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Abstract

In this paper we apply a heuristic method based on artificial neural networks (NN) in order to trace out the efficient
frontier associated to the portfolio selection problem. We consider a generalization of the standard Markowitz mean-
variance model which includes cardinality and bounding constraints. These constraints ensure the investment in
a given number of different assets and limit the amount of capital to be invested in each asset. We present some
experimental results obtained with the NN heuristic and we compare them to those obtained with three previous
heuristic methods. The portfolio selection problem is an instance from the family of quadratic programming problems
when the standard Markowitz mean-variance model is considered. But if this model is generalized to include
cardinality and bounding constraints, then the portfolio selection problem becomes a mixed quadratic and integer
programming problem. When considering the latter model, there is not any exact algorithm able to solve the
portfolio selection problem in an efficient way. The use of heuristic algorithms in this case is imperative. In the past
some heuristic methods based mainly on evolutionary algorithms, tabu search and simulated annealing have been
developed. The purpose of this paper is to consider a particular neural network (NN) model, the Hopfield network,
which has been used to solve some other optimisation problems and apply it here to the portfolio selection problem,
comparing the new results to those obtained with previous heuristic algorithms.
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1. Introduction

In the portfolio selection problem, given a set of available securities or assets, we want to find out
the optimum way of investing a particular amount of money in these assets. Each one of the different
ways to diversify this money between the several assets is called a portfolio. For solving this portfolio
selection problem, Markowitz [1] presented the so-called mean-variance model, which assumes that the
total return of a portfolio can be described using the mean return of the assets and the variance of return
(risk) between these assets. The portfolios that offer the minimum risk for a given level of return form
what it is called the efficient frontier. For every level of desired mean return, this efficient frontier gives
us the best way of investing our money.

However, the standard mean-variance model has not got any cardinality constraint ensuring that every
portfolio invests in a given number of different assets, neither uses any bounding constraint limiting
the amount of money to be invested in each asset. This sort of constraints are very useful in practice.
In order to overcome these inconveniences, the standard model can be generalized to include these
constraints.

In this paper we focus on the problem of tracing out the efficient frontier for the general mean-
variance model with cardinality and bounding constraints. In previous work, some heuristic methods
have been developed for the portfolio selection problem. There are some methods that use evolutionary
algorithms [2-6], tabu search (TS) [2,7] and simulated annealing (SA) [2,8,9]. Here we present a different
heuristic method based on artificial NN. The results obtained are compared to those obtained using three
representative methods from [2] based on genetic algorithms (GA), TS and SA.

Following this introduction, in Section 2, we present the model formulation for the portfolio selection
problem. Section 3 describes the Hopfield NN as well as the way to use it for solving this problem. In
Section 4, we present some experimental results and, in Section 5, we finish with some conclusions.

2. Portfolio selection

First of all, as we introduce the notation that we are going to use in this paper, let us remember the well
known Markowitz mean-variance model [1] for the portfolio selection problem. Let N be the number of
different assets, y; be the mean return of asset i, g;; be the covariance between returns of assets i and j,
and let 2 € [0, 1] be the risk aversion parameter. The decision variables x; represent the proportion of
capital to be invested in asset i. Using this notation, the standard Markowitz mean-variance model for the
portfolio selection problem is

N N N
minimise 4 Z Z xjoijxj |+ 1 —=2) |:— Z ﬂixi:| (D

i=1 j=1 i=1
N
subject to Y " x; =1, )
i=1
0<x;<1, i=1,...,N. (3)

The case with 1 = 0 represents maximising the portfolio mean return (without considering the variance)
and the optimal solution will be formed only by the asset with the greatest mean return. The case with
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Fig. 1. Standard efficient frontier corresponding to the smallest benchmark problem.

/.= 1 represents minimising the total variance associated to the portfolio (regardless of the mean returns)
and the optimal solution will typically consist of several assets. Any value of A inside the interval (0, 1)
represents a tradeoff between mean return and variance, generating a solution between the two extremes
Z=0and 1.

Since every solution satisfying all the constraints (feasible solution) corresponds with one of the possible
portfolios, from here on we will speak without distinguishing between solutions for the above problem
and portfolios.

The portfolio selection problem is an instance of the family of multiobjective optimisation problems.
So, one of the first things to do is to adopt a definition for the concept of optimal solution. Here we will
use the Pareto optimality definition [10]. That is, a feasible solution of the portfolio selection problem will
be an optimal solution (or nondominated solution) if there is not any other feasible solution improving
one objective without making worse the other.

Usually a multiobjective optimisation problem has several different optimal solutions. The objective
function values of all these nondominated solutions form what it is called the efficient frontier. For the
problem defined in Eqgs. (1)—(3), the efficient frontier is an increasing curve that gives the best tradeoff
between mean return and variance (risk). In Fig. 1 we show an example of such a curve corresponding to
the smallest benchmark problem described in Section 4. This efficient frontier has been computed taking
2000 different values for the risk aversion parameter 4 and solving exactly the corresponding portfolio
selection problems. The objective function values of the resulting solutions give the 2000 points that form
the curve in Fig. 1. We call this curve the standard efficient frontier in order to distinguish it from the
general efficient frontier, corresponding to the general mean-variance portfolio selection model which
we describe next.

With the purpose of generalizing the standard Markowitz model to include cardinality and bounding
constraints, we will use a model formulation that can be also found in [2,7,11]. In addition to the previously
defined variables, let K be the desired number of different assets in the portfolio with no null investment,
¢ and o; be, respectively, the lower and upper bounds for the proportion of capital to be invested in
asset i, with 0<¢; <9; <1. The additional decision variables z; are 1 if asset i is included in the portfolio
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and O otherwise. The general mean-variance model for the portfolio selection problem is

N N
minimise 4 Z Z xjoijxj | + (1 —=2) |:— Z ,uixij| 4)
i—1 j i=1

i=1 j=l1

N
subject to Z xi =1, (5)
i=1

N
Y u=K, 6)
i=1

6zi <x;<9dzi, i=1,...,N, @)
ziz€{0,1}, i=1,...,N. (8)

This formulation is a mixed quadratic and integer programming problem for which efficient algorithms
do no exist. Another difference with the standard model is that in the presence of cardinality and bounding
constraints the resulting efficient frontier, which we are going to call general efficient frontier, can be
quite different from the one obtained with the standard mean-variance model. In particular, the general
efficient frontier may be discontinuous [2,11].

3. The Hopfield network
3.1. Energy function

There are two main approaches for solving combinatorial optimisation problems using artificial NN:
Hopfield networks and Kohonen’s self-organizing feature maps. While the latter are mainly used in
Euclidean problems, the Hopfield networks have been widely applied in different classes of combina-
torial optimisation problems [12]. Although the problem at hand is not a combinatorial optimisation
one, we take advantage of the fact that the objective function in Eq. (4) has the same form than the
energy function in Hopfield networks and, consequently, it will be minimised if we follow the Hopfield
dynamics.

The Hopfield network [13] is an artificial NN model with a single layer of neurons fully connected. That
is, all the neurons are connected to each other as well as to themselves. The N variables in the problem
are represented by N neurons in the network and, given that the proportion of capital to be invested in
each asset i has been called x;, the state of neuron i will be represented by x;. Using this notation, the
energy function for the Hopfield network has the following form:

1 N N
E(x) = — E Z Z XiWjjX;j — Z bl-xl-, (9)

where b; is the constant external input (bias) for neuron i and wj; is the weight of the synaptic connection
from neuron i to neuron j.
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Now, looking at the objective function of the portfolio selection problem

N N N
FO =0 xioijx; [+ (1= 1) [— > u,-x,} (10)
i=1

i=1 j=I
and just comparing it with the energy function, we get the values for the synaptic weights
wi; = —270; (11
and the external inputs

bi = (1= Dpy;. (12)
3.2. Network dynamics

From here on let us consider that we work with discrete time. So, if the state of neuron i at time ¢ is
represented by x;(¢), the equations that govern the dynamics of the Hopfield network are

xi(t + 1) = G;(hi(1)), (13)

where £;(¢) is the input to neuron i at time #:

N
hi(t)=2wjixj'(l)+bi (14)
j=l1

and G; is the activation function, for which we use the sigmoid:
+ O — &
1+ exp(=p(hi = 7))

with a gain > 0 and a centring constant y. In our simulations y has been assigned the middle value
between the maximum and the minimum initial inputs %; (0). ¢ and 0; are used to ensure that the outputs
of the sigmoid fall inside the interval [¢;, J;], as it is required by the constraint in Eq. (7).

For the rest of the subsection let us suppose, without loss of generality, that all the lower bounds take
the same value (¢ = ¢) and all the upper bounds are also identical (J; = 9).

The output vector in a Hopfield network represents the solution for the problem at hand. This vector
lies inside the hypercube [¢, ]V . The stability of the network can be proved defining the so called energy
function for the network and proving that its time derivative is nonincreasing.

The nonlinear nature of the Hopfield network produces multiple equilibrium points. For any given set
of initial conditions x (0), the symmetric Hopfield network (with w j; =wy; ;) will converge towards a stable
equilibrium point. When the network is deterministic, the position of that point is uniquely determined
by the initial conditions: all the initial conditions that lie inside the attraction field of an equilibrium
point will converge asymptotically towards that point. The exact number of equilibrium points and their
positions are determined by the network parameters w;; and 5. When the gain f is small, the number of
equilibrium points is low (possibly as low as 1) and they lie inside the hypercube [¢, ]V . Nevertheless,
as the gain increases, the number of equilibrium points also increases and their positions move towards
the vertices of the hypercube. When the gain tends to its extreme values (f — 40o0), the equilibrium

Gi(hi) =¢i (15
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points reach the hypercube vertices and are maximum in number. In this case, the energy function for the
network has the form shown in Eq. (9).

In this work we update the neurons asynchronously, that is, only one neuron at a time. The neurons to
be updated are selected randomly. This way of updating does not change the positions of the equilibrium
points in the network, but it does change the descending path through the energy surface. So, initial
conditions that originally were attracted to a particular equilibrium point, can be attracted towards a
different equilibrium point when using asynchronous updating.

For solving the portfolio optimisation problem we have implemented a Hopfield network with gains
f changing through time [14] and avoiding the saturation of the activation function G;. The gains used
are such that the image interval of the terms f(4;(0) — y) in Eq. (15) widens linearly from [—10, +10] to
[—20, 4-20]. The initial gain values produce few equilibrium points, so, regardless of the initial conditions,
the network converges towards these points. Then, as time passes, gains are linearly increased, producing
energy surfaces with a higher number of equilibrium points and moving these equilibrium points towards
the vertices of the hypercube [¢, 6]".

Another problem that must be addressed is the possibility of convergence of the symmetric Hopfield
network (w;; = w;;) to cycles of length 2. In order to avoid this undesired behaviour in our network
dynamics, the following discrete model can be used:

N
xi(t+ 1) =0 —o)x )+ G | Y wjixj(t) +bi (16)
j=1

with o; € (0, 1]. In [15] it is shown that periodic points that are not fix points can appear, specially when
all ; = 1. But if synaptic weights are symmetric (w;; = w;;) and w;; > — (2 — ;) /(«; ), then the above
discrete model has the sequential dynamics convergent to fix points for any o; € (0, 1]. Since the synaptic
weights w;; are fixed from the beginning and the gains f are linearly increased, given any particular pair
of values w;; and 5, what we must do is to give a value to o; satisfying the previous condition.

3.3. Constraints satisfaction

When solving any optimisation problem using a Hopfield network, the problem constraints usually
appear in the energy function. However, in our case it is not necessary.

First, regarding the constraint x; € [g;, ;] in Eq. (7), we can say that it will be satisfied using as the
activation function a sigmoid such as the one in Eq. (15), since its outputs already lie inside the desired
interval.

To satisfy the cardinality constraint in Eq. (6) we begin our heuristic algorithm with a NN having
3K /2 neurons that follow the already explained Hopfield dynamics. Doing so, we get a minimum for the
objective function. Next thing to do is pruning the least representative neuron, that is, the one with the
smallest output. Then we update this new network (with one less neuron) following the same Hopfield
dynamics. These two steps, neuron pruning and objective function minimisation, are repeated until the
network has exactly K neurons. These remaining neurons are a solution for our original portfolio selection
problem.

We are only left to consider the constraint in Eq. (5). To satisfy this constraint we evaluate the feasibility
of every portfolio using the same greedy algorithm that has been used in [2], which changes the proportions
of capital x; to be invested in each selected asset, in order to ensure, if possible, that all constraints are
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satisfied. In a first step the algorithm assigns to all x; corresponding to a selected asset its lower limit
& plus a fraction proportional to its current value. This ensures that all the constraints relating to the
lower bounds are satisfied. In a second iterative step the algorithm takes all the selected assets exceeding
their respective upper limit J; and fixes them up to these upper limits. Then the rest of the selected
assets that are not fixed up, are given a new value for x; ensuring the lower bounds ¢ and adding a
fraction of the free portfolio proportion. This iterative process is repeated until there is no asset out of its
limits.

The only thing that we have changed in this greedy algorithm is the insertion of the current candidate
solution into the set H with all the Pareto optimal solutions. In [2], the current solution is added to the set
H only when it decreases the best objective function value found until that moment. Afterwards, when the
heuristic method finishes, all the dominated solutions are removed from H. But this policy can leave out
of this set solutions which are Pareto optimal. For example, let us consider the case with a risk aversion
parameter A =1/2. If we first evaluate a solution a with variance of return equal to 0.001 and mean return
equal to 0.005, then the objective function value for a is f(a) = —0.002. Now, if we evaluate in second
place a solution b with variance of return 0.004 and mean return 0.006, the objective function value for
bis f(b) = —0.001, which is greater than f(a), so the solution b would not be added to the set H. But,
in this case, the two solutions should be included into H because both of them are Pareto optimal. What
we do in our implementation of the greedy algorithm is to include in H all the evaluated solutions and,
when the NN heuristic finishes, we remove from this set all the dominated solutions.

Bringing together all that we have said until now, in Algorithm 1 we show the NN heuristic used in
this work.

function neural_network_heuristic
AJ. increment for the risk aversion parameter
T number of iterations
M number of portfolios in the set P

returns
H  set with all the Pareto optimal portfolios
var

P set of portfolios
P.yn  candidate portfolio

begin
H =0
for 1:=0to 1byAido
P := initialise_portfolios_randomly(M) {K assets in each one of the M portfolios}
evaluate_portfolios(P, H) {greedy algorithm}

fort:=1to T by +1 do
Pcan := select_portfolio_randomly(P)
fork:=3xK/2to K +1by —1do
follow_Hopfield_dynamics(P.q;) { Pcun has k assets}
prune_worst_neuron(P.q;)
end for
follow_Hopfield_dynamics(P.4;,) {Pcun has K assets}
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evaluate_portfolio( Py, H) {greedy algorithm}
replace_maximum_portfolio( Py, P)
end for
end for
return H
end neural_network_heuristic

action follow_Hopfield_dynamics
P..,  candidate portfolio
var
R number of repetitions
begin
(7, p) := study_initial_inputs(Peyp) {central input and starting gain value}
for r := 1to R by +1 do
update_neuron(y, 8, Pean) {neuron to update selected randomly}
increase_gain_value(f)
end for
end follow_Hopfield_dynamics

Algorithm 1. Neural network heuristic.

4. Computational experiments
4.1. Definition of the experiments

In this section, we present the results obtained when searching the general efficient frontier that solves
the problem formulated in Egs. (4)—(8). We have done all the computational experiments with five sets of
benchmark data that have been already used in [2—4,7,11]. These data correspond to weekly prices from
March 1992 to September 1997 and they come from the indices: Hang Seng in Hong Kong, DAX 100 in
Germany, FTSE 100 in UK, S&P 100 in USA and Nikkei 225 in Japan. The number N of different assets
considered for each one of the test problems is 31, 85, 89, 98 and 225, respectively. The mean returns
and covariances between these returns have been calculated for the data. The sets of mean returns and
covariances are publicly available at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html.

All the results presented here have been computed, as in Ref. [2], using the values K = 10, ¢; = 0.01
and J; = 1 for the problem formulation, and the values AA = 0.02, T = 1000N and M = 100 for the
implementation of Algorithm 1. So we have tested 51 different values for the risk aversion parameter A
and each one of the four heuristics has evaluated 1000N portfolios for each value of 4, without counting
initialisations.

The general efficient frontier has been computed using the former NN and our own implementa-
tion of three other heuristic algorithms presented in [2], which are based on GA, TS and SA. Our
implementation of these additional heuristics uses the same parameter values than those presented in
Ref. [2].


http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
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We would like to notice that the computational results presented here are not directly comparable to
those presented in [2] due to the differences that exist at the moment of updating the set of Pareto optimal
solutions (explained in the previous section) and some other possible statistical fluctuations.

4.2. Results

Taking the sets of Pareto optimal portfolios obtained with each heuristic we can trace out their heuristic
efficient frontiers and compare them to the standard efficient frontiers. Doing so we get an upper bound
of the error associated to each heuristic algorithm. We show these comparisons in Fig. 2, where the five
problems are arranged by rows and the four heuristics are arranged by columns. Except for the first
problem, where all four heuristics seem to obtain similar results, at least from this macroscopic point of
view, the four major problems show a common behaviour. Looking at the portfolios with low mean return
because of the low risk allowed (high values of the risk aversion parameter 1), we can see how the NN
algorithm gets better results than the other three heuristics. But the situation changes completely when we
consider low values of / and the increase of the mean return is the main objective, regardless of the risk. The
solutions obtained in the first case consist of significant investments diversified in four or more of the K=10
assets, whilst the solutions in the second case typically have significant investments in three or less of the
K =10 assets. (Here we have applied the term “significant investment” to any investment above 1/K.)

Our explanation for the results obtained with the NN is that when the risk aversion parameter 1 takes
low values, the quadratic term in Eq. (10) decreases considerably and the objective function becomes
almost linear, being no more a proper Hopfield energy function.

Now let us take a look at some numerical results in Table 1. First of all we have the number of points
measure, which indicates how many of the portfolios evaluated by each heuristic method have persisted
and finally appear in the corresponding heuristic efficient frontier. The results show that the highest
numbers of points for all five problems come from TS, whilst the lowest numbers come from NN.

The number of points measure only gives an idea about the total number of solutions that appear in
each heuristic efficient frontier, but it does not say anything about the quality of these solutions. Now, also
in Table 1, we present three error measures, one for variances, another one for mean returns and a third
global error measure. Let the pair (v;, r;) represent the variance and mean return of a point in a heuristic
efficient frontier. Let also 0; be the variance corresponding to r; according to a linear interpolation in the
standard efficient frontier. We define the variance of return error ¢; for any heuristic point (v;, r;) as the
value 100(0; — v;)/0; (note that this quantity will always be nonnegative). The average value of all the
errors ¢; for the points in a heuristic efficient frontier gives us the variance of return error shown in Table
1. In the same way, using the mean return 7; corresponding to v; according to a linear interpolation in the
standard efficient frontier, we define the mean return error ; as the quantity 100(r; — 7;)/7;. We get the
average error for the mean returns computing the average of all the errors y;, which appears in Table 1
as the mean return error. There is not a single heuristic that gives better results than the others in any of
these two average errors. Regarding the NN results we must say that, except for the second benchmark
problem, they are worse than those obtained by the other heuristics. This is so because we are considering
all possible values of the risk aversion parameter as a whole. In the next subsection we will see how the
NN improves considerably its results when we consider only the best solutions of each heuristic.

We also give the results obtained for a third error measure defined in [2]. It is calculated averaging
the minimums between the mean return errors y; and the standard deviation of return errors ¢;, which
are similar to the variance of return errors but defined from the standard deviation of returns s;, that is,
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Table 1
Numerical results

Index Assets GA TS SA NN
Hang Seng 31 Number of points 3402 3659 2640 1108
Variance of return error 3.9576 3.9329 3.8689 4.1039
Mean return error 1.1926 1.1500 1.1574 1.4530
Minimum error 1.1321 1.1237 1.1203 1.2316
Time (s) 47 16 18 390
DAX 100 85 Number of points 1828 2292 1264 573
Variance of return error 26.1240 24.1340 26.8588 12.5914
Mean return error 2.6202 2.8490 2.6893 2.2060
Minimum error 2.4457 2.6668 2.3896 1.5776
Time (s) 162 45 47 1069
FTSE 100 89 Number of points 1284 1295 1267 426
Variance of return error 3.3464 3.1458 3.6930 4.4663
Mean return error 0.9300 0.8954 1.3127 1.9636
Minimum error 0.7310 0.7357 0.9512 1.2513
Time (s) 160 51 60 1106
S&P 100 98 Number of points 1780 2318 1779 750
Variance of return error 7.2039 7.6219 8.1602 8.3811
Mean return error 1.6130 1.4249 1.9672 2.6816
Minimum error 1.3236 1.3130 1.7251 1.7922
Time (s) 178 50 52 1211
Nikkei 225 Number of points 807 1027 984 312
Variance of return error 4.9877 3.5724 3.4830 6.5924
Mean return error 3.3931 1.1581 1.2144 3.1050
Minimum error 1.1415 0.5510 0.5458 1.4737
Time (s) 570 120 121 2827

¢@; = 100(S; — s;)/5;. We present the values correspondent to the minimum error measure in Table 1 to
allow some kind of comparison between our results and those of Ref. [2]. However, we prefer to consider
the variance of return error and the mean return error separately, because the use of the standard deviation
for the calculation of the minimum error measure does not correspond exactly with the objective function
of the problem at hand.

With regard to the computation times, the TS and the SA are the most efficient algorithms, followed by
the GA and finally by the NN. Anyway, all four time cost functions are linear with respect to the number
of assets N since the four algorithms have evaluated 1000N portfolios for each value of the risk aversion
parameter /A, and the rest of operations in the algorithms (except for the crossover procedure in the GA)
do not depend on N. The times presented in Table 1 agree with it.

4.3. Merge process

In order to improve the results obtained separately by the four heuristic algorithms, we have merged the
four heuristic efficient frontiers into a single one and we have removed from it the dominated solutions.
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Fig. 3. Contributions to the merged efficient frontiers. The variance of return (x 10%) is represented on the x-axis whilst the
mean return (x103) is represented on the y-axis. The standard efficient frontiers are drawn in grey and the contributions to the
merged efficient frontiers are drawn in black.
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Table 2
Numerical results of the merge process

Index Assets GA TS SA NN
Hang Seng 31 Number of surviving points 1015 3340 270 5
Surviving points percentage (%) 29.8 91.3 10.2 0.5
Contribution percentage (%) 21.9 72.1 5.8 0.1
Variance of return error 4.4758 3.9046 4.5314 1.2279
Mean return error 1.2438 1.1431 1.1834 1.5304
Minimum error 1.2321 1.1200 1.1167 0.3751
DAX 100 85 Number of surviving points 635 2088 291 222
Surviving points percentage (%) 34.7 91.1 23.0 38.7
Contribution percentage (%) 19.6 64.5 9.0 6.9
Variance of return error 31.1493 23.2013 32.9453 2.3004
Mean return error 2.6802 2.3492 1.8412 2.7545
Minimum error 2.6802 2.3492 1.8412 1.1326
FTSE 100 89 Number of surviving points 220 1207 666 146
Surviving points percentage (%) 17.1 93.2 52.6 343
Contribution percentage (%) 9.8 53.9 29.7 6.5
Variance of return error 5.1662 2.7487 3.8031 2.5449
Mean return error 1.1129 0.5192 0.6501 3.1171
Minimum error 0.9700 0.5160 0.6501 1.2544
S&P 100 98 Number of surviving points 370 2146 456 287
Surviving points percentage (%) 20.8 92.6 25.6 38.3
Contribution percentage (%) 114 65.8 14.0 8.8
Variance of return error 6.6434 6.3510 7.3497 5.9020
Mean return error 0.8449 0.7978 0.9405 4.7956
Minimum error 0.8349 0.7978 0.7381 2.7908
Nikkei 225 Number of surviving points 122 943 648 53
Surviving points percentage (%) 15.1 91.8 65.9 17.0
Contribution percentage (%) 6.9 53.4 36.7 3.0
Variance of return error 4.6384 3.3516 3.6212 0.7172
Mean return error 0.6399 0.5624 0.6153 4.6097
Minimum error 0.6399 0.5237 0.5002 0.3578

Then we have separated the resulting merged efficient frontier into the four parts that form it according
to the heuristic origin of the points, getting the results shown in Fig. 3. Observe that these graphs confirm
what we had already noticed in Fig. 2, which is that the NN gives better results than the other heuristics,
except for the smallest benchmark problem, when we consider high values of the risk aversion parameter
/. and, on the contrary, it gives worse solutions for low values of 4.

Continuing with the results of the merge process, let us now use the new merged efficient frontiers
to compare the quality of the initial solutions provided by each heuristic method. We take the initial
numbers of points in each heuristic efficient frontier (Table 1) and we compare them with the final
numbers of points in the merged efficient frontiers that come from the corresponding heuristic. Table
2 shows the percentage of points surviving the merge process. The initial quality of TS solutions is
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outstanding given that more than 90% of the portfolios provided by this algorithm survive the merge
process.

Next, in Table 2, we show the contribution of each heuristic to the merged efficient frontiers. As it can
be seen, more than half of the points in the merged efficient frontiers come from the TS. Nevertheless,
we would like to remember that most of these points correspond to low diversification portfolios.

Also in Table 2, we give the values obtained with the three previously defined error measures when
they are applied to the merged efficient frontiers. Limiting the error calculations only to the solutions
that pass the merge process, we observe that the NN gets the lowest variance of return errors in the five
benchmark problems, being especially good the result obtained in the second problem. With respect to
the mean return error, the situation is the opposite one and the NN gives the highest error values.

Finally notice that in the GA, TS and SA columns of the same table there are several cases where the
mean return error coincides with the minimum error. In these cases, the heuristics have the mean return
errors always lower than the standard deviation errors.

5. Conclusions

In this work we have focused on solving the portfolio selection problem and tracing out its efficient
frontier. Instead of using the standard Markowitz mean-variance model, we have used a generalization
of it that includes cardinality and bounding constraints. Dealing with this kind of constraints, the port-
folio selection problem becomes a mixed quadratic and integer programming problem for which no
computational efficient algorithms are known.

We have developed a heuristic method based on the Hopfield neural network and we have used it to
solve the general mean-variance portfolio selection model. The results obtained have been compared to
those obtained using three other heuristic methods coming from the fields of genetic algorithms, tabu
search and simulated annealing.

All the experimental results presented in this paper lead us to conclude that none of the four heuristic
methods has outperformed the others in all kinds of investment policies. Anyway, we have observed
that, when dealing with problem instances demanding proper diversification portfolios with low risk of
investment, the neural network model has given better solutions than the other three heuristic methods.
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