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Abstract

In this paper we propose a new method to prevent the saturation of
any set of hidden units of a multilayer neural network. This method is im-
plemented by adding a regularization term to the standard quadratic error
function, which is based on a repulsive action between pairs of patterns.
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1 Introduction

Consider a multilayer neural network consisting of L layers with nq, ..., ny units
respectively. The equations governing the state of the net are
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where & @ represents the state of the neurons in the ¢-th layer, {wz(f)} the weights

between units in the (¢ — 1)-th and the ¢-th layers, 92@ the threshold of the i-th
unit in the /-th layer, and ¢ is the activation function, usually taken to be the
sigmoid
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This kind of network may be seen as a composition of ¢ — 1 functions:
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Therefore, if we have a certain set of input patterns {&* € R™ | u=1,...,p},

we can study how the shape of the distribution changes when it is introduced in
the net.

The parameters pertaining to multilayer neural networks are usually set with
the aid of a learning algorithm such as back-propagation [6] or any of its variants,
which make use of the steepest descent method and of the chain rule so as to
minimize the squared error function
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where z* is the desired output for the input o, and E(L)(a:“) is its corresponding
output through the net.

A phenomenon which may arise due to the use of sigmoidal units is the sat-
uration of the outputs of some of the hidden units. By saturation we mean that
the output of a neuron is almost constant for most of the input patterns, since the
activations they generate are far beyond the ‘linear’ regime of the sigmoid. This
behaviour should not represent any problem in most of the cases. Nevertheless,
if the net has to minimize the loss of information from layer to layer, satura-
tion should be avoided. This is what happens, for instance, in self-supervised
back-propagation and, in particular, in data compression.

Self-supervised back-propagation is the particular case of back-propagation
performed with desired outputs equal to their inputs (z# = x*, u=1,...,p).
Thus, the net carries out an unsupervised learning of the input distribution. From



a theoretical point of view, it is most interesting to note that in the simplest
case, i.e. with just one hidden layer, linear activation functions and ny < nq, self-
supervised back-propagation is equivalent to principal component analysis [7].
This means that the network projects the input distribution onto the span of its
first ngy principal components, thus capturing as much information as possible in
a linear case. One step forward consists in using sigmoidal activation functions,
which introduce non-linearities [8]. However, it can be shown that neither one nor
two hidden layers suffice to allow the non-linearities to improve the information
preservation [4, 9].

Self-supervised back-propagation applied to a multilayer network with a hid-
den layer carrying a minimum number of units can be used for data compres-
sion. For instance, this method was successfully employed by Cottrell, Munro
and Zipser to the problem of image compression [1]. They trained a multilayer
net, whose architecture was L = 3, ny = nzg = 64 and ny = 16, with patterns
consisting of cells 8 x 8 pixels chosen randomly on a certain image.

In general, supposing that the activations of the hidden units are discretized
to a precision lower than or equal to the number of grey-levels of the inputs, the
resulting net can be decomposed into

Input € [0, 1]™ ELN Compressed € [0, 1]"# LN Output € [0, 1],
where the ‘bottle-neck’ layer is the H-th one, and

fe = f(H>o.--of(2),
fa = f(L)o...of(H+1)

are the compression and decompression functions respectively. It is clear that,
since the bottle-neck layer should carry as much information of the input distri-
bution as possible, saturation becomes a dangerous problem.

In the next section we will introduce a new regularization term to prevent the
saturation of any set of hidden units. Our method could be applied whenever
this situation is detected. To study the effects of this term we have applied it, in
Sect. 3, to the example of image compression with neural nets [1], to see if the
quality of the decompressed images are improved.

2 Saturation and a regularization term

Suppose that we have detected that a subset of units in a certain hidden layer
are saturated. To simplify the notation, we will consider that these are all the ng
units in the H-th hidden layer. As a consequence, we know that the distribution
{.ﬁ'(H)(a:“) , i =1,...,p} fails to fill all the available space [0, 1]"# and hence a
lot of information is lost (the ideal solution would be a flat distribution).

The solution we propose is the addition of a regularizarion term to the
quadratic error F of eq. (1.3), in a similar fashion to the case of weight decay [2],
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but with a completely different aim (weight decay is mainly used to control the
size of the weights). More precisely, we introduce a repulsive term between pairs
of £(H ) patterns, with periodic boundary conditions in the [0, 1]™# space. That is,
our effective error function is

E + )\E(repulsive) ’ (21)

where )\ is a constant and
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The reasons why we have chosen eq. (2.2) are the following. We tried several
repulsive potentials between pairs (€ (x#), € (x)) in order to separate them
as much as possible. However, simulations showed that they tended to accumulate
half of the patterns in one ‘corner’ of the [0, 1]"# space, and the others in the
opposite one. Thus, to avoid this possibility we introduced periodic boundary
conditions, which is reflected in eq. (2.2) through the presence of the min{-, -}
function. Once this fact was realized, the absolute value repulsive term worked
much better than the rest.

The new A parameter takes into account the relative importance of the repul-
sive term with respect to the quadratic error. Its value can be adjusted by means
of bayesian techniques [3], but our computer simulations indicate that good re-
sults are obtained if X is chosen such that both errors E and E®PUsive) are of the
same order of magnitude.

A straightforward generalization consists in adding one regularization term
for each hidden layer exhibiting saturation problems, but usually it should only
be applied to the layer containing the minimum number of units.

3 Application to image compression

Let us now see the effect of the regularization term (2.2) when applied to image
compression, using the following scheme based on self-supervised back-propagation
(for simplicity we assume that the image is 1024 x 1024, with 256 grey levels):

1. A 16:25:12:2:12:25:16 multilayer neural network is initialized. In this case,
the bottle-neck layer is the fourth one.

2. A cell of 4 x 4 pixels is chosen at random on the image, and is then intro-
duced into the net as an input pattern.

3. Next, the error between the output and input patterns is back-propagated
through the net.



4. The last two steps are repeated until enough iterations have been performed.

5. f. is read as teh half of network from the input layer to the two neck
units, and f; as the other half from the bottle-neck layer to the output
units. Thus, the compression transforms a 16-dimensional distribution into
a simpler 2-dimensional one.

6. The original image is divided into its 65536 cells, 4 x 4 pixels each, and
fe is applied to all these subarrays. The two outputs per cell (the neck
states) are stored, as the compressed image. Thus, 16 pixels are replaced
by two numbers which, if stored with a precision of 1 byte each, give a
minimum compression rate of 8 (a further reversible compression method
could be applied to this compressed image, increasing by some amount the
final compression rate).

7. Once the image has been compressed, f. is discarded or used to compress
other similar images.

8. To improve the performance of f; a new 10:12:25:16 network is trained to
decompress the image, using as inputs the neck-states of a cell plus those
of their four neighbours, and as outputs the pixel values of the central cell
itself.

Fig. 1 displays the 2-dimensional compressed distribution corresponding to a
16-dimensional data distribution (obtained from four typical radiographies) after
a sufficiently large number of training steps. It is clear that the result achieved
is not the best since most of the space available is free, and the distribution is
practically 1-dimensional. The reason why this distribution takes on such a funny
shape lies in the mentioned saturation of the output sigmoids of f;. Consequently,
the loss of information is greater than desirable.

Fig. 2 shows the compressed distribution of the same data as in Fig. 1, but
after the addition of our regularization term (2.2). Although Fig. 2 is not a
truly uniform distribution, at least it now looks really 2-dimensional, and the
saturation phenomenon has disappeared. Moreover, the quadratic part E of the
regularized error (2.2) falls from £F = 115.0 in Fig. 1 to £ = 56.9 in Fig. 2).
This means that our method has moved the system away from a difficult local
minimum.

To see if the elimination of the saturation has also served for the improvement
of the quality of the decompressed images, we have applied it to the thorax in Fig.
3. Since the differences between the original image and the decompressed ones
are hard to see, it is better to show directly the absolute value of the differences
between both images. Thus, Fig. 4 corresponds to a standard self-supervised
learning, and Fig. 5 to a learning using in addition our repulsive term. Comparing
them, it is clear that less structure is lost in the second case. Moreover, the



compression rates and quadratic errors of these two images are given in Table 1.
As we can see, the inclusion of the repulsive term has the effect of decreasing the
error at expenses of decreasing also the compression rate.

Finally, we have compared the goodness of our method using the repulsive
term with the standard image compression method known as JPEG [5]. In Fig.
6 we show the result of JPEG for a compression rate nearly equal to that in Fig.
5. This compression rate and the correspondig quadratic error for this image are
also shown in Table 1, finding a similar error than using the repulsive term. From
these errors and the figures we see that the results of our method are competitive.
However, from a practical point of view, JPEG is preferable since it needs much
less CPU recurses.

4 Conclusions

We have proposed a regularization term to prevent the saturation of any set of
hidden units of multilayer neural networks, which is based on a repulsive action
between pairs of patterns. It has been tested in an example of image compression,
showing an improvement of the image quality as demonstrated by the image
difference and the quadratic error between the original image and the processed
one.
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Table captions

e Table 1: Compression rates and quadratic errors of the three methods.



‘ Method ‘ Compression Rate ‘ Error ‘

Without repulsive term 16.85 21.52
With repulsive term 10.54 14.94
JPEG 10.81 13.95

Table 1: Compression rates and quadratic errors for the three methods.



Figure captions

e Figure 1: Distribution of compressed images obtained using the self-supervised
back-propagation.

e Figure 2: Distribution of compressed images attained by means of self-
supervised back-propagation with a repulsive term.

e Figure 3: Original thorax.
e Figure 4: Difference between the original thorax and the decompressed one.

e Figure 5: Difference between the original of the thorax and the learnt using
the repulsive term.

e Figure 6: Difference between the original thorax and the compressed and
decompressed using the JPEG algorithm.
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Figure 1: Distribution of compressed images obtained using the self-supervised
back-propagation.
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Figure 2: Distribution of compressed images attained by means of self-supervised
back-propagation with a repulsive term.
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Figure 3: Thorax original.
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Figure 4: Difference between the original of the thorax and the decompressed
one.
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Figure 5: Difference between the original of the thorax and the learnt using the
repulsive term.
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Figure 6: Difference between the original of the thorax and the compressed and
decompressed using the JPEG algorithm.
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