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Abstract
Agglomerative hierarchical clustering can be implemented with several strategies that dif-
fer in the way elements of a collection are grouped together to build a hierarchy of clusters.
Here we introduce versatile linkage, a new infinite system of agglomerative hierarchical
clustering strategies based on generalized means, which go from single linkage to complete
linkage, passing through arithmetic average linkage and other clustering methods yet unex-
plored such as geometric linkage and harmonic linkage. We compare the different clustering
strategies in terms of cophenetic correlation, mean absolute error, and also tree balance
and space distortion, two new measures proposed to describe hierarchical trees. Unlike the
β-flexible clustering system, we show that the versatile linkage family is space-conserving.

Keywords Hierarchical clustering · Versatile linkage · Space distortion · Tree balance ·
Multidendrogram

1 Introduction

Agglomerative hierarchical clustering constitutes one of the most widely used methods for
cluster analysis. Starting with a matrix of dissimilarities between a set of elements, each
element is first assigned to its own cluster, and the algorithm sequentially merges the more
similar clusters until a complete hierarchy of clusters is obtained (Sneath and Sokal 1973;
Gordon 1999). This method requires the definition of the dissimilarity (or distance) between
clusters, using only the original distances between their constituent elements. The way these
distances are defined leads to distinct strategies of agglomerative hierarchical clustering.
To name just two such clustering strategies, single linkage usually leads to an elongate
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growth of clusters, while complete linkage generally leads to tight clusters that join others
with difficulty. Average linkage clustering strategies were developed by Sokal and Michener
to avoid the extreme cases produced by single linkage and complete linkage (Sokal and
Michener 1958). They require the calculation of some kind of average distance between
clusters; average linkage, for instance, calculates the arithmetic average of all the distances
between members of the clusters.

More than 50 years ago, Lance and Williams introduced a formula for integrating several
agglomerative hierarchical clustering strategies into a single system (Lance and Williams
1966). Based on this formula, they proposed β-flexible clustering (Lance and Williams
1967), a generalized clustering procedure that provides an infinite number of hierarchical
clustering strategies just varying a parameter β. Similarly, in this work, we introduce versa-
tile linkage, a new parameterized family of agglomerative hierarchical clustering strategies
that go from single linkage to complete linkage, passing through arithmetic average link-
age and other clustering strategies yet unexplored such as geometric linkage and harmonic
linkage.

Both β-flexible clustering and versatile linkage are presented here using variable-group
methods (Sokal and Michener 1958; Fernández and Gómez 2008) that, unlike pair-group
methods, admit any number of new members simultaneously into groups. In the case of
pair-group methods the resulting hierarchical tree is called a dendrogram, which is built
upon bifurcations, while in the case of variable-group methods the resulting hierarchical
tree is called a multidendrogram (Fernández and Gómez 2008), which consists of multifur-
cations, not necessarily binary ones. Here we use the variable-group algorithm introduced
in Fernández and Gómez (2008) that solves the non-uniqueness problem, also called the
ties in proximity problem, found in pair-group algorithms (Sneath and Sokal 1973; Hart
1983; Day and Edelsbrunner 1984). This problem arises when there are more than two clus-
ters separated by the same minimum distance during the agglomerative process. Pair-group
algorithms break ties between distances choosing a pair of clusters, usually at random. How-
ever, different output dendrograms are possible depending on the criterion used to break
ties. Moreover, very frequently results depend on the order of the elements in the input data
file, which is an undesired effect in hierarchical clustering except for the case of contiguity-
constrained hierarchical clustering, which is used to obtain a hierarchical clustering that
takes into account the ordering on the input elements. The variable-group algorithm used
here always gives a uniquely determined solution grouping more than two clusters at the
same time when ties occur, and when there are no ties, it gives the same results as the
pair-group algorithm.

Section 2 reviews the β-flexible family of hierarchical clustering strategies, while
Section 3 introduces the versatile linkage family. Four case studies are used in Section 4
to perform a descriptive analysis of different hierarchical clustering strategies in terms
of cophenetic correlation, mean absolute error, and the proposed new measures of space
distortion and tree balance. Finally, some concluding remarks are given in Section 5.

2 β-Flexible Clustering

In any procedure implementing an agglomerative hierarchical clustering strategy, given a
set of individuals � = {x1, x2, . . . , xn}, initially each individual forms a singleton cluster,
{xi}, and the distances D({xi}, {xj }) between singleton clusters are equal to the dissimi-
larities between individuals, d(xi, xj ). During the subsequent iterations of the procedure,
the distances D(XI , XJ ) are computed between any two clusters XI = ⋃

i∈I Xi and
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XJ = ⋃
j∈J Xj , each one of them made up of several subclusters Xi and Xj indexed by

I = {i1, i2, . . . , ip} and J = {j1, j2, . . . , jq}, respectively. Lance and Williams introduced
a formula for integrating several agglomerative hierarchical clustering strategies into a sin-
gle system (Lance and Williams 1966). The variable-group generalization of Lance and
Williams’ formula, compatible with the fusion of more than two clusters simultaneously, is:

D(XI , XJ ) =
∑

i∈I

∑

j∈J

αijD(Xi,Xj )+

+
∑

i∈I

∑

i′ ∈ I
i′ > i

βii′D(Xi,Xi′) +
∑

j∈J

∑

j ′ ∈ J
j ′ > j

βjj ′D(Xj ,Xj ′), (1)

where the values of the parameters αij , βii′ , and βjj ′ determine the nature of the clustering
strategy (Fernández and Gómez 2008). This formula is combinatorial (Lance and Williams
1967), i.e., the distance D(XI ,XJ ) can be calculated from the distances D(Xi,Xj ),
D(Xi,Xi′) and D(Xj ,Xj ′) obtained from the previous iteration and it is not necessary to
keep the initial distance matrix d(xi, xj ) during the whole clustering process.

Based on Eq. 1, Lance and Williams (1967) proposed an infinite system of agglomerative
hierarchical clustering strategies defined by the constraint

∑

i∈I

∑

j∈J

αij

︸ ︷︷ ︸
α

+
∑

i∈I

∑

i′ ∈ I
i′ > i

βii′ +
∑

j∈J

∑

j ′ ∈ J
j ′ > j

βjj ′

︸ ︷︷ ︸
β

= 1, (2)

where −1 � β � +1 generates a whole system of hierarchical clustering strategies for the
infinite possible values of β. Given a value of β, the value for αij can be assigned following
a weighted approach as in the original β-flexible clustering based on WPGMA (weighted
pair-group method using arithmetic mean) and introduced by Lance and Williams (1966),
or it can be assigned following an unweighted approach as in the β-flexible clustering based
on UPGMA (unweighted pair-group method using arithmetic mean) and introduced by Bel-
bin et al. (1992). The standard WPGMA and UPGMA strategies are obtained from weighted
and unweighted β-flexible clustering, respectively, when β is set equal to 0. The differ-
ence between weighted and unweighted methods lies in the weights assigned to individuals
and clusters during the agglomerative process: weighted methods assign equal weights to
clusters, while unweighted methods assign equal weights to individuals. In unweighted
β-flexible clustering, the value for αij is determined proportionally to |Xi ||Xj |:

αij = |Xi ||Xj |
|XI ||XJ | (1 − β), (3)

where |Xi | and |Xj | are the number of individuals in subclusters Xi and Xj , respec-
tively, and |XI | and |XJ | are the number of individuals in clusters XI and XJ , i.e.,
|XI | = ∑

i∈I |Xi | and |XJ | = ∑
j∈J |Xj |. In a similar way, the value for βii′ is calculated

proportionally to |Xi ||Xi′ |, and the value for βjj ′ proportionally to |Xj ||Xj ′ |:

βii′ = |Xi ||Xi′ |
σI + σJ

β, (4)

σI =
∑

i∈I

∑

i′ ∈ I
i′ > i

|Xi ||Xi′ | = 1

2

(

|XI |2 −
∑

i∈I

|Xi |2
)

. (5)
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The corresponding values for weighted β-flexible clustering are:

αij = 1

|I ||J | (1 − β), (6)

βii′ = 1

σI + σJ

β, (7)

σI = |I | (|I | − 1)

2
= |I |2 − |I |

2
, (8)

where |I | and |J | are the number of subclusters contained in clusters XI and XJ , respec-
tively. These formulas derive from the unweighted ones when we take |Xi | = 1, ∀i ∈ I ,
and |Xj | = 1, ∀j ∈ J .

3 Versatile Linkage

Arithmetic average linkage clustering iteratively forms clusters made up of previously
formed subclusters, based on the arithmetic mean distances between their member individ-
uals; for simplicity and to avoid confusion, we will denote it arithmetic linkage instead of
the standard term average linkage. Substituting the arithmetic means by generalized means,
also known as power means, this clustering strategy can be extended to any finite power
p �= 0:

Dp(XI ,XJ ) =
⎛

⎝ 1

|XI ||XJ |
∑

x∈XI

∑

y∈XJ

[d(x, y)]p
⎞

⎠

1/p

=
⎛

⎝ 1

|XI ||XJ |
∑

i∈I

∑

j∈J

|Xi ||Xj |[Dp(Xi,Xj )]p
⎞

⎠

1/p

. (9)

We call this new system of agglomerative hierarchical clustering strategies as versatile link-
age. As in the case of β-flexible clustering, versatile linkage provides a way of obtaining an
infinite number of clustering strategies from a single formula. The second equality in Eq. 9
shows that versatile linkage can be calculated using a combinatorial formula, from the dis-
tances Dp(Xi, Xj ) obtained during the previous iteration, in the same way as Lance and
Williams’ recurrence formula given in Eq. 1.

The decision of what power p to use could be taken in agreement with the type of dis-
tance employed to measure the initial dissimilarities between individuals. For instance, if
the initial dissimilarities were calculated using a generalized distance of order p, then the
natural agglomerative clustering strategy would be versatile linkage with the same power p.
However, this procedure does not guarantee that the dendrogram obtained is the best accord-
ing to other criteria, e.g., cophenetic correlation, mean absolute error, space distortion or tree
balance (see Section 4). A better approach consists in scanning the whole range of parame-
ters p, calculate the preferred descriptors of the corresponding dendrograms, and decide if
it is better to substitute the natural parameter p by another one. This is especially important
when only the dissimilarities between individuals are available, without coordinates for the
individuals, as is common in multidimensional scaling problems, or when the dissimilarities
have not been calculated using generalized means.
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3.1 Particular Cases

The generalized mean contains several well-known particular cases, depending on the value
of the power p, that deserve special attention. Some of them reduce versatile linkage to the
most commonly used methods, while others emerge naturally as deserving further attention:

• In the limit when p → −∞, versatile linkage becomes single linkage (SL):

Dmin(XI , XJ ) = min
x∈XI

min
y∈XJ

d(x, y) = min
i∈I

min
j∈J

Dmin(Xi,Xj ). (10)

• In the limit when p → +∞, versatile linkage becomes complete linkage (CL):

Dmax(XI ,XJ ) = max
x∈XI

max
y∈XJ

d(x, y) = max
i∈I

max
j∈J

Dmax(Xi,Xj ). (11)

There are also three other particular cases that can be grouped together as Pythagorean
linkages:

• When p = +1, the generalized mean is equal to the arithmetic mean and arithmetic
linkage (AL), i.e., the standard average linkage or UPGMA, is recovered.

• When p = −1, the generalized mean is equal to the harmonic mean and, therefore,
harmonic linkage (HL) is obtained.

• In the limit when p → 0, the generalized mean tends to the geometric mean. Hence,
the distance definition for geometric linkage (GL) is:

Dgeo(XI , XJ ) =
⎛

⎝
∏

x∈XI

∏

y∈XJ

d(x, y)

⎞

⎠

1/(|XI ||XJ |)

=
⎛

⎝
∏

i∈I

∏

j∈J

[Dgeo(Xi, Xj )]|Xi ||Xj |
⎞

⎠

1/(|XI ||XJ |)
. (12)

To show the effects of varying the power p in versatile linkage clustering, we have built
a small dataset with four individuals: Alice, Bob, Carol, and Dave, which lay on a straight
line, separated between them by distances equal to 7, 9, and 12 units, respectively. Table 1
gives the pairwise distances between the four individuals, and Fig. 1 shows some multiden-
drograms obtained varying the power p in versatile linkage clustering. Alice and Bob are
always grouped together forming the first binary cluster, at a distance equal to 7.00. For
values of the exponent p ∈ (−∞, 0), the Alice-Bob cluster is joined with Carol’s singleton
cluster at distances that range between 9.00 and 12.00. More precisely, this distance takes
values 9.00 for SL (p → −∞), 11.52 for HL (p = −1) and 12.00 when we approach
GL (p → 0−). For larger values of the exponent, p > 0, this distance becomes larger

Table 1 Sample pairwise
distances between four
individuals

Alice Bob Carol Dave

Alice 0 7 16 28

Bob 0 9 21

Carol 0 12

Dave 0
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Fig. 1 Effects of varying the power p in versatile linkage clustering for the sample distances in Table 1.
Computations performed using the MultiDendrograms software (Gómez and Fernández 2018), with the pre-
cision parameter equal to 2 significant decimal digits. In MultiDendrograms, to avoid the infinite range
of the exponent p, a sigmoidal transformation is performed such that the parameter used is within the
range [−1.0,+1.0], with values −1.0, − 0.1, 0.0, + 0.1, and + 1.0 representing SL, HL, GL, AL, and CL,
respectively. When p = 0 (GL), the gray band shows the existence of a tie between distances

than 12.00, thus Carol joins instead in a cluster with Dave at their distance 12.00. The
remaining cluster for p ∈ (−∞, 0), which joins the Alice-Bob-Carol cluster with Dave,
happens at heights 12.00 (SL), 18.00 (HL), and 19.18 (p → 0−), respectively. For the range
p ∈ (0,+∞), the clusters Alice-Bob and Carol-Dave join at heights 17.06 (p → 0+),
18.50 (AL), and 28.00 (CL), respectively.

GL (p = 0) lays between these two structurally different dendrograms, represented as
“(((Alice,Bob),Carol),Dave)” and “((Alice,Bob),(Carol,Dave)).” Using pair-group agglom-
erative clustering methods, we would assign one of these two possible dendrograms to GL,
thus breaking the tied pairs (Alice,Bob)-Carol and Carol-Dave (both at distance 12.00) ran-
domly; this is an example of the ties in proximity (non-uniqueness) problem mentioned
above. With the variable-group approach (Fernández and Gómez 2008), we join them at
once forming the multidendrogram “((Alice,Bob),Carol,Dave),” where the three clusters
join at distance 12.00, with a band going up to distance 24.25 to represent the heterogeneity
of the new cluster, 24.25 being the distance between the clusters (Alice,Bob) and Dave (see
middle multidendrogram in Fig. 1). This simple example shows the ability of versatile link-
age to cover structurally different hierarchical clustering structures, including at the same
time the traditionally important methods of SL, AL, and CL.
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3.2 Weighted Versatile Linkage

Weighted clustering was introduced by Sokal and Michener (1958) in an attempt to give
merging branches in a hierarchical tree equal weight regardless of the number of individuals
carried on each branch. Such a procedure weights the individuals unequally, contrasting
with unweighted clustering that gives equal weight to each individual in the clusters.

In weighted versatile linkage strategies, the distance between two clusters XI and XJ is
calculated by taking the generalized mean of the pairwise distances, not between individuals
in the initial distance matrix, but between component subclusters in the matrix used during
the previous iteration of the procedure, thus Eq. 9 being replaced by:

Dp(XI , XJ ) =
⎛

⎝ 1

|I ||J |
∑

i∈I

∑

j∈J

[
Dp(Xi,Xj )

]p

⎞

⎠

1/p

. (13)

3.3 Absence of Inversions

Versatile linkage strategies are monotonic, that is, they do not produce inversions. An inver-
sion or reversal appears in a hierarchy when the hierarchy contains two clusters X and Y

for which X ⊂ Y but the height of cluster X is higher than the height of cluster Y (Murtagh
1985; Morgan and Ray 1995). Inversions make hierarchies difficult to interpret, specially if
they occur during the last stages of the agglomeration process.

The monotonicity of versatile linkage strategies is explained by the Pythagorean means
inequality,

min � HM � GM � AM � max, (14)

where HM stands for the harmonic mean, GM for the geometric mean, and AM for the
arithmetic mean. In the general case given by Eqs. 9 and 13, the generalized mean inequality
holds:

Dp(XI , XJ ) � Dq(XI ,XJ ), ∀p < q, (15)

and Dp(XI ,XJ ) = Dq(XI , XJ ) if, and only if, the initial distances d(x, y) are equal
∀x ∈ XI and ∀y ∈ XJ . Supposing that at a certain step of the clustering procedure the
minimum distance between any two subclusters still to be merged is equal to δ, then the
distance D(Xi,Xj ) between any two subclusters to be included in different clusters, Xi ⊆
XI and Xj ⊆ XJ , will be necessarily greater than δ, otherwise subclusters Xi and Xj

would be merged into the same cluster. In particular, Dmin(XI , XJ ) > δ. Therefore, taking
into account the generalized mean inequality in Eq. 15, and given that in the limit when
p → −∞ we have Dp(XI ,XJ ) = Dmin(XI ,XJ ), we can conclude that Dp(XI , XJ ) > δ,
∀p, which proves the absence of inversions of versatile linkage strategies.

4 Descriptive Analysis of Hierarchical Trees

We have selected four case studies, drawn from the UCI Machine Learning Repository
(Lichman 2013), for a descriptive analysis of several agglomerative hierarchical clustering
strategies. Table 2 summarizes the main characteristics of these datasets. The values of the
variables in these datasets show different orders of magnitude; therefore, all the variables
have been scaled first, and then, the corresponding dissimilarity matrices have been built
using the Euclidean distance between all pairs of individuals.
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Table 2 Characteristics of the
selected datasets Dataset Instances Features

Breast tissue (Jossinet 1996) 106 9

Iris (Fisher 1936) 150 4

Wine (Aeberhard et al. 1992) 178 13

Parkinsons (Little et al. 2009) 195 22

For the comparison of the hierarchical clustering strategies, we have chosen the following
methods: β-flexible with β = +0.9, to avoid the completely flat hierarchical trees obtained
with β = +1; versatile linkage with p → −∞, i.e., SL; centroid method; versatile linkage
with p = −1, i.e., HL; versatile linkage with p → 0, i.e., GL; versatile linkage with
p = +1, which is the same as β-flexible with β = 0, i.e., AL; versatile linkage with
p → +∞, i.e., CL; Ward’s minimum variance method (Ward 1963); and β-flexible with
β = −1. This selection includes five variants of versatile linkage, three of them equivalent
to traditional methods (SL, AL, and CL) and the other two introduced in this work (HL and
GL), and three variants of β-flexible clustering, one of them equivalent to AL.

Weighted and unweighted versions of the hierarchical clustering strategies have been
used. Although weighting has no effect on SL and CL, we have included both of them
for visual convenience in all the figures depicted next. The software used to run these
experiments is MultiDendrograms (Gómez and Fernández 2018), which from version 5.0
implements all the hierarchical clustering strategies analyzed here and it also computes the
necessary descriptive measures.

4.1 Cophenetic Correlation

The cophenetic correlation coefficient (CCC) measures the similarity between the distances
in the initial matrix and the distances in the final ultrametric matrix obtained as result of a
hierarchical clustering procedure (Sokal and Rohlf 1962). The ultrametric distance between
two individuals is represented in a dendrogram by the height at which those two individuals
are first joined. The CCC is calculated as the Pearson correlation coefficient between both
matrices of distances; thus, the closer to 1, the largest their similarity.

In the analysis shown in Fig. 2, the CCC is higher for Pythagorean linkages (i.e., HL,
GL and AL), and also the unweighted clustering strategies generally perform better than the
weighted ones, corroborating the empirical observation already stated by Sneath and Sokal
(1973). In the case of the almost flat hierarchical trees obtained with β-flexible clustering
when β = +1, the CCC is very close to 0.

4.2 Mean Absolute Error

The CCC is a bounded measure that does not take into account how different the magnitudes
of the distances in the initial matrix are from the distances in the final ultrametric matrix.
For this reason, in Fig. 3 we show the normalized mean absolute error (MAE), which takes
into account this type of differences. Note that in the case of the Iris dataset, Ward’s method
and β-flexible clustering with β = −1 showed a very good CCC in Fig. 2, while their MAE
observed in Fig. 3 are the worst ones. As a matter of fact, β-flexible clustering with β = −1
yields results orders of magnitude worse than all the other methods, for the four datasets
shown in Fig. 3. The best results are obtained again with Pythagorean linkages, and also
unweighted clustering strategies are slightly better than the weighted ones.
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β=+0.9 SL Centroid HL GL AL CL Ward β=−1.0
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Fig. 2 Cophenetic correlation coefficient (CCC). Weighted and unweighted versions of the clustering
strategies are compared

4.3 Space Distortion

For any agglomerative hierarchical clustering strategy, the initial distances between individ-
uals may be regarded as defining a space with known properties (Lance and Williams 1967).
When clusters begin to form, if the new distances between clusters are kept within the limits
of the same space, then the original model remains unchanged and the clustering strategy
is referred to as space-conserving. Otherwise, the clustering strategy is referred to as space-
distorting. According to the formalization of the concept of space distortion (Dubien and
Warde 1979), a clustering strategy is said to be space-conserving if

min
i∈I

min
j∈J

D(Xi,Xj ) � D(XI ,XJ ) � max
i∈I

max
j∈J

D(Xi, Xj ). (16)

On the contrary, a clustering strategy is space-contracting if the left inequality, delimited
by SL, is not satisfied; and a clustering strategy is space-dilating if the right inequality,
delimited by CL, is not satisfied. For space-contracting clustering strategies, as clusters
grow in size, they move closer to other clusters. This effect is called chaining and it refers to
the successive addition of elements to an ever expanding single cluster (Lance and Williams
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Fig. 3 Normalized mean absolute error (MAE), in logarithmic scale. Weighted and unweighted versions of
the clustering strategies are compared

1967). Space-dilating clustering strategies produce the opposite effect, i.e., clusters moving
further away from other clusters as they grow in size.

To numerically assess space distortion, we propose a space distortion ratio (SDR) mea-
sure, calculated as the quotient between the range of final ultrametric distances, u(xi, xj ),
and the range of initial distances, d(xi, xj ):

SDR(u, d) = max u(xi, xj ) − min u(xi, xj )

max d(xi, xj ) − min d(xi, xj )
. (17)

The SDR is equal to 1 for CL; thus, this value separates space-conserving hierarchical trees
from space-dilating ones. Figure 4 shows the SDR values corresponding to our four case
studies. The outstanding differences between initial distances and ultrametric distances in
the case of Ward’s method and β-flexible clustering with β = −1, already observed in
Fig. 3, allow the classification of both hierarchical clustering methods as space-dilating.
With regard to weighting, it cannot be stated that neither weighted nor unweighted clustering
strategies produce more space distortion: it depends on the particular dataset.

In Fig. 4 it can also be observed the increasing space distortion when β decreases in
β-flexible clustering, or when the power p increases in versatile linkage clustering. Both
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Fig. 4 Space distortion ratio (SDR), in logarithmic scale. Weighted and unweighted versions of the clustering
strategies are compared

parameters, β and p, work as cluster intensity coefficients in their respective clustering
systems. In the case of versatile linkage, the increasing space distortion when the power
p increases is explained by the generalized mean inequality in Eq. 15. Therefore, taking
also into account that, according to Eq. 16, space-conserving clustering strategies are lower
bounded by SL (p → −∞) and upper bounded by CL (p → +∞), we can state that
versatile linkage defines an infinite system of space-conserving strategies for agglomerative
hierarchical clustering.

4.4 Tree Balance

We use the concept of entropy from information theory, more concretely Shannon’s entropy
(Shannon 1948), to introduce a new measure to assess the degree of homogeneity in size of
the clusters in a hierarchical tree. Given a cluster XI , we define its entropy as

HI = −
∑

i∈I

pi log|I |(pi), (18)
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where pi = |Xi ||XI | is the proportion of individuals in cluster XI that are also members of sub-
cluster Xi . Next, we define the tree balance, H , of a hierarchical tree as the average entropy
of all its internal clusters. The maximum tree balance is equal to 1 and it is obtained, for
instance, for a completely flat hierarchical tree with a single cluster containing the N indi-
viduals in the collection. Another example of hierarchical trees with maximum tree balance
are the regular m-way trees obtained when applying the Baire-based divisive hierarchi-
cal clustering algorithm on a collection of sequences with uniformly distributed prefixes
(Bradley 2010; Contreras and Murtagh 2012). On the contrary, the minimum tree balance,
Hmin, corresponds to a binary tree where individuals are chained one at a time:

Hmin = 1

N − 1

[

log2(N) +
N−1∑

n=2

1

n + 1
log2(n)

]

. (19)

Now, we can define the normalized tree balance (NTB) as

NTB = H − Hmin

1 − Hmin
, (20)
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Fig. 5 Normalized tree balance (NTB). Weighted and unweighted versions of the clustering strategies are
compared
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which becomes a measure with values between 0 and 1. Figure 5 shows the NTB values
obtained for our case studies. Similarly to space distortion, tree balance increases when
β decreases in β-flexible clustering, or when the power p increases in versatile linkage
clustering. In the case of the almost flat hierarchical trees obtained with β-flexible clustering
when β = +1, the NTB is very close to 1. Finally, according to the values observed in
Fig. 5, it cannot be stated that neither weighted nor unweighted clustering strategies produce
hierarchical trees that are more balanced.

5 Conclusions

Agglomerative hierarchical clustering methods have been continually evolving since their
origins back in the 1950s, and historically they have been deployed in very diverse appli-
cation domains, such as geosciences, biosciences, ecology, chemistry, text mining, and
information retrieval, among others (Murtagh and Contreras 2017a). Nowadays, with the
advent of the big data revolution, hierarchical clustering methods have had to address the
new challenges brought by more recent application domains that require the hierarchical
clustering of thousands of observations (Murtagh and Contreras 2017b).

In this work, we have introduced versatile linkage, an infinite family of agglomera-
tive hierarchical clustering strategies based on the definition of generalized mean. We have
shown that the versatile linkage family contains as particular cases not only the tradition-
ally important strategies of single linkage, complete linkage, and arithmetic linkage, but
also two new clustering strategies such as geometric linkage and harmonic linkage. In addi-
tion, we have given both weighted and unweighted versions of these hierarchical clustering
strategies, and we have proved the monotonicity of versatile linkage strategies, which guar-
antees the absence of inversions in the hierarchy. Although we have built versatile linkage
upon the multidendrograms variable-group methods to ensure the uniqueness of the clus-
tering, it may also be used with the common pair-group approach just by breaking ties
randomly.

We have shown that any descriptive analysis of hierarchical trees in terms of cophenetic
correlation should be complemented with the use of other measures capable of describing
the space distortion that different hierarchical clustering strategies cause. Under this point
of view, we have shown that it is helpful to use other measures such as the mean absolute
error or the space distortion ratio. The latter, in addition, provides a way to describe numer-
ically the increase in space distortion observed all along a system of hierarchical clustering
strategies such as versatile linkage.

Space distortion is inversely proportional to clustering intensity: space-contracting clus-
tering strategies drive systems to cluster very weakly and produce a chaining effect, while
space-dilating clustering strategies drive systems to cluster with high intensity and pro-
duce very compact clusters. These differences are described by the normalized tree balance
measure introduced here, which is based on Shannon’s entropy. Tree balance and space dis-
tortion are two new descriptive measures meant to be helpful to analyze and understand any
hierarchical tree.

The β-flexible clustering also integrates an infinite number of agglomerative hierarchical
clustering strategies into a single system, driven by a parameter β that works as a cluster
intensity coefficient. However, to the best of our knowledge, no one has rigorously defined
yet a range of values of β for which the corresponding β-flexible clustering strategies can
be regarded as space-conserving. Unlike the β-flexible clustering system, we have shown
that the versatile linkage family is space-conserving.
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