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Abstract A new perceptron learning rule which works with multilayer neural networks 
made of multistate units is obtained, and the mmsponding convergence theorem is 
proved. The definition of a perceptran of maximal stability is enlarged in order to 
include these new multislate perceptrons, and a proof of the existence and uniqueness 
of such optimal solutions is outlined. 

1. Introduction 

Perceptrons constitute the simplest architecture for a layered feed-foward neural 
network (Rosenblatt 1958). An input layer feeds the only unit of the second layer, 
where the output is read. Thus, there are as many weights wk as input units-say 
N-and just one threshold U. The activation function which decides the final state 
of the output unit is usually taken to be 

where the field h is calculated, as a function of the input pattern <, through the 
formula 

h E w .(- U.  

Leaming amounts to finding the weights w and the threshold U which map a set of 
input patterns (,, into their corresponding outputs { ( " } p = l  ,,,,, p .  Among all 
the possible input-output associations, only the so-called lineurik sepurable problems 
have perceptron solutions. The well-known perceplron convergence lheorern gives a 
perceptron learning rule to obtain these solutions whenever they exist (Minsky and 
Papert 1969). Moreover, recent works have developed fast converging algorithms to 
find the perceptron solulion of marimul stability (e.g. Krauth and Mdzard 1987, Rujan 

The binary perceptron divides the input space in two half-spaces, one for each 
possible wlue of the output. The problem of classifying in more than two classes 
with the aid of a collection of perceptrons is well known in the literature (see e.g. 
Duda and Hart (1973)). Likewise, if the mapping to be learned has a continuous 
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output, it can he related to the previous classification scheme in WO steps: partition 
of the interval of variation of the continuous parameter in a finite number of pieces- 
to arbitrary precision-and assignment of each one to a certain base 2 vector (see 
Gallant (1990)). For instance, a 'thermometer' representation for the interval [0,1] 
could be 
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(O,O,O,O) for y E [0,0.2) 

(1,0,0,0) for y E [0.2,0.4) 

( l , l , l , O )  foryE[0 .6 ,0 .8 )  
t = ( i , i , o , o )  for E [0.4,0.6) (1.1) 1 (1,1,1,1)  foryE[0 .8 ,1 ]  

which reduces the learning problem to a five class classification. However, even 
if this four-perceptron network has learned the thermometer-like E' c) CJ', p = 
1,. . . , p correspondence, new inputs supplied to the net may produce ouputs such as 
(O,O, l , l j  or ( l , O , l , O ) ,  which cannot he interpreted within this representation; in 
fact, most of the available codifying schemes suffer from the same inconsistency. 

One natural way of avoiding these problematic and rather artificial conversions 
from continuous to binary data is the use of multistate unit perceptrons (see e.g. 
Kieger jimj and iu'adai and Rau p%ijj. -kith them, oniy the first of tine two 
steps mentioned above is necessary, Le. the discretization of the continuous interval. 
Geometrically, multistate units define a vector in the input space which points to the 
direction of increase of the output parameter, the boundaries being parallel hyper- 
planes. That is why this method removes meaningless patterns, since this partition 
clearly incorporates the underlying relation of order. 

n L  ,,,DL n'g1.l.L ,I ,,,.ay acln11 "ILL, "LC D L l Y C L U L C  Y C L l l c l U  L l U l l l  a *L U, "1.1LL.J p'c,Ccp- 
trans is richer than that arising from a single multistate unit. Nevertheless, it must 
be taken into account that combinations of multistate perceptrons will be needed 
whenever the learning problem is not multistate separable, giving rise to multilayer 
neural networks made of multistate units. 

In this article we shall first introduce a new multistate perceptron learning nile, 
and then prove the corresponding convergence theorem. Then, the concept of a 
solution with maximal stability will be extended to multistate perceptrons, and their 
most remarkable properties will be stated. Finally, possible applications of the model 
of multistate neural networks and some open problems will be discussed. 
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2. Multistate pereeptron convergence theorem 

A Q-state neuron may be in any one of Q different output values or 'colours' 
U, < . . . < aQ. They constitute the result of processing an incoming stimulus 
through an activation function of the form 

i f h < U ,  
i f u v - , $ h < u ,  u = 2  ,..., Q - i  (z.1) 
if U Q - ,  < h. 

I 
s u ( h j =  "" t UQ 

Therefore, Q - 1 thresholds U, < . . . < U Q - ,  have to he defined for each updating 
unit, which, in the case of the perceptron, is reduced to just the output unit. The 
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field now simply reads 

h = w . c .  (2.2) 

Let us distribute the input patterns in the following subsets: 

3" 3 { p p  = U " }  v = 1,. . . ,Q.  (2.3) 

From a geometrical point of view (Rujin 1990) the output processor corresponds to 
the set of Q - 1 parallel hypetphnes 

w . < =  U" U =  1, . . . ,Q -  1 (2.4) 

which divide the input space into Q ordered regions, one for each of the coiours 
ul, . . . ,U?. Thus, the map E" H C', p = 1,. . . , p ,  is said to be leamable or 
separable d it is possible to choose hyperplanes such that each 3u be in the zone of 
colour U,,. 

This picture makes us realize that the fundamental parameters to be searched for 
while learning are the components of the unit vector G, and not the thresholds, since 
thnrn ~"~ hn ---:--.,A n .-,..a n" &.It-...- TF *Xn L - . . r  -..*-..I --- ' ,-,.---XI- .Ln- ~ u c a c  _ X I  vc ao~igucu a v a w b  a0 LUIIUWJ. II L I I ~  U L ~ U L - V U L ~ U L  ump iS K L I I I I ~ V I T  UIGU 

C' = g"(w .<') p = 1,. . . , p  (2.5) 

yields 

v = 1, . . . , Q -  1. (2.8) 

Hence, during the learning process it is possible to choose 

(2.9) 

which is the best choice for the thresholds with the given w.  Here lies the differ- 
ence between our approach and that of recent papers such as (Mertens et al 1991), 
where the thresholds are compelled to be inside certain intervals given beforehand. 
Consequently, we have somehow enlarged their notion of learnability. 

Our proposal for the multistate perceptron learning nile stems from the following 
theorem. 
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Theorem. If there exists w' such that U* . E: < w* . E:tl for all E,P E 3" and 
E:+1 E Frit,, v = 1 , .  . . , Q - 1, then the program 
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Start choose any value for w and q > 0; 
Test choose U E 11,. . . , Q - l } ,  E F,j and E 

if w .  tt < w .  E:t1 then go to Test 

replace w by w + q(E:tl - E : ) ;  
go to Test. 

else go t o  Add; 
Add 

will go to Add only a finite number of times. 

Corollaty. The previous algorithm finds a multistate perceptron solution to the map 
E' H~ c', p = 1 , .  . . , whenever it exists, provided ihe maximum number df 
passes through Add is reached. This may be achieved by continuously choosing pairs 
{Et,  E:+1} such that W .  

proof. Define 

w .  

W . W *  

I I ~ I I I I W * I I  G(w)  E (2.10) 

6 E min (U'. E:t1 - w* . E:) > 0 

M~ E max II<:tl - 1~11~ > 0. 

(2.11) 

(2.12) 

V2P.Y 

V!P17 

On successive passes of the program through Add, 

U*. W t t l  > U*. ut + q6 

IIwt+lIIZ < llwtllZ + q 2 M 2 .  

(2.13) 

(2.14) 

Therefore, after n applications of Add, 

w* . wa + nq6 
L ( w , )  E 

I l ~ * I l J l l ~ a l l *  + n q 2 M 2  

which, for large n, goes as 

(2.16) 

(2.17) 

However, n cannot grow at will since C ( w )  6 1, Vw, which implies that the number 
of passes through Add has to be finite. 

It is interesting to note that no assumption has been made on the number and 
nature of the input patterns. Thus, the theorem applies even when an infinite num- 
ber of pairs of patterns is present and also to inputs not belonging to the 'lattice' 
t.l,...,uQ}N. 
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3. Multistate perceptmn of maximal stability 

In the previous section an algorithm for finding a set of parallel hyperplanes which 
separates the F,, sets in the correct order bas been found, under the assumption that 
such solutions exist. The problem we are going to address now is that of selecting 
the 'best' of all such solutions. 

It is our precise prescription that the multistate perceptron of maximal stability 
nas io *bc defined as tine one whose smaiiesr gap benveen the pairs {Fv,  ?,+lj, 
v = 1,. . . , Q - 1 is maximal. These gaps are given by the numbers 

..An<- e n  nh+n:- *ha rnrrr-rl _nr~~~:rr -  ... a hnrm - - A n  ..-P rrc tLn rl-&-:+:n-o :I I? 7\ nllrll L" ""Ul", L . l l  0CC"IIU C"y'l0"'"'L w r  II'ILIC lllllUC Wac "L L l l r  "CIII..LIUII~ U, \L. r , .  

Therefore, calling 'D c RN the set of all the solutions to the multistate perceptron 
problem, the function to be maximized is 

min R , ( w )  $ W E ' D  
(3.2) R(w)  E ~ = l , . . . ~ Q - l  

( 0  i f W @ ' D .  

Since R ( X w )  = R ( w ) ,  VX > 0, it is actually preferable to restrict the domain of 
R to the hyper-sphere SN c RN,  ie. 

k : S N - - + R  such that & Y E(&) 3 R(rj). (3.3) 

(i) > o e G E 'D n sN. 
(ii) The set 'D is convex. 
(iii) The restriction of ii to 'D n SN is a strictly concave function. 
(iv) The restriction of ii to 'D n S N  has a unique maximum. 

The basic properties of are as follows. 

This last property assures the existence and uniqueness of a perceptron of maximal 
stability, and it is a direct consequence of the preceding propositions. Moreover, it 
asserts that no other relative maxima is present, which is of great practical interest 
whenever this optimal perceptron has to be explicitly found. 

In Mertens ef a1 (1991) the optimization procedure constitutes a forward gen- 
eralization of the Adalton algorithm (Anlauf and Biehl 1989). Here the situation 
is much more complicated because the function we want to maximize is not simply 
quadratic with linear constraints, but a piecewise combination of them due to the 
previous discrete minimization taken over the gaps. Thus, we have not been able to 
find a suitable optimization method which could take advantage of the particularities 
of this problem. The designing of such converging algorithms is an open question 
which deserves further investigation. 

4. Conclusions 

A new perceptron leaming mule which can be used with perceptrons made of multistate 
units has been derived. Its convergence has been proven to be guaranteed whenever 
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the set of input-output patterns is mulfklafe separable. This last concept constitutes 
an extension of the so-called linear separability, which involves a single hyperplane 
lying in the input space. Moreover, we have generalized the definition of percepfron 
ofmarimal sfabiliy to encompass the case of multistate simple perceptrons, and their 
main characteristics and properties have been shown. In particular, the existence and 
uniqueness of such solutions implies that any standard optimizing method can, in 
principle, be used, but the determination of the best procedure is an open question 

The comparison between the actual performances of binary and multistate units in 
multilayer neural networks is of great interest. Nevertheless, it cannot be established 
in practice until a good multilayer learning method is found, ie. a learning rule which 
may be used even when non multistate-separable problems are treated. Tb be specific, 
some learning algorithms for binary units do exist (e.g. the ‘tiling algorithm’ (Mkzard 
and Nadal 1989) and ‘sequential learning’ (Marchand ef a1 1990)) which add hidden 
layers and units in such a way that a correct mapping between the binary input and 
output patterns is always ensured; and their main tool is the repeated use of the 
‘binary perceptron learning rule’. 

Therefore, our first objective will now consist in designing an always-converging 
multilayer learning rule with hidden multistate units. Its existence is ensured by the 
fact that it is actually possible to learn the separation of each of the colours from the 
rest (with the help of two-colour units) and then the resulting hidden representation 
turns out to be multistate separable; but this is certainly not a good solution because 
most of the hidden units turn out to be binary. 
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