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Abstract

The possibility of achieving optimal associative memory by means of multi-

layer neural networks is explored. Three original different solutions which guaran-

tee maximal basins of attraction and storage capacity are found, and their main

characteristics are outlined.
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The basic problem of associative memory is to store a set of binary patterns

{ξμ}μ=1,...,p in such a way that the network, when presented with an input pattern ξ,

retrieves the stored one which is closest to it. The distance between two patterns ξ and

ξμ is given by their mutual overlap

Oμ(ξ) ≡
N∑

k=1

(ξμ
k ξk + (1 − ξμ

k )(1 − ξk)) , (1)

which grows up as ξ and ξμ resemble each other more and more —for mathematical

convenience the activation values of the input units have been supposed to be 0 and 1.

Fully connected artificial neural networks achieve this task pretty well if proper

interconnection strengths are chosen [1, 2, 3]. For instance, the Hebb rule works better

if the patterns to be retained are uncorrelated, while the pseudo-inverse rule [4] is

preferable if this is not the case. The quality of a particular performance is measured

by the size of the basins of attraction: the wider they are the larger number of inputs

will access memories in the right way. We consider as optimal those solutions for which

the pattern retrieved is always the nearest stored one, at most with the exception of

those inputs equidistant from two or more of them. Indeed, optimality is equivalent to

the possession of the largest possible basins of attraction. In the present letter we are

going to show how multilayer neural networks may be used as Multilayer Associative

Memory Optimal Networks (MAMONets).

The underlying idea behind our solution is the parallel computation of all the

overlaps Oμ(ξ), followed by the identification of the largest one —say Oα(ξ)— and the

reconstruction of the pattern ξα itself, where the whole process is implemented through

ordinary units distributed in layers. The first of these steps has already been put forward

in [5]. However, they assume the existence of activation functions capable of finding the

largest of two numbers and of picking its index, thus sidestepping the harder problem

of doing so by means of ‘available’ types of neurons.

First we have to give some meaning to the expression ‘recognition of the index’.

The easiest α-index neural representation is the unary one: Sμ(ξ) = κδμ
α, μ = 1, . . . , p,

κ > 0, where δμ
α is the usual Kronecker symbol. After some work, the following three

different schemes have been found to be suitable procedures for this index identification.
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1. Binary units: considering an intermediate layer of units

σμν(ξ) = Θ (Oμ(ξ) −Oν(ξ))

= Θ

(
N∑

k=1

ωμν
k ξk − θμν

)
, μ < ν,

(2)

where ωμν
k = 2(ξμ

k − ξν
k) and θμν =

N∑
k=1

(ξμ
k − ξν

k), Θ being the logistic function

Θ(x) ≡
⎧⎪⎨
⎪⎩

0 if x ≤ 0

1 if x > 0
, (3)

it is easy to show that

Sλ(ξ) = Θ

⎛
⎜⎝∑

μ,ρ
μ<ρ

ωλ,μρσμρ(ξ) − θλ

⎞
⎟⎠ (4)

does the job nicely if the weights and thresholds are given by

ωλ,μρ =

⎧⎪⎨
⎪⎩

δλμ if ρ > λ,

−δλρ if μ < λ,

θλ = p − λ − ε, 0 < ε < 1.

(5)

Unfortunately, the number of units grows quadratically in the number of pat-

terns. The other drawback is its inability to cope with input patterns which are

equidistant from two or more of the ξμ’s.

2. Decreasing thresholds: If we knew in advance the value of Oα(ξ), it would

suffice to choose a common threshold θ = Oα(ξ) − ε, 0 < ε < 1, and compute

Sμ(ξ) = Θ (Oμ(ξ) − θ)

= Θ

(
N∑

k=1

(2ξμ
k − 1) ξk −

(
N∑

k=1

ξμ
k − N + θ

))
.

(6)

Since this is not the case, it is possible to use a threshold large enough and decrease

it by time steps, until one of the overlaps be above it and the rest be below. Taking

into account that, according to definition (1), all the overlaps can only be integers

between 0 and N , a good threshold to start with is

θ(0) = N − ε, 0 < ε < 1. (7)
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At every step the same input pattern will be reprocessed, i.e.

ξ(t + 1) = ξ(t), (8)

and an additional unit, say c, will take care of checking whether the end condition

is satisfied or not. We define the state of this control unit as

c(S) = Θ

⎛
⎝ p∑

μ=1

Sμ

⎞
⎠ . (9)

Therefore, the update rule for the variable threshold must be

θ(t + 1) = θ(t) − (1 − c(S)). (10)

When c = 1, θ repeats its previous value and the network becomes stable.

Unlike the previous scheme, this set-up allows for the recognition of all the stored

patterns at minimal distance from the input ξ, even if Oα(ξ) is not unique.

3. Quasilinear units: The so-called MaxNet algorithm was conceived for the pur-

pose of picking winning units in neuron clusters for competitive learning [6]. We

suggest here to use it as the way of finding the largest normalized overlap 1
N
Oα(ξ).

Taking the activation to be the quasilinear function

f(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if x < 0

x if 0 ≤ x ≤ 1

1 if x > 1

, (11)

we initialize the state of a fully interconnected layer with

Sμ(t = 0) = f

(
N∑

k=1

1

N
(2ξμ

k − 1) ξk −
(

1

N

N∑
k=1

ξμ
k − 1

))
, (12)

which later on will be synchronously updated through

Sμ(t + 1) = f

⎛
⎝ p∑

ρ=1

ωμρSρ(t)

⎞
⎠ , (13)

where

ωμρ =

⎧⎪⎨
⎪⎩

1 if ρ = μ

−ε if ρ �= μ
, 0 < ε ≤ 1

p − 1
. (14)
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S(t) reaches a stable configuration if the largest overlap is unique, taking less than

T ≡ log N
log(1+ε)

+ 1 iterations. Otherwise, S(t ≥ T ) singles out the indices of all the

ξα’s.

Once the α-index has been identified by means of a unary representation in a

layer S, the ‘visual’ retrieval of ξμ is trivially achieved with the help of a new layer

ζk(ξ) = Θ

⎛
⎝ p∑

μ=1

ξμ
k Sμ(ξ)

⎞
⎠ . (15)

However, if there is more than one maximally overlaping patterns, the network can pick

several indices. These configurations correspond to states of the sort

S = (0, . . . , 0,
α1

Δ, 0, . . . , 0,
αr

Δ, 0, . . . , 0), (16)

where Δ is some positive constant. In this case the outcome reproduces the OR-sum

of patterns ξα1 , . . . , ξαr , which may coincide with one of the stored ξμ’s. Such patterns

would then be fakely retrieved. Otherwise, the result becomes a hesitant configuration.

In order to assess the performance of our methods, we have carried out numerical

simulations of some examples comparing the third MAMONet scheme with Hopfield

networks under three different prescriptions for the weights: Hebb rule, pseudo-inverse

matrix and optimal stability solution (the AdaTron algorithm [7]).

The result of the comparison is shown in tables 1 and 2. The first example lists tables

herethe average number of fake and hesitant states produced by the MAMONet method as

well as the spurious and other non-retrieval configurations arising from the Hebb rule

and its variants. Table 2 displays just the different global retrieval rates obtained by the

four methods and for varying numbers of stored patterns. While the Q−1 and AdaTron

methods yield rates of the same order as the standard Hebb rule, the MAMONet figures

are definitely higher in all cases as expected.

Summing up, we have provided three different MAMONet solutions to the prob-

lem of associative memory, all of them sharing unlimited storage capacity, perfect recall

and the removal of spurious minima and unstable states. Their retrieval power is opti-

mal in the sense that the network’s answer is selected by the maximal overlap criterion.

The original contribution of these solutions has been the realization of such designs
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without introducing types of units different from those currently used in most neural

network architectures.
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N = 10, p = 5

Hebb rule Q−1 method AdaTron MAMONet

global retrieval 186.39 124.85 137.05 709.04

spurious 434.84 899.14 302.61 fake 43.71

unstable 402.78 0.01 584.35 hesitant 271.25

# iterations 1002 1002 1003 333

Table 1: Average frequencies for the simulation corresponding to the example N = 10, p = 5,
by the four methods quoted in the text. The numbers of iterations listed were the necessary
for obtaining a largest relative increase below 10−3.



p/N Hebb rule Q−1 method AdaTron MAMONet

0.2 0.35 0.36 0.35 0.82

0.3 0.22 0.32 0.18 0.75

0.4 0.25 0.20 0.17 0.71

0.5 0.18 0.12 0.13 0.69

0.6 0.21 0.07 0.20 0.67

0.7 0.20 0.03 0.18 0.65

0.8 0.18 0.03 0.19 0.63

0.9 0.18 0.02 0.17 0.62

1 0.19 0.02 0.18 0.61

Table 2: Global retrieval rates obtained by each procedure for N = 10 and for different values
of p

N . The estimated error is 5 × 10−2 for the first three methods and less than 10−2 for the
MAMONet figures.


