.5

1

2

3

4
5 6

7

8
9

10

11

1213

14

1516

17

18

19

20

21

22

23

24

25

2627

28

29
30

31

32

33

34

35

36
37

38
39

404142

43

44

4546

47

48

49
50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65
66

67

68
69

70
71

72

73

74

75

76

77

78

7980

81

82

83
84

85

86

87

88

89

90

−2.5 −1.5 −0.5 0.5 1.5 2.5

−2.5

−1.5

−0.5

0.5

1.5

2.5

1 2

3

4 5 6

7

8
9

10

11

12

13

14

1516

17

18

19

20

21

22

23

24

25

26
27

28

29

30

31

32

33

34

35

36

37

3839

4041

42

43

44

4546

47

48

49
50

51

52

53

54

55

56

57

58
59 60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

7576

77

78

7980

81

82

83

84

85

86

87

88

89

90

CLS NN

Figure 1: Two-dimensional mapped configurations obtained with classical scal-
ing (CLS) and with a neural network (NN).

[0, 1] in order to assign an equal weight to all attributes (implying in this
case that we simply have ξin

a = xa).
The best scaling for the two-dimensional neck representation when using

the neural net is given by λout = 2.946, which is in less than 1.1% disagree-
ment with the expected value of λout = √17/2.

The projected configurations obtained with each method are drawn in
Figure 1. Patterns are represented by their label. As the plot shows, both ap-
proaches produce a fairly similar configuration. However, the computation
of the overall relative error,

ε =


∑

a,b

(
d(n)ab − d(m)ab

)2

∑
a,b

(
d(n)ab

)2


1
2

,

shows for each method that the neural network gives a slightly better result,

εCLS = 0.2728, εNN = 0.2346,

which amounts to a 14.00% improvement over the CLS method.
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