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Abstract

A new perceptron learning rule which works with multilayer neural networks

made of multi-state units is obtained, and the corresponding convergence theorem

is proved. The definition of perceptron of maximal stability is enlarged in order to

include these new multi-state perceptrons, and a proof of existence and uniqueness

of such optimal solutions is outlined.
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1 Introduction

Perceptrons constitute the simplest architecture for a layered feed-forward neural net-

work [Rosenblatt 58]. An input layer feeds the only unit of the second layer, where the

output is read. Thus, there are as many weights ωk as input units —say N— and just

one threshold U . The activation function which decides the final state of the output

unit is usually taken to be

g(h) ≡
⎧⎪⎨⎪⎩ 0 if h < 0,

1 if h ≥ 0,

where the field h is calculated, as a function of the input pattern ξ, through the formula

h ≡ ω · ξ − U.

Learning amounts to finding the weights ω and the threshold U which map a set

of input patterns {ξμ}μ=1,...,p into their corresponding outputs {ζμ}μ=1,...,p. Among all

the possible input-output associations, only the so-called linearily separable problems

have perceptron solutions. The well-known perceptron convergence theorem gives a per-

ceptron learning rule to obtain these solutions whenever they exist [Minsky and Papert 69].

Moreover, recent works have developed fast converging algorithms to find the perceptron

solution of maximal stability (e.g. [Krauth and Mézard 87, Ruján 91]).

The binary perceptron divides the input space in two half-spaces, one for each

possible value of the output. The problem of classifying in more than two classes

with the aid of a collection of perceptrons is well-known in the literature (see e.g.

[Duda and Hart 73]). Likewise, if the mapping to be learned has a continuous out-

put, it can be related to the previous classification scheme in two steps: partition of the

interval of variation of the continuous parameter in a finite number of pieces —to arbi-

trary precision— and assignment of each one to a certain base 2 vector (see [Gallant 90]).
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For instance, a ‘thermometer’ representation for the interval [0,1] could be

ζ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0, 0, 0) for y ∈ [0, 0.2),

(1, 0, 0, 0) for y ∈ [0.2, 0.4),

(1, 1, 0, 0) for y ∈ [0.4, 0.6),

(1, 1, 1, 0) for y ∈ [0.6, 0.8),

(1, 1, 1, 1) for y ∈ [0.8, 1],

(1.1)

which reduces the learning problem to a five classes classification one. However, even if

this four perceptrons network has learned the thermometer-like ξμ �−→ ζμ, μ = 1, . . . , p

correspondence, new inputs supplied to the net may produce ouputs such as (0, 0, 1, 1)

or (1, 0, 1, 0), which cannot be interpreted within this representation; in fact, most of

the available codifying schemes suffer from the same inconsistency.

One natural way of avoiding these problematic and rather artificial conversions

from continuous to binary data is the use of multi-state units perceptrons (see e.g.

[Rieger 90, Nadal and Rau 91]). With them, only the first of the two steps mentioned

above is necessary, i.e. the discretization of the continuous interval. Geometrically,

multi-state units define a vector in the input space which points to the direction of in-

crease of the output parameter, the boundaries being parallel hyperplanes. That is why

this method gets rid of meaningless patterns, since this partition clearly incorporates

the underlying relation of order.

At first sight it may seem that the structure derived from a set of binary percep-

trons is richer than that arising from a single multi-state unit. Nevertheless, it must be

taken into account that combinations of multi-state perceptrons will be needed when-

ever the learning problem is not multi-state-separable, giving rise to multilayer neural

networks made of multi-state units.

In this article we shall first introduce a new multi-state perceptron learning rule,

and shall prove the corresponding convergence theorem. Then, the concept of solu-

tion with maximal stability will be extended to multi-state perceptrons, and their most

remarkable properties will be stated. Finally, possible applications of the model of

multi-state neural networks and some open problems will be discussed.
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2 Multi-state perceptron convergence theorem

A Q-state neuron may be in anyone of Q different output values or ‘colors’ σ1 < · · · <

σQ. They constitute the result of the processing of an incoming stimulus through an

activation function of the form

gU(h) ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σ1 if h < U1,

σv if Uv−1 ≤ h < Uv, v = 2, . . . , Q − 1,

σQ if UQ−1 ≤ h.

(2.1)

Therefore, Q− 1 thresholds U1 < · · · < UQ−1 have to be defined for each updating unit,

which in the case of the perceptron is reduced to just the output unit. The field now

simply reads

h ≡ ω · ξ. (2.2)

Let us distribute the input patterns in the following subsets:

Fv ≡ {ξμ | ζμ = σv} , v = 1, . . . , Q. (2.3)

From a geometrical point of view [Ruján 90] the output processor corresponds to the

set of Q − 1 parallel hyperplanes

ω · ξ = Uv, v = 1, . . . , Q − 1, (2.4)

which divide the input space into Q ordered regions, one for each of the colors σ1, . . . , σQ.

Thus, the map ξμ �−→ ζμ, μ = 1, . . . , p, is said to be learnable or separable if it is possible

to choose hyperplanes such that each Fv be in the zone of color σv.

This picture make us realize that the fundamental parameters to be searched for

while learning are the components of the unit vector ω̂ and not the thresholds, since

these can be assigned a value as follows. If the input-output map is learnable then

ζμ = gU(ω · ξμ), μ = 1, . . . , p (2.5)

yields

∀ξρ
v ∈ Fv

∀ξγ
v+1 ∈ Fv+1

⎫⎪⎬⎪⎭ =⇒ ω · ξρ
v < ω · ξγ

v+1 (2.6)
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which means that, defining

ξα
v ∈ Fv | ω · ξα

v ≥ ω · ξρ
v ∀ξρ

v ∈ Fv

ξβ
v ∈ Fv | ω · ξβ

v ≤ ω · ξγ
v ∀ξγ

v ∈ Fv

(2.7)

we get

Uv ∈
]
ω · ξα

v , ω · ξβ
v+1

]
, v = 1, . . . , Q − 1. (2.8)

Hence, during the learning process it is possible to choose

Uv =
ω · ξα

v + ω · ξβ
v+1

2
, v = 1, . . . , Q − 1, (2.9)

which is the best choice for the thresholds with the given ω. Here lies the difference

between our approach and that of recent papers such as [Mertens et al 91], where the

thresholds are compelled to be inside certain intervals given beforehand. Consequently,

we have somehow enlarged their notion of learnability.

Our proposal for the multi-state perceptron learning rule stems from the following

Theorem. If there exists ω∗ such that ω∗ · ξρ
v < ω∗ · ξγ

v+1 for all ξρ
v ∈ Fv and ξγ

v+1 ∈
Fv+1, v = 1, . . . , Q − 1, then the program

Start choose any value for ω and η > 0;

Test choose v ∈ {1, . . . , Q − 1}, ξρ
v ∈ Fv and ξγ

v+1 ∈ Fv+1;

if ω · ξρ
v < ω · ξγ

v+1 then go to Test

else go to Add;

Add replace ω by ω + η(ξγ
v+1 − ξρ

v);

go to Test.

will go to Add only a finite number of times.

Corollary. The previous algorithm finds a multi-state perceptron solution to the map

ξµ �−→ ζμ, μ = 1, . . . , p whenever it exists, provided the maximum number of passes

through Add is reached. This may be achieved by continuously choosing pairs {ξρ
v, ξγ

v+1}
such that ω · ξρ

v ≥ ω · ξγ
v+1.

Proof. Define

G(ω) ≡ ω · ω∗

‖ω‖ ‖ω∗‖ ≤ 1, (2.10)
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δ ≡ min
v,ρ,γ

(ω∗ · ξγ
v+1 − ω∗ · ξρ

v) > 0, (2.11)

M2 ≡ max
v,ρ,γ

‖ξγ
v+1 − ξρ

v‖2 > 0. (2.12)

On successive passes of the program through Add,

ω∗ · ωt+1 ≥ ω∗ · ωt + ηδ, (2.13)

‖ωt+1‖2 ≤ ‖ωt‖2 + η2M2. (2.14)

Therefore, after n applications of Add,

G(ωn) ≥ L(ωn), (2.15)

L(ωn) ≡ ω∗ · ω0 + nηδ

‖ω∗‖
√
‖ω0‖2 + nη2M2

, (2.16)

which for large n goes as

L(ωn) ≈ √
n

δ

‖ω∗‖M . (2.17)

However, n cannot grow at will since G(ω) ≤ 1, ∀ω, which implies that the number of

passes through Add has to be finite.

It is interesting to note that no assumption has been made on the number and

nature of the input patterns. Thus, the theorem applies even when an infinite number of

pairs of patterns is present and also to inputs not belonging to the ‘lattice’ {σ1, . . . , σQ}N .

3 Multi-state perceptron of maximal stability

In the previous section an algorithm for finding a set of parallel hyperplanes which

separate the Fv sets in the correct order has been found, under the assumption that

such solutions exist. The problem we are going to address now is that of selecting the

‘best’ of all such solutions.

It is our precise prescription that the multi-state perceptron of maximal stability

has to be defined as the one whose smallest gap between the pairs {Fv, Fv+1}, v =

1, . . . , Q − 1 is maximal. These gaps are given by the numbers

Rv(ω) ≡ min
ρ,γ

(
ω

‖ω‖ · (ξγ
v+1 − ξρ

v)

)

=
ω

‖ω‖ ·
(
ξβ

v+1 − ξα
v

)
, (3.1)
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where to obtain the second expression we have made use of the definitions in (2.7).

Therefore, calling D ⊂ RN the set of all the solutions to the multi-state perceptron

problem, the function to be maximized is

R(ω) ≡
⎧⎪⎨⎪⎩

min
v=1,...,Q−1

Rv(ω) if ω ∈ D,

0 if ω �∈ D.
(3.2)

Since R(λω) = R(ω), ∀λ > 0, it is actually preferable to restrict the domain of

R to the hyper-sphere SN ⊂ RN , i.e.

R̃ : SN −→ RN

ω̂ �−→ R̃(ω̂) ≡ R(ω̂)
(3.3)

The basic properties of R̃ are:

1. R̃(ω̂) > 0 ⇐⇒ ω̂ ∈ D ∩ SN .

2. The set D is convex.

3. The restriction of R̃ to D ∩ SN is a strictly concave function.

4. The restriction of R̃ to D ∩ SN has a unique maximum.

This last property assures the existence and uniqueness of a Perceptron of Maximal

Stability, and it is a direct consequence of the preceding propositions. Moreover, it

asserts that no other relative maxima are present, which is of great practical interest

whenever this optimal perceptron has to be explicitly found.

In [Mertens et al 91] the optimization procedure constitutes a forward general-

ization of the AdaTron algorithm ([Anlauf and Biehl 89]). Here the situation is much

more complicated because the function we want to maximize is not simply quadratic

with linear constraints, but a piecewise combination of them due to the previous discrete

minimization taken over the gaps. Thus, we have not been able to find a suitable opti-

mization method which could take advantage of the particularities of this problem. Of

course, the designing of such converging algorithms is an open question which deserves

further investigation.
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4 Conclusions

A new perceptron learning rule which can be used with perceptrons made of multi-state

units has been derived. Its convergence has been proven to be guaranteed whenever the

set of input-output patterns is multi-state-separable. This last concept constitutes an

extension of the so-called linear separability, which involves a single hyperplane lying in

the input space. Moreover, we have generalized the definition of perceptron of maximal

stability to encompass the case of multi-state simple perceptrons, and their main char-

acteristics and properties have been shown. In particular, the existence and uniqueness

of such solutions implies that any standard optimizing method can in principle be used,

but the determination of the best procedure is an open question left to future research.

The comparison between the actual performances of binary vs. multi-state units

in multilayer neural networks is of great interest. Nevertheless, it cannot be established

in practice until a good multilayer learning method is found —i.e. a learning rule

which may be used even when non multi-state-separable problems are treated. To

be specific, for binary units there do exist some learning algorithms (e.g. the ‘tiling

algorithm’ [Mézard and Nadal 89] and ‘sequential learning’ [Marchand et al 90]) which

add hidden layers and units in such a way that a correct mapping between binary input

and output patterns is always assured; and their main tool is the repeated use of the

‘binary perceptron learning rule’.

Therefore, our first objective will consist now in designing an always-converging

multilayer learning rule with hidden multi-state units. Its existence is assured by the

fact that it is actually possible to learn the separation of each of the colors from the rest

(with the help of two-color units) and then the resulting hidden representation turns

out to be multi-state-separable; but this is certainly not a good solution because most

of the hidden units turn out to be binary.
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