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Abstract

We address the problem of training and predic-
tion with Neural Networks in those situations where
the data to predict possess a natural hierarchical
structure. We perform backpropagation with a spe-
clalized objective function that takes into account
this structure and show that it betters the results
of the non-hierarchical learning.

Keywords: Artificial Neural Networks.

1 TIntroduction

It is widely known that Neural Networks are well
suited for learning and prediction purposes [1][2].
The most standard setting uses a so-called feed-
forward network [3] where the units are organized
in layers, each of them connected only to the units
that form the outer layers.

In the training phase the net is presented with
pairs of input and desired output values correspond-
ing to a set of patterns

a=1,...,p (1)
Here z, € R" is used to feed the n cells of the
input layer. For each of the p patterns the network
produces an answer in the output layer o(zx,) € R™
that we would like to be as close as possible to the
correct result z,. The learning problem consists
thus in adjusting the synaptic weights w;; of the
network connections in such a way that it minimizes
the overall error for the complete set of patterns.

(:L'ayza);

The most commonly used objective function for
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this purpuse is the quadratic error function

14

Eq =Y (o(ma) — 2a)*.

a=1

(2)

This turns the learning problem into a standard
optimization problem. The backpropagation algo-
rithm [1] can now be invoked which basically per-
forms an iterative process where the w;; are pro-
gressively adjusted following a gradient descent of
(2) in the space of weights. Once the training is fin-
ished the performance of the network can be tested
by presenting it with new patterns not seen so far
and checking how the results predicted by the net
resemble the correct ones.

One of the properties of the cost function (2) is
that it weights alike the errors of each of the units in
the output layer. This is a natural behavior when
all output cells can be attributed the same “im-
portance”. There are situations, however, where
the correctnes of the result relies heavily only on
the values of a subset of the output cells, while the
other cells are used to qualify or modify slightly the
big picture drawn by the first set. For this sort of
problems it is reasonable to expect that a more spe-
cialized cost function —one that takes into account
the hierarchical role of each of the output units—
will be able to produce more accurate results than a
“general-purpose” one such as (2). In this letter we
consider one such cost function, describe its main
properties, and test its performance in the problem
of learning binary addition.

Note that the kind of hierarchy we are address-
ing is not the one which is commonly found in the
literature (see e.g. [4, 5]): we are not grouping the
patterns in families, families within families, and so
on. Instead, we consider a hierarchical structure of
the output units for all patterns in the training set.
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2 A hierarchical cost function
Let us consider the objective function defined by

N
Ey = Zai,
i=1

where the coeficients a; are defined in terms of the
error functions e; acording to the recursive rule

3)

a1 = €1,

a; = €+ (]. — ei) Ai—1, (l > 1)

(4)

The errors e; need not correspond to individual cells
but rather to each one of the subsets of cells that
share the same hierarchical value. Thus, we are con-
sidering here N different hierarchies, e; being the
error associated with the most important group of
cells. Furthermore, the precise form how the e; are
computed in terms of the errors for its individual
cells will not be relevant for the ongoing discus-
sion, although a natural choice may be a standard
quadratic cost function for each of them.

We will also assume that the e; have a finite
range of variation (this is the standard situation
when using non-linear neuron activation functions
such as sigmoids), which we set for convenience be-
tween 0 and 1.

The objective function Fy was first introduced
by Moscato and Klasnogor [6] within a Simulated
Annealing approach using a learning by example
scheme. Our aim here is to show that En has also
all the right properties to be used by a Neural Net-
work trained with the backpropagation algorithm.

In fact, even before solving the recursive rela-
tions (4) we can already get the flavor of the hierar-
chical structure of (3) with the help of the following

property

En(e1, .. ei—1,1, €541, ..
= Ei_l(el,...

'aeN)

seim1)+ N —i4+ 1. (5)

This implies that, in a situation where the i-th hi-
erarchy group is assigned a very large error (e; = 1)
the cost function becomes independent of the values
€it1,- -+, €N, meaning that En will become insen-
sitive of the correctnes of these higher groups. The
total error will only lower if the error e; is lowered
in the first place.

Solving the recursive relations (4) we get

i

ai:ei"‘iej H (1 —ep), (6)

J=1  k=j+1

so the cost function (3) can be rewritten as

Computation of the derivatives 0En/Oe; is a
necessary step in order to apply the backpropa-
gation algorithm with this objective function. In
addition, it will also provide more information on
the analytic structure of Ey. We get the following
expressions

OF N
aN = 1+> JJa-en),
€1 ‘
7=2 k=2
9B N J
e = 1+‘Z IT t—ew
=1+l k=i+1
i—1
X (1—ep), (1<i<N)
=1
%Bx _ Tla-«
661\/ o @

Here we see again the hierarchical behavior of the
cost function: the dependence of En on e; tends to
vanish if any of the previous errors ey,...,e;_1 is
still very large, i.e.

OEN

0
Be; — for

e; =1, with j<i (9)

Another important property of En is the fact
that all its derivatives are positive definite in the
range of variation of the e = (eg),

OEN N
de, >0, Veel0,1]
OEN N
Be. >0, Ve€]0,1)

(10)

which implies that En possesses only one (absolute)
minimum, Jocated at e = 0, as it should be.
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3 Learning binary addition

Here we will use the above objective function for
training a Neural Network to compute the addition
of pairs of numbers in a binary representation. This
example, which has also been addressed via a Sim-
ulated Annealing approach [7], fits well in the kind
of problems where the output of the network can be
categorized: between two output cells it is clearly
more important the one representing a higher order
bit, since failing to predict it correctly will produce
a larger error in the predicted sum. So, in this
example, it seems natural to consider as many hier-
archical classes as there are cells in the output, the
top hierarchy being assigned to the highest order
bit.

We have trained a net to perform binary addi-
tion of pairs of 4-bit numbers. This amounts to
24 . 24 = 256 possible sums. We used for the train-
ing a subset of 64 randomly chosen sums. The net
performance was tested by asking it to predict the
remaining 192 sums.

The network arquitecture contained an input
layer of 8 units, two hidden layers of 17 and 10
units respectively, and an output layer of 5 units.
For every selection of training and testing subsets
we performed backpropagation one time with the
above hierarchical function Es (5 hierarchical lev-
els) and a second time with the (non-hierarchical)
quadratic cost function Egq.

The results confirmed the intuitive idea that the
hierarchical function should do better. We have il-
lustrated it with the help of the so-called confusion
matriz. This is just a plot where each sum tested by
the net is represented by a point whose coordinates
are given by the correct and the predicted values
for the sum. Good predictions would thus generate
highly diagonal confusion matrices. Figures 1 and
2 are plots of the confusion matrix for a typical run
corresponding £ and Eq, respectively. The points
are actually represented by circles of variable sizes.
The size of a circle is proportional to the multiplic-
ity of the point it represents (i.e, it is proportional
to the number of patterns that share the same cor-
rect and predicted sum). It can be noticed that the
hierarchical confusion matrix (figure 1) is notably
more regular and shows less dispersion around the
diagonal than the non-hierarchical one (figure 2).

A complementary view is provided by the his-
tograms in figures 3 and 4 which display the num-
ber of patterns that have failed their prediction by
a given amount. Again, the hierarchical case (fig-
ure 3) clearly beats the non-hiearchical one (figure
4) by showing a less dispersed shape. Notice also
an awkward feature in figure 4 where errors tend to
pile together in even number (i.e. it is much more
common to fail the prediction by 2, 4,..., than by
1, 3,...). This is probably a consequence that it is
quite simple for the net to learn the lowest order
bit of the sum, as it only depends on the lowest
order bits of the two input numbers. So, in the
non-hierarchical case this bit is almost always cor-
rect although it is actually the less important one.
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Figure 1: Confusion matrix for hierarchical (Es) Figure 3: Histogram for hierarchical (Es) cost
cost function function
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Figure 2: Confusion matrix for non-hierarchical Figure 4: Histogram for non-hierarchical (Eg)
(Eg) cost function cost function





