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Singular Value Decomposition (SVD) is a technique based on linear projection theory, which has
been frequently used for data analysis. It constitutes an optimal (in the sense of least squares)
decomposition of a matrix in the most relevant directions of the data variance. Usually, this
information is used to reduce the dimensionality of the data set in a few principal projection
directions, this is called Truncated Singular Value Decomposition (TSVD). In situations where
the data is continuously changing, the projection might become obsolete. Since the change rate
of data can be fast, it is an interesting question whether the TSVD projection of the initial
data is reliable. In the case of complex networks, this scenario is particularly important when
considering network growth. Here we study the reliability of the TSVD projection of growing

scale-free networks, monitoring its evolution at global and local scales.

Keywords: Truncated singular value decomposition; stability; evolving graph.

1. Introduction

There exists a vast literature that acknowledges
Singular Value Decomposition as a valuable tool for
information extraction from matrix-shaped data.
This approach and its truncated variant have
been extraordinarily successful in many applica-
tions [Golub & Van Loan, 1996], in particular,
for the analysis of relationships between a set of

documents and the words they contain. In
this case, the decomposition yields information
about word—word, word-document and document—
document semantic associations; the technique is
known as latent semantic indexing [Berry et al.,
1995] (LSI) or latent semantic analysis [Landauer &
Dumais, 1997] (LSA). In the field of complex net-
works, we recently introduced SVD as a useful tool
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to scrutinize the modular structure in networks
[Arenas et al., 2010].

Remarkably, a common characteristic of these
applications is their dynamic nature. In order to
attain successful information retrieval, for instance
in a query, LSI or LSA must rely on the fact
that SVD of textual resources is always up to
date. Unfortunately, databases rarely stay the same.
Addition and/or removal of information is constant,
meaning that catalogs and indexes quickly become
obsolete or incomplete. Turning to networks, the
question is equally pertinent: both natural and arti-
ficial networks are dynamic, in the sense that they
change through time (and so do their modular
structures). Paradigmatic examples of this fact are
the Internet, the World Wide Web or knowledge
databases like Wikipedia: all of them have been
object of study from a graph-theoretical point of
view [Pastor-Satorras & Vespignani, 2004; Capocci
et al., 2006; Zlati¢ et al., 2006]. Given this realis-
tic scenario, a major question arises, namely, for
how long TSVD stands as a reliable projection of
evolving data.

In this paper, we study the stability of TSVD
as applied on changing networks. In particular, we
want to quantify the differences between succes-
sive TSVD projections of evolving networks. To this
end, we devise a set of measures of global and local
reliability, and apply them to a classical model of
network growth, the Barabdsi—Albert’s (BA) scale-
free network [Barabasi & Albert, 1999]. The BA
model consists in a random network whose forma-
tion is driven by: growth, the network starts with
a small number of nodes, and a new one is added
at each time step; and preferential attachment, the
probability of a new node ¢ linking to a previously
existing node j is proportional to the current degree
of node j. This mechanism yields networks with
scale-free degree distributions P(k) = k3.

This work is partially motivated by the applica-
tion of TSVD to analyze the mesoscale of networks
and its temporal evolution. In [Arenas et al., 2010],
the object of analysis is the contribution matrixz C,
of N nodes to M modules, where a module (or
community) is a set of nodes with more connec-
tions between them than with the rest of the net-
work. The rows of C' correspond to nodes, and the
columns to modules. The analysis of this matrix
is the focus of our research. The elements C;, are
the number of links that node i dedicates to mod-
ule «, and is obtained as the matrix multiplication

between the network’s adjacency matrix A and the
partition matrix S:

N
Cia =Y _ AijSja, (1)

where Sj, = 1 if node j belongs to module «, and
Sja = 0 otherwise. Note that certain changes in the
topology might not be reflected in the values of C,
for example, the rewiring of the connections of a
node towards other nodes in the same community.
In [Arenas et al., 2010] it was supposed that the
modules were not overlapping, thus forming a par-
tition, but the same analysis could have been done
with overlapping and fuzzy memberships of nodes
to modules.

To measure the reliability of the TSVD projec-
tion of the contribution matrix, here we will con-
sider the “worst case scenario” where each node
belongs to its own community. This case corre-
sponds mathematically to C' = A. Establishing that
TSVD is robust to change in these circumstances
will settle the fact that TSVD is robust to change
on a coarse-grained structure.

2. Analysis of Networks Based on
TSVD

Given a rectangular N x M (real or complex) matrix
A, SVD stands for the factorization into the product
of three other matrices,

A=UxVT, (2)

where U is an unitary N-by-/N matrix (left singular
vectors), and describes the original row entities as
vectors of derived orthogonal factor values; ¥, the
singular values, is a diagonal N-by-M matrix con-
taining scaling values; and VT denotes the conjugate
transpose of V', an M-by-M unitary matrix, which
describes the original column entities in the same
way as U.

A practical use of SVD is dimensional reduction
approximation via truncation, TSVD. It consists in
keeping only some of the largest singular values to
produce a least squares optimal, lower rank order
approximation. For example, severe dimensional
reduction is a condition for success in machine
learning SVD applications [Deerwester et al., 1990;
Berry et al., 1995; Landauer et al., 1998].

In the case of a rank r = 2 approximation, the
first two left and right singular vectors are unique
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Fig. 1. Three snapshots of a growing network (left), their corresponding projection on R- plane (center) and the
f-overlapping matrices (right; see [Arenas et al., 2010] for details). For the sake of clarity, the initial set of nodes (a) N = 1000
are drawn in black; the second snapshot (b) represents a growth of a 30% of nodes, N = 1300, new nodes are drawn in red.
Finally (c) represents a network with N = 1800, last arrived nodes are depicted in green. Some nodes from the initial set have
been highlighted (2, 4, 5, 6, 7, 964) in the R—6 plane, to get a visual intuition of the map’s stability. Note that nodes with a
high value of R (2, 4, 5, 6, 7) remain almost unchanged throughout the topology’s growth; whereas node 964 undergoes much
change from an absolute point of view. The rightmost matrices illustrate the amount of change of nodes with respect to their
0 angles: as nodes are added in the structure the cosine overlaps between them increasingly distorting the original figure.
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(up to a sign) if the ordered singular values o; of the
matrix ¥ satisfy o1 > 09 > o3 [Golub & Van Loan,
1996]. This dimensional reduction is particularly
interesting to depict results in a two-dimensional
plot for visualization purposes. Here we suppose
that rank(A) > 2.

The idea we developed in our previous work
[Arenas et al., 2010] is to compute the projection
of the connectivity of nodes (rows in A) into the
space spanned by the first two left singular vectors,
we call this the projection space Uy and we denote
the projected vector of the ith node as n;. More
precisely, if Us is the matrix formed by the first
two columns of U, then n; is the ith row of Us,.
Given that the transformation is information pre-
serving [Chu & Golub, 2005] up to rank r = 2, the
map obtained gives an accurate representation of
the main characteristics of the original data, visu-
alizable and, in principle, easier to scrutinize. It
is important to highlight that this approach has
essential differences with classical pattern recog-
nition techniques based on TSVD such as Princi-
pal Components Analysis (PCA) or, equivalently,
Karhunen-Loeve expansions. Our data (columns of
A) cannot be independently shifted to mean zero
without losing its original meaning, this restriction
prevents the straightforward application of the men-
tioned techniques.

To interpret correctly the outcome of the TSVD
we change to polar coordinates, where for each node
1 the radius R; measures the length of its contribu-
tion projection vector n;, and 6; the angle between
n; and the horizontal axis. Large values of R cor-
respond to highly connected nodes, and 6 reflects
the adjacencies of each node in matrix A. Figure 1
shows the R—6 planes of an evolving network to get
a visual intuition of the map’s stability: as the net-
work grows the mapping is distorted. In the fol-
lowing section we develop measures to quantify the
effect of the growth on the TSVD projection.

3. Quantifying the Reliability of
TSVD on Growing Networks

As stated in the introduction, the goal of this
research is to test how TSVD projection, at rank
r = 2, changes by computing it at different stages
of the evolution of BA scale-free networks. This
implies that TSVD will be computed on an initial
network of size Ny, and then recomputed for succes-
sive node additions up to a final size Ny = 2Np. To
quantify the effect of growth on TSVD projection,

we devise two levels of study: global and local. We
will define measures based on the concept of abso-
lute and relative distances between nodes, to this
end we will work in the metric space Us.

3.1. Global measure

We propose a global quantity that indicates the
amount of change in the position of nodes in the
map obtained by TSVD. In the sequence of com-
puted TSVD projections, the nodes’ coordinates in
Us space change. This can be quantified by the dif-
ference of vectors 7n; between the initial and evolved
network projection.

In Fig. 2, we plot the projection of the growing
network presented in Fig. 1 on the space Us. We
fix our attention in two time-shots of the evolution
corresponding to growths of 30% and 80%. We com-
pute the differences between positions of the same
nodes at different stages (z) as 9; = i) —77, produc-
ing a field map that accounts for the changes. This
field map is shown in the insets of Fig. 2. When we
have a 80% increase of the initial size, the vectors
0; are longer than in the 30% increment, which evi-
dences a larger variability, i.e. a progressive degra-
dation in the TSVD reliability.

The global error (Egiobal) measure we propose to
assess successive changes of rank » TSVD projection
compared to the initial data is computed by the
expression

No r
> D luh - Uy

i=1 j=1

No r
> I

i=1 j=1

, (3)

E global —

where U” represents the truncated left singular vec-
tors of the original network with Ny nodes; and U~
also represents the truncated left singular vectors,
but of the grown network with size N, > Nj.

We have applied this global measure to monitor
the evolution of the TSVD stability for growing net-
works with initial sizes Ng = 1000 and Ny = 10 000.
Figure 3 shows the percentage of relative error with
respect to the original network. In the chart, each
successive point represents a 5% of nodes addi-
tion. Up to a 40% growth the global error remains
below 10%, and doubling the network size the aver-
age error still remains below 20%. These results
show the reliability of the projection after the grow-
ing process.
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Fig. 2. Projection in the Uy space (U(1) and U(2) are respec-
tively the first and the second components of the vectors n;)
of the evolving network presented in Fig. 1. The insets for
N = 1300 and N = 1800 trace the vectors ¥; between the pro-
jected coordinates of each node on the grown network and the
original coordinates on the initial network with Ny = 1000.
We use these vectors ¥; to quantify the variability of the
TSVD. Nodes are colored like in Fig. 1.
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Fig. 3. Global error on two growing networks with initial
sizes Ny = 1000 (above) and Ny = 10000 (below). For each
network we compute the error by increments of 5% of growth.
In both cases, the global error is lower than 10% up to the
40% increment of network size. Each point is the average of
100 simulations.

3.2. Local measure

Though informative, the previous global quantity
can overlook changes at the microscopic level.
The neighborhood of each node in the Uy plane
could undergo changes in the sequence of computed
TSVD projections difficult to be revealed by the
global measure defined above. Thus, we propose a
measure that reflects these local changes using the
distances between nodes in a neighborhood. Instead
of defining a sharp border for the neighbors of each
node, we propose to use a gaussian neighborhood
that weights the distances according to a variance o.

First, we construct the N x N matrix of dis-
tances between any pair of nodes in the network at
stage z as:

T

> (Uh— Ui, (4)

k=1

2

where U? represents the truncated left singular vec-
tors of the network. These distances reflect a mea-
sure of proximity between nodes, independently on
the global positioning in the map. The neighbor-
hood is weighted to prioritize the stability of closer
nodes over the distant ones. To this respect, we
compute a matrix of weighted distances 5% using
a gaussian distribution that establishes a radius of
influence as follows:
D72

- 2
S5 = Dije ", (5)
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Fig. 4. From top to bottom, we present the radius of influ-
ence of 0 = 0.1 (red), 0 = 1 (green) and o = 10 (blue)
in the projection space Usz. In the bottom of each chart, we
have plotted, for the nodes highlighted in yellow, the gaussian
curves that we added to matrix D* to compute the matrix
of weighted distances S~.

where we have chosen a radius of influence depend-
ing on the node. RY is the module of the projected
vector n; in the initial network, and o is a constant.
This radius of influence proportional to the distance
to the origin, emphasizes nodes with larger R which
are the most connected ones, see [Arenas et al.,
2010]. Using different values of ¢ in the gaussian
function we can tune the size of the neighborhood.
Figure 4 shows, for a network with 1000 nodes, three
magnified views of a network projection in Us to
illustrate the gaussian radius of influence.

0.04

0.03

0.02
0.01

0.04

0.03

0.02

Local error (%)

0.01

0.04

0.03
0.02
001 Todod I l
t 11 Il
0 $ E E
0 20 40 60 80
Percentage of added nodes

(a)

0.004

0.003
0.002

0.001

0.004

0.003

0.002

T TR R RN RN

0.004

Local error (%)

0.003

0.002

0.001

0 20 40 60 80
Percentage of added nodes

(b)

Fig. 5. Local error on two growing networks with initial size
(a) No = 1000 and (b) Ng = 10000. For each network we
compute the relative error for o = 0.1, 1 and 10 by increments
of 5% of growth. For small values of o the error is lower, but
in all settings, the reliability of the projection is high. Each
point is calculated with 100 simulations.
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Finally, the local error (Ejoca1) measure of relia-
bility we propose is computed as the relative error:

No Np
DIDBIEHEEH

=1 j=1
Elocal = : ]JVO No ) <6>

> IS

i=1 j=1

where S® and S? represent the matrices of weighted
distances of the original network with Ny nodes, and
the grown network with size N, > Ny, respectively.

Figure 5 shows the local error measured on two
growing networks by increments of 5% of growth.
Their initial size is (a) Ny = 1000 and (b) Ny =
10000. For each network we compute the relative
error for ¢ = 0.1, 1 and 10. When ¢ = 0.1 only
the closest neighbors have a significant weight in
the measurement of the local error. These low val-
ues of o give the neighbor-wise error a very local
sense. On the other hand, when ¢ = 10 the gaus-
sian curve becomes flat and the measure is affected
by the entire network perturbations, i.e. every node
is equally considered as belonging to the neighbor-
hood. Despite this global neighborhood for high o
values, the local error measure represents a relative
distance to each node, and as we see, doubling the
network size the average error remains below 0.1%.
These very low error rates ensure a good reliability
of the projection from a local point of view.

4. Conclusions

In this article we have raised the question about
reliability of a standard linear projection tech-
nique such as SVD. The question is pertinent
because SVD, and in particular, its truncated ver-
sion (TSVD), is rooted at the heart of some method-
ologies which pretend to extract useful and reliable
information from dynamic data, i.e. data that is
constantly undergoing change. We focus on grow-
ing scale-free networks.

We tackle the problem from two complemen-
tary points of view. At the large-scale level, we mon-
itor average changes in nodes’ TSVD projections.
This means that each node’s projection is compared
against itself on successive changes.

Note however that success in practical appli-
cations of TSVD depends mostly on neighborhood
stability. In other words, coherence of the output

when data has suffered changes relies on the fact
that the surroundings of a projected node are sim-
ilar to those before those changes had happened.
From a mathematical point of view, this merely
implies that projections change in a coordinated
way, such that relative positions are stable. Keep-
ing this in mind, the local measure developed above
captures this facet of the problem by comparing
not the evolution of a node’s position against itself,
but rather against the rest of nodes. Furthermore,
we introduce a parameter to weight this variation
depending on the distance from the node of interest.
This tunable parameter allows for a finer observa-
tion of neighborhood stability, ranging from imme-
diate neighborhood measures to far-reaching areas.
Note that the local measure is orders of magnitude
lower than the global one. This points to the fact
that, although the projection changes significantly,
displacements in the plane Us are similar in magni-
tude and direction on average. In other words, as a
node of the network grows following the preferen-
tial attachment, it is highly likely that its neighbors
also increase their weight staying close together.

Results indicate that TSVD projections are
very robust against data growth. From a global
point of view, an addition of 40% of new data
implies only an average change of 10% from ini-
tial conditions. Doubling the amount of nodes to a
network supposes a modification of 15% in the posi-
tions of the set of initial nodes. More importantly,
changes at the local level (neighborhood) are close
to 0 even in the most demanding case.

Such results have been obtained with rather
large structures (Ng = 103 and Ny = 10%), which at
the end of the process have doubled their initial size.
This ensures that TSVD is reliable in a wide range
of situations. On the other hand, our study focuses
on a particular network model (BA) in which time
plays an important role: the later a node appears,
the lower its chances to become an important one (a
hub). We anticipate that the irruption of important
entities at late stages of evolution would surely dis-
rupt TSVD projections in a more significant way.
Nonetheless, we stress that growing systems typi-
cally develop smoothly, so our conclusions can be
safely held.

Finally, we can briefly relate these results to
the original motivation of the manuscript, that is, a
scenario where the modular structure of networks is
taken into account. In that situation, the stability
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of a TSDV map in the case of network changes is
granted given the above reported results. Then, the
characterization of the role of nodes and modules
in terms of SVD’s output can be safely regarded as
faithful even in the case of severe changes in the
underlying topology.
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