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The minimization quadratic error criterion which gives rise to the back-propagation algorithm is studied
using functional analysis techniques. With them, we recover easily the well-known statistical result which
states that the searched global minimum is a function which assigns, to each input pattern, the expected
value of its corresponding output patterns. Its application to classification tasks shows that only certain
output class representations can be used to obtain the optimal Bayesian decision rule. Finally, our method
permits the study of other error criterions, finding out, for instance, that absolute value errors lead to

medians instead of mean values.

1. Introduction

During the last few years neural networks have
become increasingly popular. Their ability to clas-
sify and predict from examples is what has made
them most interesting. Among the different types
of networks, the ones which have found more appli-
cations are the feed-forward nets whose training is
based in the minimization of a squared error crite-
ria, to the greatest extent using some version of the
famous back-propagation algorithm.

From the point of view of statistics, supervised
learning is just a synonymous of regression, and it
is well-known that the regression “line” which min-
imizes the quadratic error criterion is the function
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formed by the expectation values of the outputs con-
ditioned to the inputs. In this work we make use
of functional derivatives to find this unconstrained
global minimum, which easily allows for the mini-
mization of more involved error criterions. As an
example, we have studied the error functions in the
form of an absolute value to any positive integer
power.

Once the theoretical unconstrained global min-
imum has been found, it is possible to investigate
the role played by the representation given to the
training output patterns, especially when the num-
ber of different possible outputs is finite (e.g. in clas-
sification tasks). For instance, we shall show that
unary output representations are the simplest choice
to achieve Bayesian decisions, but not the only one,
and that binary output representations should never
be used, since they lead to a loss of information
which induces errors in the interpretation of the final
outputs.
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It must be stressed that our results will be derived
with the only assumption that global minima are
possible to be calculated, without any reference to
the intrinsic difficulty of this problem nor to its
dependence on the shape of the net; in fact, it needs
not be a neural network. That is, the word “net”
should be understood as a short form for “big enough
family of functions”.

2. Analytical Interpretation of the
Net Output

Let (&, ¢) € X x Z denote a certain pair of input-
output patterns which has been produced with a
given experimental setup. Since the sets X’ and Z are
arbitrary, it is convenient to represent each pattern
by a real vector in such a way that there is a one-
to-one correspondence between vectors and feature
patterns. We will make use of the vectors x € R™
for the input patterns and z(x) € R™ for the output
ones.

If {(x#,z*),p = 1,...,N} is a representative
random sample of pairs input-output, our goal is to
find the net

o:x € R” — o(x) € R™ (2.1)

which closely resembles the unknown correspondence
process. The least squares estimate produces the
lowest mean squared error E[o], where

Elo] = 5 }:ZA (z*, x*)(oi(x*) — 2')?. (2.2)
pu=1i=1

Usually the A; functions are set to 1. However,

there are times in which it is useful to weight each

contribution to the error with a term depending on

the pattern. For instance, if the values of the desired

outputs are known with uncertainties o;(z#, x*), the
right fitting or “chi-squared” error should be

Blol= 35 (2 “)2 A
2N e oi(z#, x+
A typical example occurs when we want to estimate
a model using a histogram with k* events in the
puth bin, o = 1,...,N. In this case, the least
squares method3 is used to obtain the model from
the minimization of

N ‘. 0) — kH
Xz(e) — Z (o(x ) 0) k )2 (2.4)

i
p=1 k

where @ are the parameters to be estimated. (In

Eq. (2.4) we have taken a(k*, x*) ~ v/k#, which is

a valid approximation for large values of k#).
Under the three hypothesis that:

(i) the different measurements (p = 1,...,N)
are independent (i.e. viewed as probability
theory objects, they define independent ran-
dom variables),

(ii) the underlying probability distribution of
the differences o;(x*) — 2! has zero mean,

» =0,Vu, and
(iii) that, for instance, the mean square devia-
tions o, are uniformily bounded, o, < K,
for all 4 = ., N (actually, in order
to make use of Kolmogorov’s theorem it is
enough that 2 %4 < 400, for any N},

the Strong Law of Large Numbers applies (see Refs. 4
and 7). It tells us that, with probability one (i.e. in
the usual almost-everywhere convergence, common
to the theory of functions and functional analysis)
the limiting value of Eq. (2.2) for large N is given by

Efo]= % ; /R dx /R dzp(z, ©)\i(s, )

X [oi(x) - 2,']2

_—_-;- ;/R”dxp(x)/ﬂxmdzp(zlx)/\i(z’ X)
x [0s(x) — 2]? (2.5)

where p(z, x) is the joint probability density of
the random variables z and x in the sample, p(x)
stands for the probability density of x, and p(z|x)
is the conditional probability density of z, knowing
that the former random variable has taken on the
value x.

Notice that the first two of the conditions for
the validity of the strong law of large numbers are
naturally satisfied in most cases. In fact, while
the first one is equivalent to the usual rule that
the practical measurements must be always done
properly (which is generally assumed), the second
just tells us that the net should also be constructed
conveniently in order to fulfill the goal of closely
resembling the unknown correspondence process (see
above). But we also take for granted that we will
always be able to do this in the end. The third
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condition, however, is of a rather more technical
nature and seems to be difficult to realize from
the very begining (or even at the end, in a strict
sense!). In practice, we should check whether a
posteriori is fulfilled for a large enough N, and
to convince ourselves that there is no reason (in
this case) for it to be violated at any value of N.
We do think that this condition prevents one from
being able to consider the use of the strong law
of large numbers, as something that can be “taken
for granted” in the general situation described in
this paper. This comment should be considered
as a warning against the apparently indiscriminate
application of the law which can be found sometimes
in the related literature.

Assuming no constraint in the functional form of
o(x), the minimum o*(x) of E is easily found by
annulling the first functional derivative:

6E ™ o ’ ,
Sor) = 2o e X901 [ deptalON G %)

X [0;(x") — 2]6;;6(x — x')
= p(x) [ dap(ai);(z, 2)los(x) - )

= p(x)[0;(x)(X; (2, X))x — (Aj(Z, x)2;)x]
-0 (2.6)

implies that the searched minimum is

(A (2, X)z;)x

of(x) = ,
700 = 0 0
Vx € R" such that p(x) # 0,
i=1...,m (2.7

where we have made use of the conditional ezpecta-
tion values

(@ 0= [ dn(elfmx) (@8

i.e. the average of any function f of the output
vectors z, once the input pattern x has been fixed.
Equation (2.7) is the key expression from which
we can derive the possible interpretations of the
net output. An alternative proof can be found for
instance in Ref. 11.

From a practical point of view unconstrained
nets do not exist, which means that the achievable
minimum 6(x) is in general, different to the desired

0*(x). The mean squared error between them is
written as

(6] = %; /R dxp(x) /R  dap(alx)Ai(z, %)
x [6:(x) — of (x)]°. (2.9)

However, it is straight forward to show (using
Eq. (2.7)) that

Elo] = ¢[o] + %g/lt" dxp(x) /IR'" dzp(z|x) )i (z, x)
x [z; — o} (x))? (2.10)

and, since the second term of the sum is a constant
(it does not depend on the net), the minimizations
of both E[o] and ¢[o] are equivalent. Therefore, 6(x)
is a minimum squared-error approximation to the
unconstrained minimum ¢*(x).

In the rest of this paper we will limit our study
to problems which satisfy \;(z,x) = 1, Vi, Vz, Vx.
In fact, they cover practically all the applications
of back-propagation, since the training patterns are,
most of the times, implicitly regarded as points
without error bars. Then, Eq. (2.7) gains the simpler
form

05(x) = (2zj)x = /]R"' dzp(zix)z;, j=1,...,m.
(2.11)
It means that the unconstrained minimum of

N m
Elo] = % ,;1 ;(Oi(x“) — 22 (2.12)

is, for large N, the conditional ezpectation value or
mean of the output vectors in the training sample for
each input pattern represented by x € R™.

In a particular case, if the output representation
is chosen to be discrete, say

z(x) € {z(1, 2z, ... 2(?) ]} (2.13)
then Eq. (2.11) reads
oi(x) =Y PEDX)LY, j=1,...,m (214)

where P(2z(%)|x) is the probability of z(*) conditioned
to the knowledge of the value of the input vector x.
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3. Unary Output Representations and
Bayesian Decision Rule

It is well known that nets trained to minimize
Eq. (2.12) are good approximations to Bayesian clas-
sifiers, provided a unary representation is taken for
the output patterns.®:12:14 That is, suppose the input
patterns have to be separated in C different classes
Xe,a=1,...,C, and let

1 a-1 a a4+l
2 =0,...,0,1,0,...,0) (31

be the desired output of any input pattern x € A,.
This assignment specializes each output component
to recognize a distinct class (m = C). Substituting
Eq. (3.1) in Eq. (2.14) we get

ou(x) = Y Pa®x)2{" = P(lx)  (3.2)
b

i.e. the ath component of the net output turns out
to be a minimum squared approximation to the
conditional probability that pattern x belong to class
X,. Therefore, if 6(x) is the output of the net once
the learning phase has finished, a good proposal for
an almost Bayesian decision rule would be:

x is most likely a member of class &}, where
0p(x) is the largest component of the output
vector 6(x).

The applicability of Eq. (3.2) goes beyond classi-
fications. For example, suppose that you have a cer-
tain Markov chain {s;, t € N} of discrete states with
constant transition probabilities, and you train a net
to learn s, as a function of s;_1,...,s;_,. Hence, the
output of the net will tend to give these transition
probabilities P(s¢|s;_1,...,S¢t—-), which by hypoth-
esis do not depend on t.

4. Other Discrete Output
Representations

In the previous section we showed how nets can solve,
among others, classification problems through the
use of unary output representations. The role played
by these representations is fundamental, not because
they give the right solution easily but because the
output contains all the information needed to make
a Bayesian decision. In fact, it is easy to find other
representations for which some of the information
will be unavoidably lost. For instance, consider a

binary representation for a four classes classification
task:

z(1) = (0, 0)
z(?) = (1, 0)
4.1
z(3) = (0, 1) (1)
zW=(1,1).
Then, Eq. (2.14) leads to
o} (x) = P(z?|x) + P(z¥|x) (42)
o3(x) = P(z®|x) + P(z¥|x) ’
with the normalization condition
4
> P@Ex) =1. (4.3)

a=1

Equations (4.2) and (4.3) constitute an indetermi-
nated linear system of three equations with four un-
known conditional probabilities. The situation will
be the same whenever a binary output representa-
tion is taken. Thus, they should be avoided if useful
solutions are required.

Of course, unary representations are not the only
possible choice to find useful solutions. For exam-
ple, a “thermometer” representation® for the same
problem could be

z) = (0, 0, 0)
z?) = (1, 0, 0) (4.4)
z®) =(1, 1, 0) ’
zZ%=(1,1,1)
which has as solutions
P(zM)[x) = 1 - 0}(x)
Pz |x) = o*(x) — 0%(x
(2®]x) = of(x) — 03(x) (45)

P(z®)|x) = 03(x) — 05(x)
P(zM|x) = 0§(x).

The interest towards these representations comes
from the need of discretizing continuous out-
put spaces. Simulations shown that binary repre-
sentations were more difficult to be learned than
thermometer-like ones. However, it is not so clear
that those who selected them have interpreted their
results in a proper way: expressing the outputs in
terms of conditional probabilities, and deciding as
correct output the class of maximal probability.
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The final conclusion is that, in the discrete and
finite case, it is always possible to make an approxi-
mated Bayesian decision. To do this, it is needed to
obtain all the P(z(*)|x) as functions of all the 03(x),
j=1,...,m, from Eq. (2.14). This requires a ma-
trix inversion, which implies that the representation
{zM),...,2(©)} should be chosen in such a way that
the linear system

r C
> PE®x)P = o} (x),
b=1

) a=1,...,d, d€ {C -1,C} (4.6)

c

Z P(z®|x) =1 needed if d = C — 1

\ b=l

has a non null determinant (which guarantees the ex-
istence of a solution). Usually, the number of output
neurons is taken as C — 1, since the normalization
condition (5, P(z®)|x) = 1) has to be fulfilled.
However, it is also possible to use C output neurons
if the resulting outputs are properly normalized to
be interpreted as probabilities (for instance, due to
the approximations introduced by the net, the nor-
malization condition may not be satisfied, thus in-
validating their interpretation).

5. An Example of Learning with
Different Discrete Qutput
Representations

In order to compare what happens when different
discrete output representations are considered, we
have designed the following example, which from
now on we will refer to as the “Four Gaussians
Problem”. Suppose we have one-dimensional real
patterns belonging to one of four possible differ-
ent classes. All the classes are equally probable,
P(class a) = 1/4,a = 1,...,4, and their respec-
tive distributions p(x|class a) are normal N(m, o)
with averages m and standard deviations o given in
Table 1 (see also Fig. 1). Knowing them, the needed
conditional probabilities are given by the Bayes
theorem:

p(x|class a)
4 k]

Z p(x|class b)
b=1

P(class alx) = a=1,...,4.

We have trained three neural networks to classify
these patterns using as many different output rep-
resentations: unary, binary and real, as defined in
Table 2. All the networks had one input unit, two
hidden layers with six and eight units respectively;
and four output units in the unary case, two in the
binary case and one in the real case. The activations
functions were sigmoids, and back-propagation was
not batched, i.e. the weights were changed after the
presentation of each pattern.

Table 1. Averages and stand-
ard deviations of the normal
probability densities for the
“Four Gaussians Problem”.

Class m o
1 0.0 0.997
2 0.8 0.878
3 4.0 2.732
4 —-0.8 1.333

0.5
——— Class 1
——————————— Class 2
---~ Class 3
04 ——- Class 4
=
@ 03
(]
©
z
g
© 02
o
0.1
0.0 LS
8.0 12.0

Input

Fig. 1. Probability densities for the “Four Gaussians
Problem”.

Table 2. Three representations for the “Four
Gaussians Problem”.

Class Unary Binary Real

1 (1,0,0,0) (0,0) (1/8)
2 (0,1,0,0) (0,1) (3/8)
3 (0,0,1,0) (1,0) (5/8)
4 (0,0,0,1) 1,1) (7/8)
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—— Unary predicted = Bayes
--~- Unary NN
-8.0 -4.0 0.0 4.0 8.0
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Fig. 2. Predicted and neural network classifications
for the “Four Gaussians Problem” using unary output
representations.

0.5 T

—— Predicted
---- NN

1st output unit

_________________

Input

Fig. 3. First output unit state for the “Four Gaussians
Problem” using the unary output representation.

In Fig. 2 we have plotted the expected Bayesian
classification (solid line), which according to Eq. (3.2)
should coincide with the minimum using unary out-
put representation together with a solution given by
the back-propagation algorithm using the same rep-
resentation (dashed line). Both lines are almost the
same, but the net assigns the forth class to patterns
lower than —5.87 when it should be the third one.

This discrepancy is easily understood if one realizes
that the probability of having patterns below —5.87
is about 4.92 x 1078, which means that the number
of patterns generated with such values is absolutely
negligible. Thus, the net cannot learn patterns which
it has not seen! This insignificant mistake appears
several times in this section, but will not be com-
mented any more. The conclusion is that the pre-
diction and simulation agree fairly well, and since
the theoretical output is the Bayes classifier, neural
nets achieve good approximations to the best solu-
tion provided that the different classes are encoded
using a unary output representation.

To show that neural nets really approach Eq. (3.2)
we have added Fig. 3, which shows a plot of both the
predicted conditional probability and the learnt out-
put of the first of the four output units. It must
be taken into account that to make approximations
to Bayesian decisions you just have to look at the
unit which gives the largest output, but you do not
need their actual values. However, in the Markov
chain example previously proposed, figures would be
necessary.

When using binary and real representations, one
has to decide which outputs should go to each
class. For instance, the most evident solution for the

—— Unary predicted = Bayes
------------ Binary predicted
—— - Real predicted
-8.0 -4.0 0.0 4.0 8.0

Input

Fig. 4. Predicted classifications for the “Four Gaus-
sians Problem”. Only the unary output representation
achieves the desired Bayes classification, whereas both
binary and real representations give the wrong answer
for certain values of the inputs.
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—— Binary predicted
,,,,,,,,,,,, Binary NN1
——~ Binary NN2

-8.0 -4.0 0.0 4.0 8.0
Input

Fig. 5. Predicted and neural network classifications
for the “Four Gaussians Problem” using binary output
representations.

Class

—— Real predicted
---- RealNN

-8.0 -4.0 0.0 4.0 8.0
Input

Fig. 6. Predicted and neural network classifications
for the “Four Gaussians Problem” using real output
representations.

binary case is to apply a cut at 0.5 to both output
units, assigning 0 if the output is below the cut and
1 otherwise. For the real representation a logical
procedure would be the division of the interval [0, 1]
in four parts of equal length, say [0, 0.25], [0.25, 0.50],
[0.50,0.75] and [0.75,1], and then assign 1/8, 3/8,
5/8 and 7/8 respectively. These interpretations

have been exploited in Fig. 4, where we have plot-
ted the expected results for the “Four Gaussians
Problem” in the three cases of Table 2, according
to Eq. (2.14). The three lines coincide only in the
input regions in which the probability of one class
is much bigger than that of the rest. Both binary
and real cases fail to distinguish the first class in the
interval [—0.76, 0.29]. Moreover, the real case incor-
rectly assigns the third class in the interval [-2.27,
—0.84] instead of the forth. The narrow peak at
[2.20,2.27] of the binary representation is just an
effect of the transition between the third and the
second classes, which are represented as (1,0) and
(0,1) respectively, making very difficult that both
output units cross the cut simultaneously in opposite
directions.

Figures 5 and 6 show both the predicted and
neural networks classifications when binary and real
representations are employed. Two examples for the
binary neural network outputs are shown, with the
expected peaks around 2.23, either as a transition
through (1,1), as in NN1, or through (0,0), as in
NN2.

6. Continuous Output Representations

Discrete and finite output representations arise quite
naturally in the treatment of classification prob-
lems. For each class, an arbitrary but different vec-
tor is assigned and, taking into account the system
Eq. (4.6), the best way of doing it is by imposing
linear independence of this set of vectors. Now,
with the aid of a sample of patterns, we will be
able to determine good approximations to the condi-
tional probabilities for the classification of patterns,
thus by knowing them, Bayesian decisions will be
immediate.

On the other hand, prediction and interpolation
tasks usually amount to finding the “best” value
of several continuous variables for each given input.
One possible but unsatisfactory solution is the dis-
cretization of these variables, which has to be made
carefully in order to skip various problems. If the
number of bins is too big, the number of training
patterns will become very large. However, if the size
of the bins is relatively big, then the partitioning
may fail to distinguish relevant differences, especially
if the output is not uniformly distributed. There-
fore, it could be stated that a good discretization
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needs a fair understanding of the unknown output
distribution!

Fortunately, neural nets have proven to work
well even when the output representation is left
to be continuous, without any discretization. For
instance, feed-forward networks have been applied
to time series prediction of continuous variables,
out-performing standard methods.!®> The explana-
tion to this success lies precisely in Eq. (2.11), which
reveals the tendency of nets to learn, for each input,
the mean of its corresponding outputs in the train-
ing set. Thus, the net is automatically doing what
everyone would do in the absence of more informa-
tion, i.e. substituting the sets of points with common
abscissa by their average value.

To illustrate that learning with neural networks
really tends to give the minimum squared error solu-
tion given by Eq. (2.11), we have trained them with a
set of patterns distributed as the dots in Fig. 7. The
solid line is the theoretical limit, while the dashed
lines are two different solutions found by neural nets.
The first one has been produced using the ordinary
sigmoidal activation function, while in the second
they have been replaced by sinusoidal ones (scaled
between 0 and 1). In most of the input interval the
three curves are very similar. However, the sigmoidal
one fails to produce the peak located at about —0.5.

Output

Fig. 7. Predicted and neural network outputs. Two dif-
ferent nets have been tested, one with ordinary sigmoidal
activation functions and the other with sinusoidal ones.

This is in favour of recent results!® which show that
sinusoidal activations can solve difficult task which
sigmoidal cannot, or can but with much more epochs
of training.

7. Study of Other Error Criterions

In all previous sections the study has been concen-
trated in the minimization of the quadratic error
function Eq. (2.12). However, other quantities may
serve the same purpose, such as

N m
Efol= o X Y lox) — sl (7)

p=1i=1

For instance, in Ref. 10 the authors modify the error
measure during the learning in order to accelerate its
convergence, changing it in a continuous way from
E;[o] to Eq[o].

Repeating the scheme of Sec. 2, the large N limit
of Eq. (7.1) is

E4lo] = %;/};ﬁ dx p(x) /1.&'" dz p(z|x)

x |oi(x) — 2|7 (7.2)

and its unconstrained minimum o*(x; ¢) is found
by annulling the first functional derivative. The
solutions for the different values of g satisfy the
following equations:

Sy (q . 1) 03 (x; )1~

k=0
X (") = 0

g—1
St (131 s g
k=0

x (sign(oj(x; q) — 2)(2))*)x =0 if g odd.
(7.3)

if g even,

The most interesting case is that of ¢ = 1 due to
the fact that Eq. (7.3) acquires the simplest form

(sign(0}(x; 1) — 2;))x =0 (7.4)

which may be written as

0 (x;1) o0
[ oo = [ s,

—00 o;.‘(x;l

j=1,...,m (7.5)
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where p(;y(z;, X) is the jth marginal distribution of
p(z, x). Therefore, the minimization of F[o] has as
solution the function that assigns to each input x, the
median of its corresponding outputs in the training
set.

The usefulness of this result lies in that both the
median and the mean are, among others (e.g. the
mode), different estimators of the centre of a distri-
bution. The sample mean is the most obvious and
the most frequently used of these estimators. How-
ever, if the distribution is not normal, this is not the
best estimator, and in some cases (e.g. the double-
exponential distribution) the median becomes the
best choice.’

8. Conclusions

We have proved that the squared error criterion
which is used in the back-propagation algorithm has
an unconstrained global minimum which, from a
statistical point of view, is the “line” of the means
of the outputs for each input pattern. Thus, neural
networks tend to give this solution, since their ability
to form very precise and complex maps is well-
known. In fact, neural nets can approximate any
sufficiently well-behaved function provided that the
number of units is large enough (see Refs. 1, 2, 8
and 9 for several theorems on the approximation of
functions with neural networks).

From the previous result, it is easy to recover
the possibility to achieve estimates to the optimal
Bayesian classifiers, especially when the represen-
tation of the output classes is unary. Other output
representations have been investigated and compared
with the unary one, showing that only a certain set
of all the possible representations have the capability
of making approximations to the Bayesian decisions.
Moreover, we show that binary output representa-
tions should be avoided in order to obtain correct
solutions.

Finally, other error criterions have been stud-
ied, the most interesting one being the sum of ab-
solute values instead of their squares. For it, the
unconstrained giobal minimum is the “line” of the

medians, which is a centrality measure as good as the
mean or even better for many output distributions.
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