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Abstract 

Neural network techniques for encodlng-decoding processes have been developed. The net we have devised can 
work like it memory retrieval system in the sense of Hopfield, Feinstein and Palmex. Its behaviour for 2 R (R E N) 
input units has some special interesting features. In particular, the accsssibilities for each initial symbol may 
be explicitly computed. Although thermal noise may muddle the code, we show how it can statistically rid the 
result of unwanted sequences while maintaining the network accuracy within a given bound. 

I n t r o d u c t i o n  

The idea of using layered neural networks for multiple tasks has become more and more appealing since 
Rosenblatt's original perceptron model was object of the first serious criticism which led to far-reaching developments 
[1]. Among this type of structures, the most interesting group are the multilayer feed-forward nets containing 
intermediate --or  hidden-- layers. 

The working of any net is determined by the relative strength of the links among units (neurons), usually 
given by a weight or connection exchange matrix. Typica~y, in a feed-forward multilayer network each unit computes 
a nonlinear function of the weighted sum of incoming signals from the previous layer reaching its own site, and 
sends the outcome on to the following layer. This process ends when the emerging signal arrives at the output 
units, where the result is read off. 

Mdltilayer feed-forward neural networks are specially adequate for encoding [2], understood as the turning of 
p possible input patterns described by N digital units into a determined set of p output patterns on M units. In the 
minimal set-up, there is just one hidden layer of R hidden units forming a binary representation of the N inputs, 
i.e. with /~ = log2N neurons (Fig. 1). We will take M = N = p in order to have the same number of neurons 
at the input and output layers. The first case to be considered is that in which we have sets ---or alphabets-- of 
unary patterns, i.e. binary sequences in which one unit is on and the rest are off: 

1 ~ - 1  ~ ~+1 N 
~ " = ( - ,  . . . .  - , + , -  . . . .  - ) ,  ~ = 1  . . . . .  N. (1) 

Afterwards, we shall consider arbitrary input and output patterns. When the number of output units has the form 
2 R, with R E N, our model exhibits remarkable characteristics. In particula L no thresholds will be needed in this 
case. A no-go theorem on the possibility of general 3-step encoding will be proven. At the end, advantage will be 
taken of the introduction of a moderate amount of thermal noise. 

For the intermediate and output layers, the state of each unit at a given moment will be a (generally 
nonlinear) function of the weighted sum of the signals feeding into it. Since we use binary units, we take the 
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Figure 1: A Z-layer feed-forwrad,network consisting of input, intermediate and output layers. 

activation function to be a sign. If the intermediate neurons are denoted by aj 's, their excitation state will be given 
by 

{ aj = s ign(hi )  
N 

h~ = ~ ¢ k  - o i ,  j = 1 . . . . .  R, (2) 

where wj~ is the relative strength of the signal sent by the input unit k, whose state is {~, into the intermediate 
j th  site. The 0j 's  are site-dependent thresholds. 

T h e  s c h e m e s  

The form of connection matrix can be the result of either theoretical weight calculation learning [3]. Although 
the ability to learn is the most popular of all neural network features, our weights and thresholds will not come out 
from an iterative optimization process, but will be fixed beforehand. The choice fulfill requirements on memory 
economy in the sense that the size of the intermediate layers should be as small as possible. When the input 
and output sets are unary and besides they coincide, the optimal solution, i.e. one internal layer forming a binary 
representation, is possible. Then, the size of this hidden layer is 

log N if log 2 N E N, 
R = [log 2 N] + 1 if log 2 N ¢ N. (3) 

The scheme realizing the desired translation can be put as 

wik wli 
0 i 0~ 

where the weights and thresholds indicated enter the computation in the way 

0,) ~}' = sign ,,,~k~'~'- , j = l , . . . , _ ~ ,  
\ k = l  

~'  = sign wi jo '~ -Oi  , i =  1 . . . . .  N.  (4) 

By referring to the number of units in each layer, this scheme is called (N, R, N). In choosing the w's and O's, 
our method has taken advantage of the condition that the sequence ( a l , . . .  ,aR) must reproduce the digits of the 
number p - 1 as a binary figure whenever ~ is read. Further, in our choice of the weights we have found convenient 
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to take wjk = cry, i.e. the connection strength, and cr (considered as a matrix) having equal coefficients. If we 
choose the output  set to be a permutation r of the input set, i.e. v = ~'(t~), the weights and thresholds found are 

= ( _ 1 ) [ ~ w ] + ~ ,  j = 1 . . . . .  a ,  k = 1 . . . . .  N ,  

. _ , . _ _ ~ f v  (5) 
¢ = 2 . , ( - 1 )  h ' ~ ] ,  i = 1 . . . . .  a ,  

k = l  

w,, = ( - 1 ) [ ~ ]  +', i = l  N, j = l  R, (6) 
8~ = R - l ,  i =  1 , . . . , N .  

Once the w's are chosen, the thresholds are not totally determined either. The above values have been selected 
mainly on the basis of simplicity. 

The next step is the extension to sets of arbitrary (not necessarily unary) binary input and output patterns. 
An appropriate approach is to encode each input sequence into a specific unary pattern and, later, decode the 
resulting unary sequence to obtain the corresponding element of the arbitrary output  set. This may be accomplished 
by the following enlargement of the previous structure 

o;kl oJjk 
n 0~ 

The new weights and thresholds introduced are 

&Ok/ 

~ h i  

Ok 

_ _ ,  ~;~.) _ _ .  s i ( . )  
~i  i ~hi 
O~ On 

= # ,  
= N - l ,  

= ~ ,  
N 

= -~Csr,. 
v = l  

(7) 

(8) 

As one can check, they perform the above required translations. Although satisfactory, this solution takes up too 
many units. In fact, we have found it possible to work out the equivalent to the composition of the last three 
transformations, thus obtaining the (N, N, N) scheme: 

where the new elements are 

( t  - - *  ~t  - .  s ; (" )  
~kl ~hk 
Ok Oh 

N 

v--,=l 

This solution is less wasteful as far as memory occupation is concerned, but  is still away from the ideal minimum 
of just  R intermediate units. Actually, we have been able to prove the following 
T h e o r e m :  It is not po~ible to encode through the scheme 

oft whf 
oi oh 

for arbitrary sets {V} and {8~(tJ)}. 
The proof proceeds by just  showing cases where the scheme cannot work. Choosing a set containing linearly 

dependent ( 's ,  the weighted sums that constitute the inequations for the wj,'s lead to obvious contradictions. 
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Further, if one takes the output set such that a given component -say j -  of the N output patterns forms the 
Boolean XOR --or  generalized XOR (oddness)-- function on the a t %, a similar contradiction comes up. 

Therefore, the reasonable minimal way out will be to demand linear independence for the input set and to 
add an intermediate layer between the a's and the output, as one has to do when trying to obtain the smallest 
implementation of the XOK function. Thus, we will have the structure 

e t e, o. 

where the only new elements are the ~jt's and the gj 's. Being a bit demanding, we will require these thresholds to 
vanish. In order to find the wj:'s, we will temporarily reintroduce the unary-pattern layer between the input and 
the a's, and figure out the composition of two successive affine transformations: 

~=A(+B a=C~+D 

i k 

Then we find a solution for their coefficients, that reads 

Aks = 2(~:)-lkz, k , l = l , . . . , N ,  (10) 
Bk = -1 ,  k = l , . . . , N ,  

where (~)-1 is the inverse of the matrix (~)a. = (~, and 

{C~ z~. = 2 t '  j = l , . . . , a ,  p = l , . . . , N ,  
N 

1 (11) 
Dj = 2,=I 

When composing both by the rule 

= C~ + D = C(A( + B) + D = CA¢ + CB + D, (12) 

we find that CB + D = 0, and therefore it reduces to a linear tranformation as we wished. The weights that appear 
follow from 

N 
ai = ~J,~:,,  "i~ = ~ a ; ( O - l , ,  = ~(-1)[~%-~']+L(O-~,r (13) 

I v v = l  

Apart from the preceding, we have devised several schemes as variations of those already described. For 
instance, taking the five layer network (N, N, R, N, N), we have composed the two intermediate transformations, 
thus eliminating the a layer at the expense of using more complicated weights and thresholds, the outcome being 
an ( N , N , N , N )  net and so on. 

A c c e s s i b i l i t i e s  

The subject of the accessibilities comes up when one looks back at the initial unary-pattern three-layer 
permutator system and wonders what happens when the input pattern ~ is not any of the unary ~ ' s .  Now the 
fields 

N 
h~ = ~ t ~  - st (14) 

k----1 

may in fact vanish, as a result of which aj = sign hj is no longer well defined. Retaining the same sort of logistic 
function, i.e. a sign function, we can get out of this problem by redefining it so as to avoid the unwanted zeros. 
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Since this would cause a clumsy asymmetry, it is more reasonable to make room for zeros, with the additional 
difficulty that the ~'s will now be three valued. A different option, that will be later discussed, is the use of strictly 
binary stochastic units at some finite temperature. 

When zeros are allowed, 3 R possible sequences for the # units exist. It is therefore appropriate to find what 
is the accessibility of each. The concept of accessibility of a configuration has been taken from Hopfield et al [5] and 
means the fraction of initial random states leading to the retrieval of that pattern. The difference is that now this 
is not an associative memory device but an encoding system, and we are interested in the rate of occurrence of good 
translations as well as in the extent of the proportion of code muddled by zeros. Let A(~) denote the accessibility 
of the intermediate pattern ~. By this we mean 

A(~) = # possible ~s leading to 

# possible ~Is 

An advantage of our scheme is the special properties we have when N = 2 R, being R an integer. In all these 
cases one can check, from our expressions, that 0j = 0 for any j, i.e. no thresholds are needed. Furthermore, the 
connection strength matrix oJ has a very interesting property: all its rows are mutually orthog(~nal, as are the R 
vectors formed with each binary digit of the numbers 0,1,2,..., 2 R - I. 

The calculation of the accessibilities starts by considering the possible values of hi, which turn out to be 
N, N - 2 ..... 0 ..... -N + 2, -N. For any hj within this range, let f(hj) be the number of possibilities that the 
jth component of h takes on this precise value, i.e. hi. Aft~ some combinatorial brain-racking, we arrive at 

and therefore 

As we shall see, each acceasibility will be determinable once the joint frequencies: 

f ( h i = O A h j  =0) ,  i ~ . j ,  

f ( h i  = 0 ^ hj = 0 ^ hk = 0), i , j ,  k different 

f ( h i  = 0 A h# = 0 ^ hi, = 0 ^ hi = 0), i, j ,  k,  l different 

are known. All these numbers can be computed, after some work, by consideration of the above mentioned properties 
of othogonality of the ~a's, by turning sets of inequations in indetermined linear equation systems, looking at their 
general solutions and applying further combinatorial thinking, in which the form of the individual frequency(15) 
plays a crucial role. Following the process described elsewhere [4] we obtain 

f~v(h~ = 0 ^  h, = 0) = ( ~ 4 ) ' ,  

f ( ~ .  =O^h~ = O^h~ = 0)= ~ 
k=O 

f(h,=OAhj=OAh.=OAht=O)=EEE~ ~,eJ ~ , d ]  
a = 0  b=O c----0 d=O 

: (17) 
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The binomial coefficients are to be understood in a generalized sense, i.e. when the number downstairs is negative 
or when the difference between upstairs and downstairs is a negative integer, they vanish. Otherwise we would have 
to explicitly state that  the above multiple sum is restricted to a, b, c and d between the bounds and also satisfying 

0 __ - ( a ÷ b + c )  < ~- 
0 < ( a + b + d )  <_ ~ (18) 

0 ~- ! (a+c+d) _< ~. 

We have called the above joint frequencies or~hogonalilies. Next let us see how the frequencies f (h l  ~ 0 . . . .  , hy 
0) , j  = 0 , . . .  , R  can be easily put  in terms of the orthogonalities. This will almost i rnn~ia te ly  lead to the 
accessibilities. The sum of all the frequencies can be decomposed by considering each subset {k l , . . .  ,ky} of j 
indices, 0 < j _< R, for which the corresponding field components vanish (the rest being nonzero): 

R 
2" = ~ ~ .f(hl V= o . . . . .  h~1 = o .. . . .  h~ = o .. . . .  h,, ¢= o), 

y=o {kl,...,,~y} 

= ~ (~') ,(hl = 0 ..... h,=O, hy+x:/:O ..... h.~O), (19) 
.i=o \ J /  

where we have observed that these frequencies depend on the number of null components, but not on their position. 
On separating the term j -- 0, we get 

f(h~ ¢ 0 . . . .  hR ~ O) = 2 N - I(h~ = 0 . . . . .  hy = O, hy+x ~ 0 . . . . .  h~ i~ 0). (20) • j 

Similarly, we have 
.t(hl = o ..... h~ = O, hj+~ ¢= 0 . . . . .  hn -Y= O) = 

f ( h i = O  . . . . .  h ~ = O ) - ~ " ~  R j f ( h l = O , . . . , h y ÷ ~ = O ,  hy+k+l¢'O . . . . .  h a l O ) .  (21) 
k--1 

(20) and (21) constitute a system of interwoven recurrent equations, whose solution happens to be [4] 

R 
(22) 

\ ' - i  

Making the additional observation that for N -- 2 R, R E N, all the nonspurious --without from zero~-  o's have 
the same frequency, we conclude that,  for any of these sequences, 

A(o) = y(hl ~ 0 . . . . .  hR ~ 0) (23) 
2 N 

which are now known. 

T e m p e r a t u r e - i n d u c e d  n o i s e  

The other alternative, namely the use of stochastic units, is based on the presence of thermal noise of 
' temperature' T = }. The state of each o neuron will no longer be determined by the field at its site, but will be a 
random binary function with probabilities 

1 
p ( ~ j  = + 1 )  - I + e~2P~,  " (24)  

Therefore, no chance of ~j = 0 exists. Input sequences that  gave rise to spurious ~r's will now yield good ¢'s. 
However, since the proceas happens to be on the whole stochastic the accewibilities do not have any meaning unless 
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we consider them as averaged quantities over many repetitions of the encoding for all the possible inputs. Only 
then can we define 

cumulative # inputpatterns which have given or# 
< A~") >= 

cumulative # patterns read (= # repetitions -2 N) 

Simulations like the one represented in Fig. 2 show the tendehcy to equiaccessibility as the number of repetitions 
increases in the sense that 

1 
< A(a") >-..* ~-~. 

o 

E) 
o~ o 
I)  > 
o 

0.15 

I 

R e r o t i o n s  

Figure 2: Result of a simulation for N=4 at finite T. The curves represent the cumulative average accessibilities of each ~ .  

Since the updating of all units is stochastic, ~ -- ~ does not necessarily mean thst aj = ~r~, and only averages 
can be controlk.d. It would be desirable to have cases in which < aj >~=~.= ~ and that a critical temperature 
T~ existed so that for T < T~ this type of preservation could be guaranteed. However, taking into account that 
< ~j >~=~. = tanh(~h~) a~d that in our system ~ = wj~, the above conservation relationship reads 

wj~ = tanh(2//t0#~), (25) 

which has no solution for finite ~'s, i.e. no there is no critical temperature. However, if we content ourselves with 
preserving the ~sverage encoding just up to a certain accuracy, the same line of thinking allows us to find error 
bounds. If one requies that 

I < ~'# >~=~, -,~'1 < e, (26) 

it wilt suffice to take 
I 2-c 

>_ ~log e (27) 

e.g. , if we want our averkge values to be reliable up to the third decimal digit, taking ~ -- 10 -4 yields ~* > 2.47 or 
T _< 0.40, which agrees quite fairly with the behaviour observed in our simulations. 

C o n c L u d i n g  r e m a r k s  

Bringing in low temperature thermal noise changes the acceesibilities of the non-spurious sequences with 
the result that what was zero-temperature equiaccessibility is maintained in the form of average equiacceasibility. 
Temperature increases do not change these averages, Even if at a given moment the system is presented with 
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sequences that give rise to zero fields, it must now decide between one of the binary values, .mad, when making this 
choice, each increase of accessibility with respect to the zero-temperature set-up is roughly the same for each ~u. 

Our work carries on with the spirit of the ideas put forward by Hopfleld, Feinstein and PaLmer [5] in the 
sense that external control of one type or another can lead a retrieval system to work with equal accessibility by 
mqre or less smooth modifications of the initial working of the net. 

These results are quite likely to find application in any type of encoding-decoding questions. Moreover, even 
though we have not dealt with other sorts of networks, e.g. associative memory systems, noise considerations are 
called for when interpreting processes of pattern identification in the context of problems such as image or trajectory 
reconstruction [6]-[7]. 

Additional developments of these ideas would surely appear after obtaining more amenable expressions for 
the acc¢~sihilities, particularly of their dependence on the number of initial patterns. Incorporating these solutions 
into learning methods (perhaps as initial weight configurations) may offer a new opportunity for improving the 
performance of any learning algorithm. 
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