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Abstract. A new perceptron learning rule which works with muliilayer neural networks
made of multistate units is obtained, and the corresponding convergence theorem is
proved. The definition of a perceptron of maximal stability is enlarged in order to
include these new multistate perceptrons, and a proof of the existence and uniqueness
of such optimal solutions is outlined.

1. Introduction

Perceptrons constitute the simplest architecture for a layered feed-forward neural
network (Rosenblatt 1958). An input layer feeds the only unit of the second layer,
where the output is read. Thus, there are as many weights w; as input units—say
N-—-and just one threshold U/, The activation function which decides the final state
of the output unit is usually taken to be

0 ifh<o
1 ifh>0

g(h) E{

where the field h is calculated, as a function of the input pattern £, through the
formula

h=w-£-U.

Learning amounts to finding the weights w and the threshold U which map a set of
input patterns {¢#},_, . into their corresponding outputs {¢#},_, . Among all
the possible input—output associations, only the so-called linearily separable problems
have perceptron solutions. The well-known perceptron convergence theorem gives a
perceptron leaming rule to obtain these solutions whenever they exist (Minsky and
Papert 1969). Morecover, recent works have developed fast converging algorithms to
find the perceptron solution of maximal stability (¢.g. Krauth and Mézard 1987, Rujén
1991).

The binary perceptron divides the input space in two half-spaces, one for each
possible value of the output. The problem of classifying in more than two classes
with the aid of a collection of perceptrons is well known in the literature (see e.g.
Duda and Hart (1973)). Likewise, if the mapping to be learned has a continucus
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output, it can be related to the previous classification scheme in two steps: partition
of the interval of variation of the continuous parameter in a finite number of pieces—
to arbitrary precision—and assignment of each one to a certain base 2 vector (see
Gallant (1990)). For instance, a ‘thermometer’ representation for the interval [0,1]
could be

{0,0,0,0) for y € [0,0.2)
{1,0,0,0) for y € [0.2,0.4)
¢=1<(1,1,0,0) for y € [0.4,0.6) 1.1
(1,1,1,0) for y € [0.6,0.8)
(1,1,1,1) for y € {0.8,1]

which reduces the learning problem to a five class classification. However, even
if this four-perceptron network has learned the thermometer-like €% — ¢*, u =
1,...,p correspondence, new inputs supplied to the net may produce ouputs such as
(0,0,1,1) or (1,0,1,0), which cannot be interpreted within this representation; in
fact, most of the available codifying schemes suffer from the same inconsistency.

One natural way of avoiding these problematic and rather artificial conversions
from continuous to binary data is the use of mudltistate unif perceptrons (see c.g.
Rieger (1990) and Nadal and Rau (‘1%1)) With them, only the first of the two
steps mentioned above is necessary, ie. the discretization of the continuous interval.
Geometrically, multistate units define a vector in the input space which points to the
direction of increase of the output parameter, the boundaries being parallel hyper-
planes. That is why this method removes meaningless patterns, since this partition
clearly incorporates the underlying relation of order.

A+ Rerot cxn Tt thnat tha ctrmirntiira darmad fFen nAfF T o
nl. l.llBl. BIBIIL ll. lllﬂy B\J‘.ﬁ’lll Lll.al. v Bl.l U lUlv U\Jll\‘\iu l.lUl.ll Cl B\.-I. UI. Ulllal" P\JLWP'

trons is richer than that arising from a single multistate unit. Nevertheless, it must
be taken into account that combinations of multistate perceptrons will be needed
whenever the learning problem is not multistate separable, giving rise to multilayer
neural networks made of multistate units.

In this article we shall first introduce a new muliistate perceptron learning rule,
and then prove the corresponding convergence theorem. Then, the concept of a
solution with maximal stability will be extended to muitistate perceptrons, and their
most remarkable properties will be stated. Finally, possible applications of the model
of multistate neural networks and some open problems will be discussed.

2. Multistate perceptron convergence theorem

A Q-state neuron may be in any one of Q different output values or ‘colours’
o, < --- < ag. They constitute the result of processing an incoming stimulus
through an activation function of the form

al ifh(Ul
gU(h‘)E Ty l'fU'u 1= h’<U ’U=2,...,Q—1 (21)
JQ lfUQ-—l‘g\h"

Therefore, @ — 1 thresholds U, < --- < UQ ; have to be defined for each updating
unit, which, in the case of the perceptron is reduced to just the output unit. The
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field now simply reads
h=w-¢. 2.2)
Let us distribute the input patterns in the following subsets:
F, =& (¥ = 0,} v=1,...,Q. (2.3)

From a geometrical point of view (Rujdn 1990) the output processor corresponds to
the set of Q — 1 parallel hyperplanes

w-E=U, v=1,...,@~1 2.4)

wiich divide the input space into J ordered regions, one for each of the colours
Gy5--+,0¢g. Thus, the map §* +— (¥, = 1,...,p, is said to be learnable or
separable if it is possible to choose hyperplanes such that each 7, be in the zone of
colour o,
This picture makes us realize that the fundamental parameters to be searched for
while learning are the components of the unit vector & and not the thresholds, since

tha h d he 11 TF tha immo crne fo lamcnable thao
tncsc €an ot asslgﬂeu a vaiue as iouows. il the xﬂpm—uuLPm map is learnable then

CH = gy(w-€%) u=1,...,p 2.5
yields

VF"Efv

Ve L EF j=>w £ <w- £U+1 (2.6)

which means that, defining

Wfsvfse-fm

>
2.7
BLw &) VEY € F,

we get
U, € |w-&w- &, v=1,...,Q-1. @.8)
Hence, during the learning process it is possible to choose

e+ we €8
U =8 +2“’ Si1 21,01 2.9)

which is the best choice for the thresholds with the given w. Here lies the differ-
ence between our approach and that of recent papers such as (Mertens er al 1991),
where the thresholds are compelled to be inside certain intervals given beforehand.
Consequently, we have somehow enlarged their notion of learnability.

Our proposal for the multistate percepiron learning rule stems from the following
theorem.
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Theorem. 1f there exists w* such that w* - £f < w*
&1 €Fyppv=1,...,Q— 1, then the program

Start choose any value for w and 5 > 0;
Test choose vE{l,...,Q -1}, ££ € F, and £}, €F,,;

if w gl <w-€],, then go to Test

else go to Add;

Add replace w by w- ﬂ(£u+1
go to Test.

will go to add only a finitec number of times.

vy for all g2 ¢ 7,

and

Corollary. 'The previous algorithm finds a multistate perceptron solution to the map
& — (*, p = 1,...,p whenever it exists, provided the maximum number of
passes through Add is reached. This may be achieved by continuously choosing pairs

(€7, €7,,) such that w- €8 > w- €7,

Proof. Define

G() = oo <

5= min (w"- £y, —w" - £f) >0

M? = max |l€7,, - &° > 0.

On successive passes of the program through Add,

W w2 Wt w, b
“""’t+1”2 < ||‘-'-’t||2 + niM?

Therefore, after n applications of Add,
Glw,) > L(w,)

w* s wy + nnd
lw* |/ llwoll? + nn?M?2

which, for large n, goes as

L{w,) =

6

(2.10)
2.11)

2.12)

(2.13)
(2.14)

(2.15)

(2.16)

2.17)

However, n cannot grow at will since G(w) < 1, Yw, which implies that the number

of passes through Add has to be finite.

It is interesting to note that no assumption has been made on the number and
nature of the input patterns. Thus, the theorem applies even when an infinite num-
ber of pairs of patterns is present and also to inputs not belonging to the ‘lattice’

{01,...,0'Q}N
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3. Muitistate perceptron of maximal stability

In the previous section an algorithm for finding a set of parallel hyperplanes which
separates the F, sets in the correct order has been found, under the assurption that
such solutions exist. The problem we are poing to address now is that of selecting
the ‘best’ of all such solutions.

It is our precise prescription that the rmultistate perceptron of maximal seability
has to be defined as the one whose smailest gap between the pairs {F,, F,,;},
v=1,...,Q — 1 is maximal. These gaps ate given by the numbers

R = min (o (€= 80)) = ||w||'("f+l‘ D) 6y

Y

gharae tn nhtain tha carnnd avnaracoinn wa h ro nanda o
WILW W W O UULALLL LEw DWAATLIA UJ\P“'BBIUII ¥ LG U 1iaus

Therefore, calling P C R the set of all the solutions to the multistate peroeptron
problem, the function to be maximized is

min R, (w) fweD
R(w) ={ v=1,.,@~1 . (3'2)
0 fwgD.

Since R(Aw) = R{w), YA > 0, it is actually preferable to restrict the domain of
R to the hyper-sphere SV C RV, ie.

R:8N — RN such that & — R(&) = R(&). (3.3)

The basic properties of R are as follows.

(i) R(w) >0 < wepnsy.

(ii) The set D is convex.

(iii) The restriction of R to D1 SV is a strictly concave function.

(iv) The restriction of R to DN SV has a unique maximum.

This last property assurcs the existence and uniquencss of a perceptron of maximal
stability, and it is a direct consequence of the preceding propositions. Moreover, it
asserts that no orher relative maxima is present, which is of great practical interest
whenever this optimal perceptron has to be explicitly found.

In Mertens et al (1991) the optimization procedure constitutes a forward gen-
eralization of the AdaTron algorithm (Anlauf and Biehl 1989). Here the situation
is much more complicated because the function we want to maximize is not simply
quadratic with linear constraints, but a piccewise combination of them due to the
previous discrete minimization taken over the gaps. Thus, we have not been able to
find a suitable optimization method which could take advantage of the particularities
of this problem. The designing of such converging algorithms is an open question
which deserves further investigation.

4. Conclusions

A new perceptron learning rule which can be used with perceptrons made of multistate
units has been derived. Its convergence has been proven to be guaranteed whenever
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the set of input-output patterns is multistate separable. This last concept constitutes
an extension of the so-called linear separability, which involves a single hyperplane
lying in the input space. Moreover, we have generalized the definition of perceptron
of maximal stability to encompass the case of muitistate simple perceptrons, and their
main characteristics and properties have been shown. In particular, the existence and
uniqueness of such solutions implies that any standard optimizing method can, in
principle, be used, but the determination of the best procedure is an open question
left to future research.

The comparison between the actual performances of binary and multistate units in
multilayer neural networks is of great interest. Nevertheless, it cannot be established
in practice until a good multilayer learning method is found, ie. a learning rule which
may be used even when non multistate-separable problems are treated. To be specific,
some learning algorithms for binary units do exist (e.g. the ‘tiling algorithm’ (Mézard
and Nadal 1989) and ‘sequential learning’ (Marchand er a/ 1990)) which add hidden
layers and units in such a way that a correct mapping between the binary input and
output patterns is always ensured; and their main tool is the repeated use of the
‘binary perceptron learning rule’.

Therefore, our first objective will now consist in designing an always-converging
multilayer learning rule with hidden multistate units. Its existence is ensured by the
fact that it is actually possible to learn the separation of each of the colours from the
rest (with the help of two-colour units) and then the resulting hidden representation
turns out to be multistate separable; but this is certainly not a good solution because
most of the hidden units turn out to be binary.
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