
Encoding strategies in multilayer neural networks

E. Elizalde, S. Gómez and A. Romeo,

Dept. of Structure and Constituents of Matter,

Faculty of Physics, University of Barcelona,

Diagonal 647, 08028 Barcelona.

Abstract

Neural networks capable of encoding sets of patterns are analysed. Solutions

are found by theoretical treatment instead of by supervised learning. The be-

haviour for 2R (R ∈ N) input units is studied and its characteristic features are

discussed. The accessibilities for non-spurious patterns are calculated by analytic

methods. Although thermal noise may induce wrong encoding, we show how it

can rid the output of spurious sequences. Further, we compute error bounds at

finite temperature.

Published in J. Phys. A: Math. Gen. 24 (1991) 5617–5638.

1

1 Introduction.

Neural networks are dynamical data structures made of large numbers of highly inter-

connected processing units called neurons, which can usually be in two possible states,

depending on a two-valued function of the states of the other units. These networks

bear a qualitative resemblance to the structures found in brains, that, as far as the

present knowledge can explain, consist of a great deal of real neurons linked to each

other by means of dendrites, axons and synapses. Although understanding the brain

structure is nowadays still an open problem, there are simple neural network models

which account for some of the capabilities of brains, particularly pattern recognition (see

the content-addressable or associative memory models in [Little 74, Hopfield 82-84], or

more recent examples such as [Parga and Virasoro 86, Derrida et al 87, Amit et al 90,

Bacci et al 90, Nakamura and Nishimori 90, Herz et al 90]) and optimization of con-

strained problems [Hopfield and Tank 85]. Event reconstruction in particle accelerators

[Denby et al 90, Stimpfl-Abele and Garrido 90] and radar signal analysis [Schempp 84,

Schempp 89] are among the most fascinating current applications of these structures.

Layered feed-forward networks are theoretical machines historically based on

Rosenblatt’s perceptron model, in which there is a layer of input units whose only role

is to feed input patterns into the rest of the network. Next, there are one or more

intermediate layers of neurons evaluating the same kind of function of the weighted sum

of inputs, which, in turn, send it forward to units in the following layer. This process

goes on until the final or output level is reached, thus making it possible to read off the

computation (see e.g. [Denby 90] for a review). In the class of networks one usually

deals with there are no connections leading from a neuron to units in previous layers,

nor to neurons further than the next contiguous level, i.e. every unit feeds only the ones

contained in the next layer.

By simple perceptron one refers to networks with just two layers, an input one

and an output one, but without internal units in the sense that there are no intermediate

layers. These devices have been seen to have limitations, such as the XOR problem,

which do not show up in feed-forward networks with intermediate or ‘hidden’ layers

present. Actually, it has been proven that a network with only one hidden layer can

2

represent any boolean function ([Minsky and Papert 69]).

One of the most general problems in multilayer neural networks is to find the

connection strengths and thresholds which transform several known input patterns into

their corresponding output patterns —according to a given interpretation of inputs

and outputs—. This is precisely the problem of encoding as described, for instance, in

[Rumelhart and McClelland 86]. The typical approach is a progressive learning process

based on the principle of back-propagation, which leads to a solution by a lengthy re-

laxation search after a number of iterations large enough. However, we will show that

some solutions may be found by deciding on the synaptic connections through direct

inspection of the problem. It must be taken into account that the architecture of the

network is generally not given beforehand. That is the reason why we are free to adjust

it as necessary. The criterion will be, of course, simplicity.

In section 2 we analyze first how a network such as that in Fig. 1 is capable of

encoding unary input and output sets. The solution therein gives insight into the way

of dealing with arbitrary input and output alphabets. However, limitations to the most

general situation are found, giving rise to encoding solutions based on layered network

structures different from the previous one. In section 3 we come back to the initial

unary-pattern three-layer network and study its behaviour when the input pattern does

not belong to the already encoded input alphabet. A certain type of spurious states is

found, and accessibilities of non-spurious patterns are calculated, the demonstrations of

some interesting mathematical properties being relegated to appendixes A and B. Finite

temperature is introduced in order to get rid of the spurious sequences. In section 4 we

present a summary of the main results, future lines open to research and the conclusions

of this paper.

2 The encoding problem.

The original problem of encoding is to turn p possible input patterns described by N

digital units into a specified set of p patterns of M units, and to do it with the least

number of intermediate processing elements. This may be seen as trying to condense

all the information carried by the initial set of patterns into the tiniest space —data

3

� � �

� � �

� � �

1 2 N

1 2 R

1 2 N

. . .

. . .

. . .

�
�

�
�

�

����������

��������������������

�
�

�
�

�

���������������

��������������������

���������������

�
�

�
�

�

�
�

�
�

�

										

��������������������

�
�

�
�

�

���������������

��������������������

���������������

�
�

�
�

�

Figure 1: A network consisting of input, intermediate and output layers.

compression—, and then to recover it in the form of the corresponding output patterns

—decoding—. For the sake of simplicity we will be concerned only with the case where

N = M = p, the reason being that, for this set-up, the association between every

particular pattern and the position of each excited unit is quite easy to keep in mind.

As a technical subject, data compression can play a decisive role in the issue of

encryption, as it uses many of the same principles. The idea behind this is to increase the

capacity of any storage device without having to alter the actual hardware architecture,

and only by an effective reduction of the storage needs of the user. Computer-based

cryptography is a modern answer to the necessity for keeping sensitive data on shared

systems secure, as well as a resource for data transmission, e.g. the protection of sky-to-

earth station broadcasts. In addition to storage enhancement and higher security levels,

the encoding of information prior to transmission saves transfer time, e.g. on phone

lines.

2.1 Unary input and output sets.

This is the simplest set-up, from which more involved encoding systems can be devised,

as we shall later show. Let us assume an input alphabet of N symbols, each of them

defined by a binary pattern of N units. The choice of unary patterns amounts to defining

every element of the input set as

ξμ ≡ (
1−, . . . ,

μ−1− ,
μ
+,

μ+1− . . . ,
N−), μ = 1, . . . , N, (2.1)

4

or, in components, ξμ
k = 2δμ

k − 1 .

We will start by requiring our network to turn a given unary input pattern of

N units into an output configuration reproducing the same pattern, by means of an

intermediate layer. Furthermore, for the sake of economising on memory storage, it will

be quite desirable to demand that this layer be as small as possible.

The encoding strategy to be put into practice will consist in using a hidden

layer forming a binary representation of the N input characters in terms of −1’s and

+1’s (instead of 0’s and 1’s). Each element of this representation will be the binary

translation of the number μ − 1, associated to every pattern ξμ.

As a result, the dimension of this representation —in fact, the effective byte

length— henceforth called R, has the following value:

R =

⎧⎪⎨
⎪⎩

log2 N if log2 N ∈ N

[log2 N] + 1 if log2 N �∈ N
(2.2)

For instance, taking an input set of 5 unary patterns, one has to attach to them

the numbers 0, 1, 2, 3, 4 and put them into binary form when going to the intermediate

layer, which will take up only three units:

μ ξμ −→ σμ

1 + − − − − −→ − − −
2 − + − − − −→ − − +

3 − − + − − −→ − + −
4 − − − + − −→ − + +

5 − − − − + −→ + − −
This simple example does already show one of the most remarkable features of this type

of systems, namely that the total capacity of the σ layer is not always fully exploited.

As the figure shows, the hidden layer forms just five out of eight hypothetically possible

intermediate patterns. In general, a maximum of 2R different sequences can be stored,

but only when N = 2R, R ∈ N is this limit achieved.

The above translation, understood as a change of basis, may be implemented by

a number of techniques on any ordinary —i.e. non-parallel— computer, but, since we

are working on a neural network, it must be achieved by just an adequate choice of the

5

weights or connection strengths ωjk and of the threshold constants θj , which will relate

the values of the units in both layers in the way

σj = sign

(
N∑

k=1

ωjkξk − θj

)
, j = 1, . . . , R. (2.3)

The activations of the intermediate units thus defined may be written as

σμ
j = (−1)[

μ−1

2R−j]+1, (2.4)

where the square brackets mean to take the lower integer part.

Writing the expression for the unary patterns in components and making the

ansatz ωjk = σμ
j we obtain

σμ
j = sign

(
N∑

k=1

ωjkξ
μ
k − θj

)
= sign

(
N∑

k=1

(−1)[
k−1

2R−j]+1(2δμ
k − 1) − θj

)

= sign

(
2(−1)[

μ−1

2R−j]+1 −
N∑

k=1

(−1)[
k−1

2R−j]+1 − θj

)
. (2.5)

The equality is satisfied if

θj =
N∑

k=1

(−1)[
k−1

2R−j]. (2.6)

Since this solution does always exist, the ansatz has been proven to work for arbitrary

N .

The next step is to go from the intermediate layer to the output units. Since the

output set of patterns is identical to the input one, the whole encoding process from

one into the other means taking a certain ξμ to obtain some ξν , where the index ν

may be different from the given μ. If we demand that the translation be injective, the

relation between the set of output indices ν and the input labels μ can be no other than

a permutation of N elements. Selecting one such translation scheme amounts to making

the choice of a specific permutation. It is reasonable to make a first approach to this

problem by choosing the easiest element of the symmetric group, namely the identity.

So, if we denote by Sμ the output pattern resulting from entering ξμ into the network,

the set-up corresponding to the identity is that in which Sμ = ξμ, which, for instance,

in the N = 5 case can be represented by

6

μ σμ −→ Sμ

1 − − − −→ + − − − −
2 − − + −→ − + − − −
3 − + − −→ − − + − −
4 − + + −→ − − − + −
5 + − − −→ − − − − +

The connection weights and thresholds must make possible the relation

Sμ
i = sign

⎛
⎝ R∑

j=1

ωijσ
μ
j − θi

⎞
⎠ . (2.7)

Once more, we look for a solution which relates the weights to the values of the inter-

mediate units:

ωij = σi
j = (−1)[

i−1

2R−j]+1. (2.8)

By our assumption, we have

R∑
j=1

ωijσ
μ
j =

R∑
j=1

σi
jσ

μ
j ≤

R∑
j=1

(σi
j)

2 = R, (2.9)

i.e. , since each term is a product of two signs, the weighted sum of the values of the

hidden units achieves a maximum equal to R when all the pairs of signs coincide, which

happens precisely for μ = i. Otherwise, there must be at least one pair of opposed signs

and therefore
R∑

j=1

ωijσ
μ
j ≤ R − 2, for μ �= i. (2.10)

Going back to (2.7), given that Sμ
i = ξμ

i , which has a plus sign for the unit at i = μ and

minuses elsewhere, the thresholds θi must be such that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R∑
j=1

ωijσ
μ
j − θi > 0, for the maximum (μ = i),

R∑
j=1

ωijσ
μ
j − θi < 0, for the rest (μ �= i).

(2.11)

This is compatible with (2.9), (2.10). In fact, by simply taking the thresholds within a

certain range the fulfilment of these conditions is automatically ensured. This range is

θi = R − 2 + ε, i = 1, . . .N, 0 < ε < 2, (2.12)

7

but, in order to work with determined objects, we content ourselves with choosing

θi = R − 1, i = 1, . . .N. (2.13)

For an arbitrary permutation of N elements, the picture is slightly altered to

ξμ
k −→ σμ

j −→ Si = ξν
i

ωjk

θj

ωij

θi

ν = τ(μ), τ ∈ {permutations of N elements}
All these steps can be equally retraced with the only difference that the weights ωij now

coincide with the σ’s up to a label reshuffle, i.e. , instead of (2.8) we have ωτ(μ)j = σμ
j ,

or, equivalently,

ωμj = σ
τ−1(μ)
j = (−1)

[
τ−1(μ)−1

2R−j

]
+1

. (2.14)

Thus, our general solution is⎧⎪⎨
⎪⎩ ωij = (−1)

[
τ−1(i)−1

2R−j

]
+1

, i = 1, . . . , N, j = 1, . . . , R,

θi = R − 1, i = 1, . . . , N.
(2.15)

2.2 Arbitrary input and output sets.

The obvious continuation of the work so far is an enhancement of the above described

system so as to make it capable of translating binary patterns of a given arbitrary

input set into elements of another arbitrary —but also specified— output set. The

arbitrariness at the output level allows the encoding to be non-injective, i.e. , there

may be μ1 �= μ2 such that Sμ1 = Sμ2 . If ζμ, μ = 1, . . . , N denotes the arbitrary input

set and Sμ, μ = 1, . . . , N are the output patterns, in general different from the ζμ’s,

we will require our network to produce Sτ(μ) as output whenever ζμ is read as input,

being τ any specified permutation of N elements. Actually, the use of τ is redundant

in the sense that, as there is now no natural relationship between the ordering of the

input and output patterns, different τ ’s may at any rate be interpreted as different label

reshuffles added to the identity permutation in the output set. We will still assume that

the number of units at the input and output levels are equal to the number of patterns.

8

a) Five layers

A quite simple alternative that takes advantage of the above results is the actual

enlargement of our unary pattern permuter system, by turning the old input and output

layers into intermediate ones and adding two further layers, where the new arbitrary

sets can be read and written, as depicted in the following diagram

ζμ
l −→ ξμ

k −→ σμ
j −→ ξ

τ(μ)
i −→ S

τ(μ)
h

ωkl

θk

ωjk

θj

ωij

θi

ωhi

θh

We use l indices to denote each unit of the input patterns and h indices to label each

neuron in the output layer. While the three intermediate levels work exactly as in

the previous network, two new sets of connection weights and thresholds will have to

implement the translation from arbitrary sequences to unary patterns and the other way

round.

It is not difficult to guess

ωkl = ζk
l , (2.16)

the reason for this choice being that it makes the weighted sum of the input ζμ achieve

a maximum of value N precisely for μ = k, i.e.

N∑
l=1

ωklζ
μ
l =

N∑
l=1

ζk
l ζμ

l ≤
N∑

l=1

(ζk
l)2 = N. (2.17)

As we have seen, this type of reasoning works when we require the next layer to be in

a state where one neuron is on and the others are off, which is indeed the case for the

unary configurations ξμ. Taking this into account, a suitable choice for the threshold is

θk = N − 1, k = 1, . . . , N. (2.18)

Finally, the equality that has to be satisfied for the last step is

S
τ(μ)
h = sign

(
N∑

i=1

ωhiξ
τ(μ)
i − θj

)
= sign

(
N∑

i=1

ωhi(2δ
τ(μ)
i − 1) − θh

)

= sign

(
2ωhτ(μ) −

N∑
i=1

ωhi − θh

)
. (2.19)

9

which clearly holds if ωhτ(μ) = S
τ(μ)
h , i.e.

ωhi = Si
h, (2.20)

and

θh = −
N∑

ν=1

Sν
h . (2.21)

This constitutes a solution. Even though we have retained both the type of structure

and the conceptual simplicity of the first network, this design has the disadvantage that

it uses up 2N +R intermediate units in its three intermediate layers, which can be rather

wasteful as N grows large.

b) Three Layers

Another option is to give up the use of the reduced layer, i.e. the one with R

units. For N = 2R this substructure acts as a sieve in the sense that, even if a non-unary

pattern reaches the previous layer, the possible states of the reduced one are such that

the signals sent forward to the next layer will give rise to a unary sequence anyway. In

other words, the R-bit byte works as a perfect filter. As a result of this construction,

no matter whether an input pattern belongs to the set of ζμ’s or not, the corresponding

output will be one of the Sμ’s. Nevertheless, we shall see that, as far as the input and

output alphabets themselves are concerned, the same translation task can be performed

by a network with just one intermediate layer of N units. Although the removal of the

reduced layer may mean the loss of this sifting power, it will no doubt be a substantial

gain in storage economy.

There are several possible schemes of this sort, one of them being

ζμ
l −→ ξμ

k −→ S
τ(μ)
h

ωkl

θk

ωhk

θh

Since this is almost like cutting out two layers and two sets of connections from the

five-level device, the weights and thresholds for what remains are easily found to be

ωkl = ζk
l , θk = N − 1, (2.22)

10

and

ωhk = S
τ(k)
h , θh = −

N∑
ν=1

Sν
h . (2.23)

This scheme suggests using bytes N bits long. Although good, this solution does not

seem to be quite optimal, as one might wish to do the same task with a reduced inter-

mediate level —say, a shorter byte— instead of one of N units. However, the answer

we have found is a bit discouraging, and lays in the following

Theorem: It is not possible to encode through the scheme

ζμ
l −→ σμ

j −→ S
τ(μ)
h

ωjl

θj

ωhj

θh

for arbitrary sets {ζμ
l } and {Sτ(μ)

h }.
Proof: It suffices to show particular examples of pattern sets leading to contradiction:

1) Special choice of output patterns

μ σμ −→ Sμ

1

2

3

4

− −
− +

+ −
+ +

−→
−→
−→
−→

−
+

+

−

− − −
− + +

− + −
+ + −

For this choice of the output alphabet, the first column of the S’s, i.e. Sμ
1 , μ = 1, 2, 3, 4 —

marked out in the table— happens to be the ‘exclusive OR’, or XOR, Boolean function.

As has been shown in [Minsky and Papert 69] (see also [Hertz and Palmer 88] and other

works), this rather elementary computation cannot be solved by a simple perceptron,

which amounts to stating that the task of obtaining Sμ
1 from the σμ’s can by no means be

performed by a single step from the reduced layer to that containing the Sμ’s. Moreover,

this sort of inconsistency will show up whenever we take an N = 4, R = 2 system where

one of the output columns reproduces the values of the XOR function. For arbitrary

N we would encounter the same hindrance if an output column took on the values of

the generalized parity —or rather oddness— function, which is defined to be +1 when

11

there is an odd number of plus signs in the input and −1 otherwise, and constitutes the

high-dimensional extension of XOR.

2) Special case of input patterns

μ ζμ −→ σμ

1

2

3

4

− − + +

+ + − −
− + − +

+ − + −

−→
−→
−→
−→

−
−
+

+

−
+

−
+

Making use of our freedom to select arbitrary sets of input patterns, we have picked

one whose elements are not linearly independent. As a result, the contradiction does

now arise from the ensuing expressions limiting the thresholds. Consideration of the

relations for μ = 1 and μ = 2 leads to θ1 > 0 whereas the unequalities for μ = 3 and

μ = 4 require θ1 < 0, leaving no chance of realizing this scheme. The same kind of

reasoning is applicable to arbitrary N .

c) Four Layers

Even though the above theorem bans the possibility of implementing the theo-

retically optimal scheme, we can still hope to get close to it in some sense. The difficulty

found in the step from the input to the intermediate layer will be removed by demanding

that the ζμ’s, although arbitrary, be linearly independent. As for the way from the σ

units to the output cells, we will introduce a further intermediate layer, working exactly

as in the five-layer scheme, i.e.

ζμ
l −→ σμ

j −→ ξ
τ(μ)
i −→ S

τ(μ)
h

ωjl

θj

ωij

θi

ωhi

θh

where the only unknown things are the ωjl’s and θj ’s. One way of doing it so is to look

for two successive affine transformations such that

ζμ −→ ξμ −→ σμ

ξ = Aζ + B σ = Cξ + D

12

A solution satisfying this is⎧⎪⎨
⎪⎩

Akl = 2(ζ)−1
kl, k, l = 1, . . . , N,

Bk = −1, k = 1, . . . , N,
(2.24)

where (ζ)−1 is the inverse of the matrix (ζ)lμ ≡ ζμ
l , and⎧⎪⎪⎨

⎪⎪⎩
Cjμ = 1

2
σμ

j , j = 1, . . . , R, μ = 1, . . . , N,

Dj =
1

2

N∑
ν=1

σν
j , j = 1, . . . , R.

(2.25)

Composing both maps one gets

σ = Cξ + D = C(Aζ + B) + D = CAζ + CB + D, (2.26)

and, since in this case CB + D turns out to be zero, the transformation becomes just a

linear map, that is,

σj =
∑

l

ωjlζl, ωjl =
∑
ν

σν
j (ζ)−1

νl =
N∑

ν=1

(−1)[
ν−1

2R−j]+1(ζ)−1
νl. (2.27)

d) Further variants

In addition to the preceding ones, we have found other schemes which are, in

fact, only variations of those already described. For instance, departing from the five

layer network (N, N, R, N, N), we have composed the two intermediate transformations,

thus getting rid of the σ layer at the expense of using some more involved weights and

thresholds, the result being an (N, N, N, N) structure called a′ in the diagram. Next,

we have found b′ moving back the permutation τ in b from the second to the first

transformation. Finally, the composition of the first two steps of c gives a three-layer

network (N, N, N) called c′.

By way of summarizing and completing this picture, all the quantities occurring

are listed in Table 1 and Table 2.

3 Accessibilities.

Once an encoding scheme has been chosen, one might wonder which is the result when

the input pattern is none of the input alphabet. It may seem unjustified, since dif-

ferent encoding solutions will produce different outputs. However, this is the basis of

13

a) ζμ
l −→ ξμ

k �−→ σμ
j −→ ξ

τ(μ)
i �−→ S

τ(μ)
h⎧⎪⎨

⎪⎩
ωkl

θk

⎧⎪⎨
⎪⎩

ωjk

θj

⎧⎪⎨
⎪⎩

ωij

θi

⎧⎪⎨
⎪⎩

ωhi

θh

a′) ζμ
l −→ ξμ

k −→ ξ
τ(μ)
i �−→ S

τ(μ)
h⎧⎪⎨

⎪⎩
ωkl

θk

⎧⎪⎨
⎪⎩

ωik

ηi

⎧⎪⎨
⎪⎩

ωhi

θh

b) ζμ
l −→ ξμ

k �−→ S
τ(μ)
h⎧⎪⎨

⎪⎩
ωkl

θk

⎧⎪⎨
⎪⎩

ωhk

θh

b′) ζμ
l −→ ξ

τ(μ)
i �−→ S

τ(μ)
h⎧⎪⎨

⎪⎩
ωil

κi

⎧⎪⎨
⎪⎩

ωhi

θh

c) ζμ
l =⇒ σμ

j −→ ξ
τ(μ)
i �−→ S

τ(μ)
h

ωjl

⎧⎪⎨
⎪⎩

ωij

θi

⎧⎪⎨
⎪⎩

ωhi

θh

c′) ζμ
l −→ ξ

τ(μ)
i �−→ S

τ(μ)
h⎧⎪⎨

⎪⎩
Ωil

θi

⎧⎪⎨
⎪⎩

ωhi

θh

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−→ sign

�−→ sign {. . .} = 1
2
{. . .}

=⇒ sign {. . .} = {. . .}

Table 1: Different network structures. The type of arrow drawn indicates the sort of functions
of the weighted sum minus threshold that can be alternatively used yielding the same result.
A simple arrow denotes sign function, one with tail means that the argument is twice a sign,
so instead of taking the sign we can just divide by two. The double arrow means that the sign
function is absolutely redundant.

14

R = [log2 N] + 1 − δ[N]N

ξμ
k = 2δμ

k − 1

σμ
j = (−1)[

μ−1

2R−j]+1

ωkl = ζk
l θk = N − 1

ωjk = σk
j θj = −

N∑
ν=1

σν
j (0 if N = 2R)

ωij = σ
τ−1(i)
j θi = R − 1

ωhi = Si
h θh = −

N∑
ν=1

Sν
h

ωik =
1

2

R∑
j=1

ωijωjk ηi = R − 1 −
N∑

k=1

ωik

ωhk = S
τ(k)
h θh

ωil = ζ
τ−1(i)
l κi = N − 1

ωjl =
N∑

ν=1

σν
j (ζ)−1

νl 0

Ωil =
R∑

j=1

ωijωjl θi

Table 2: Expressions for the weights and thresholds.

15

almost all the current applications of multilayer neural networks: first, weights and

thresholds are calculated (e.g. by means of learning) and then the network is used to

predict, classify or interpolate. Lots of examples may be given, such as hyphenation

algorithms, protein secondary structure determiners and family tree relationship pre-

dictors [Rumelhart et al 86].

In what follows we shall concern ourselves with the working of the initial unary-

pattern three-layer permuter device. In fact, if the input pattern is not unary the

network does not work! The reason is that the fields

hj =
N∑

k=1

ωjkξk − θj (3.1)

may vanish for some j’s, and then σj = sign hj is no longer well defined. There are

several possible ways out:

1. By redefining the sign function, either as

sign (x) ≡
⎧⎪⎨
⎪⎩

−1 if x < 0

1 if x ≥ 0

or the other way around. This, however, is a rather unpleasant solution as it brings

about a manifest asymmetry between the chances of obtaining −1’s and +1’s.

2. Shifting the thresholds θj → θj +ε, |ε| < 1, i.e. noninteger values are now allowed.

Again, we get an unwanted asymmetry, since all the zero fields would, from now

on, give a certain sign depending on the target unit but not on the input pattern.

3. Making the intermediate σj units take on three values, −1, 0 and +1:

sign (x) ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 if x < 0

0 if x = 0

1 if x > 0

4. Introducing a finite —but low— temperature, and making the activations be

stochastic. Then, the sign taken on by every unit is no longer the result of a

deterministic function, but rather a random variable, for which the probabili-

ties of obtaining −1 or +1 are given by sigmoid curves whose shapes depend on

16

β ≡ 1/T and approach that of a step function as β goes to infinity (deterministic

limit). The condition that this temperature should be low is necessary in order to

preserve —after taking an average over many realizations— the same result as for

T = 0 when the input patterns are the ξμ’s.

3.1 Accessibilities of a three-valued unit intermediate layer.

The third option calls for a study of the accessibility of the different σj ’s. By accessibility

of a binary pattern, thought of as a memory, we mean the fraction of starting arbitrary

states which leads to that particular pattern [Hopfield et al 83]:

A(σ) =
input patterns giving σ

possible different input patterns (= 2N)
.

As happens in associative memory networks, different memories of the same size may

be in general not equally easy to recall. The parallel to the appearance of spurious

memories in an associative memory device is now the existence of the —to some extent

unwanted— zero states. An open question about our zero-temperature encoding system

is how to interpret the different sequences which end up in the same σ state. These

sequences, rather than resembling each other in the sense of being close by Hamming

distance —as happens in associative memory— are such that they tend to produce a

value σj in the jth unit depending on the similarity between the input pattern ξ and

the jth row of ω, which we shall call ωj.

A most interesting property of our scheme is the vanishing of all the input thresh-

olds whenever the number of external units equals an exact power of two, i.e.

θj =
N∑

k=1

(−1)[
k−1

2R−j] = −
N∑

k=1

ωjk = 0, for N = 2R, j = 1, . . . , R (3.2)

as can be seen by looking at the (ω) matrix, since for N = 2R the sum of all the

coefficients in each row is zero.

A little thought shows that the fields hj can take as values −N ,−N+2,. . .,0,. . .,N−
2,N , depending on the number of sign coincidences between ξ and ωj.

Denoting by f(hj) the frequency of hj, or number of possibilities that the weighted

17

sum equals the given quantity hj , we obtain

f(hj) =

(
N

N−hj

2

)
, (3.3)

and therefore

f(hj = 0) =

(
N

N
2

)
, f(hj �= 0) = 2N −

(
N

N
2

)
. (3.4)

We shall reason below that the accessibility of every non-spurious pattern — i.e.

free from zeros — may be put in terms of just the joint frequencies or probabilities that

a number of field components vanish. It is for this reason that the calculation of these

joint frequencies must be understood first. We start by considering

f(hi = 0, hj = 0), i �= j.

A fundamental property of our connection weight matrix is that for this same situation,

N = 2R, their rows are mutually orthogonal. Since the coefficients are −1’s and +1’s,

this means that for any two given rows, one half of the coeffients coincide and the other

half are just opposite.

The frequency we are going to evaluate is the total number of input possibilities

for the ξ’s, unary or not, such that the equations

ωi1ξ1 + ωi2ξ2 + . . . + ωiNξN = 0

ωj1ξ1 + ωj2ξ2 + . . . + ωjNξN = 0

⎫⎪⎬
⎪⎭ (3.5)

are simultaneously satisfied. By the above orthogonality property, we can put

ωik1 = ωjk1, . . . , ωikN/2
= ωjkN/2

,

ωik′
1 = −ωjk′

1, . . . , ωik′
N/2

= −ωjk′
N/2

,
(3.6)

where we have denoted by k1, . . . , kN/2 the indices for which the coefficients coincide and

by k′
1, . . . , k

′
N/2 those for which they are opposite. In terms of these sets of indices, the

system of two equations reads

ωik1ξk1 + . . . + ωikN/2
ξkN/2︸ ︷︷ ︸

A

+ ωik′
1ξk′

1 + . . . + ωik′
N/2

ξk′
N/2︸ ︷︷ ︸

B

= 0,

ωik1ξk1 + . . . + ωikN/2
ξkN/2

− ωik′
1ξk′

1 − . . . − ωik′
N/2

ξk′
N/2

= 0,

(3.7)

18

where A and B are partial weighted sums defined as shown. The resulting system for

these two new variables is immediately solved:

A + B = 0

A − B = 0

⎫⎪⎬
⎪⎭ ⇒ A = B = 0 (3.8)

which, in turn, implies ⎧⎪⎨
⎪⎩

ωik1ξk1 + . . . + ωikN/2
ξkN/2

= 0,

ωik′
1ξk′

1 + . . . + ωik′
N/2

ξk′
N/2

= 0.
(3.9)

Now, the unknowns in each equation are independent. Thus, for each of them, we can

make the same reasoning as before when hj = 0, with the only difference that N has

to be replaced with N
2
, as each identity contains just a half of the original number of

terms. Thus

fN/2(hi = 0) =

(N
2

N
4

)
, (3.10)

and the joint frequency is found as a joint probability:

fN(hi = 0, hj = 0) = fN/2(hi = 0)fN/2(hj = 0) =

(N
2

N
4

)2

. (3.11)

After a lengthier calculation we have also found

f(hi = 0, hj = 0, hk = 0) =
N/4∑

A=−N/4

step 2

(N
4

N
4
−A

2

)4

=
N/4∑
k=0

(N
4

k

)4

, i �= j �= k �= i. (3.12)

The following joint frequency is a bit more difficult to compute, but it gives an

idea of what has to be done for any number of vanishing field components. If we want

to calculate

f(hi = 0, hj = 0, hk = 0, hl = 0), i, j, k, l, all diffferent,

after writing down the equations, we pick the partial sums common to four (A), three

(B, C, D, E) and two (F, G, H) of them. Then, we express the equations using these

variables:

A + B + C + D − E + F + G + H = 0

A + B + C − D + E + F − G − H = 0

A + B − C + D + E − F + G − H = 0

A − B + C + D + E − F − G + H = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.13)

19

Next, we find the degree of indetermination —now eight unknowns minus four equations

equals four degrees of freedom— in order to know how many unknowns remain arbitrary.

The system will be solved by putting the rest as a function of the arbitrary ones.

Considering A,B,C and D to be free, we get⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

E = −2A − B − C − D

F = −A − B − C

G = −A − B − D

H = −A − C − D

(3.14)

After considering the ranges of the free variables, we apply (3.3) with N replaced by N
8
,

as a result of which, the whole joint frequency is given by

f(hi = 0, hj = 0, hk = 0, hl = 0)

=
∑
A

∑
B

∑
C

∑
D

f(A)f(B)f(C)f(D)

·f(E(A, B, C, D))f(F (A, B, C, D))f(G(A, B, C, D))f(H(A, B, C, D))

=
N/8∑
a=0

N/8∑
b=0

N/8∑
c=0

N/8∑
d=0

(N
8

a

)(N
8

b

)(N
8

c

)(N
8

d

)

·
(N

8

2a + b + c + d − N
4

)(N
8

N
4
− (a + b + c)

)(N
8

N
4
− (a + b + d)

)(N
8

N
4
− (a + c + d)

)
,

(3.15)

where several index rearrangements have been performed. Up to this point, the binomial

coefficients are to be understood in the general sense, i.e. when the number downstairs

is negative or when the difference between upstairs and downstairs is a negative integer,

they must be taken to be zero. Otherwise we would have to explicitly state that the sum

is restricted to a, b, c and d yielding nonvanishing coefficients. In fact, since many terms

give a zero contribution, the calculation of these sums is much easier than it looks.

The procedure described is completely general. Following these steps for any

number of vanishing fields, one considers the common pieces in the initial equations,

solves an indetermined linear system, uses the expressions of the frequencies for the

values of weighted sums and arrives at multiple sums involving binomial coefficients

only. The multiplicity of the final sum is always the degree of indetermination of the

linear system.

20

As anticipated, we are going to find the accessibilities in terms of the preceding

frequencies only, namely the f(h1 = 0, . . . , hj = 0), 1 ≤ j ≤ R, which we shall call or-

thogonalities. We start with the total number of possible different input binary patterns,

i.e. 2N . This figure must be equal to the sum of the frequencies for all the possible sorts

of field configurations for the σ level, thus

2N =
R∑

j=0

∑
{k1,...,kj}

f(h1 �= 0, . . . , hk1 = 0, . . . , hkj
= 0, . . . , hR �= 0), (3.16)

where {k1, . . . , kj} denotes a choice of j indices among the R existing ones. The indices

picked are those for which the associated field component vanishes, while the rest are

nonzero. f denotes the corresponding rate of occurrence, i.e. the number of input pat-

terns yielding that type of field configuration. Since j runs from 0 to R, this sum ranges

over all the possibilities that can take place. It can be argued that these frequencies

depend on the number of components that vanish, but not on the position they are

located at, i.e.

f(h1 �= 0, . . . , hk1 = 0, . . . , hkj
= 0, . . . , hR �= 0) = f(h1 = 0, . . . , hj = 0, hj+1 �= 0, . . . , hR �= 0)

for all possible rearrangements. Therefore,

2N =
R∑

j=0

(
R

j

)
f(h1 = 0, . . . , hj = 0, hj+1 �= 0, . . . , hR �= 0). (3.17)

Separating the term j = 0

f(h1 �= 0, . . . , hR �= 0) = 2N −
R∑

j=1

(
R

j

)
f(h1 = 0, . . . , hj = 0, hj+1 �= 0, . . . , hR �= 0).

(3.18)

After this, the considerations made so far for all the possible configurations can be

reproduced to all the sequences for which the first j field components vanish. Notice

that this gives no information about the other h’s, i.e. some of them may be vanishing

as well and thus we have to put

f(h1 = 0, . . . , hj = 0) =
R−j∑
k=0

(
R − j

k

)
f(h1 = 0, . . . , hj+k = 0, hj+k+1 �= 0, . . . , hR �= 0).

(3.19)

21

Once more, the first term in the summatory is separated:

f(h1 = 0, . . . , hj = 0, hj+1 �= 0, . . . , hR �= 0) =

f(h1 = 0, . . . , hj = 0) −
R−j∑
k=1

(
R − j

k

)
f(h1 = 0, . . . , hj+k = 0, hj+k+1 �= 0, . . . , hR �= 0).

(3.20)

(3.18), together with eqs. (3.20), constitute a set of interrelated recursive equations,

whose solution we have worked out with some labour in app. A, the result being given

by the beautiful expression

f(h1 �= 0, . . . , hR �= 0) = 2N +
R∑

k=1

(−1)k

(
R

k

)
f(h1 = 0, . . . , hk = 0), (3.21)

and therefore, the accessibilities of the σ patterns are given by

A(σμ) =
1

2N
f(h1 �= 0, . . . , hR �= 0), μ = 1, . . . , N. (3.22)

The calculations of this section may be useful in other topics in physics and

mathematics due to the fact that binary input patterns may be regarded as the vertices

of an N-dimensional hypercube or, equivalently, as vectors which go from the center of the

hypercube to its corners. Following this geometrical interpretation, the orthogonality

f(h1 �= 0, . . . , hj �= 0) counts the number of vectors perpendicular to a given set of j

mutually orthogonal vectors, j = 1, . . . , R, N = 2R, and so on. This sort of analysis is

applicable, for instance, to the configuration space of Ising models.

3.2 Accessibilities at finite temperature.

As we have seen, at zero temperature some of the ξ’s that do not belong to the set {ξμ}
can yield σj = 0 for one or more j’s. The chance of having vanishing components makes

the number of possible different σ patterns increase from 2R to 3R. A way of coping

with this is to introduce random noise in the form of finite temperature. Then, the state

of the unit σj is given by a stochastic function which can take either the value of +1 or

−1, with probabilities provided by the sigmoid curve

P (σj = ±1) =
1

1 + e∓2βhj
. (3.23)

22

In the limit where β goes to infinity, this reproduces a deterministic step function, as-

sociated to the 0 and 1 ’probabilities’ —or rather certainties— when taking the sign

function, while for β → 0 both probabilities tend to 1/2, i.e. the system behaves abso-

lutely randomly.

If the process is repeated for all the possible input patterns several times, we

can consider average values of each σ unit for every ξ sequence. Let < σ >ξ=ξμ denote

the average of the σ pattern produced by the unary sequence ξμ over many repetitions

of the whole reading process. Obviously, the lower T , the closer < σ >ξ=ξμ will be to

σμ. Therefore, since we are interested in preserving the encoding from ξμ to σμ (if not

always at least on average) the temperature will have to be low.

At T > 0, owing to the absence of vanishing σj’s, the only possible configurations

are the σμ’s, for μ = 1, . . . , N . However, for any fixed μ there are ξ’s other than the

ξμ which end up by giving σμ. With respect to the situation at T = 0, the accessibil-

ity of each σμ necessarily changes, as patterns which produced one or more zeros will

now have to ‘decide’ among {σμ, μ = 1, . . . , N}. Since each realization in itself is a

merely stochastic result, the only meaningful quantity to give us an idea of these new

accessibilities will be the average over many repetitions, that we define as follows

< A(σμ) >=
cumulative # input patterns which have given σμ

cumulative # patterns read (= # repetitions ·2N)

The result of a simulation (see Fig.2) for N = 4, R = 2 shows the tendency of all the

accessibilities to be equal as the number of repetitions increases, i.e.

< A(σμ) >→ 1

2R
.

Contrarily to other memory retrieval systems, this network has no critical tem-

perature. This means that there is no phase transition in the sense that noise degrades

the interactions between processing elements in a continuous way, without leaving any

phase where the reproduction of the original process as regards the ξμ’s can be —on

average— exact. By (3.23) we obtain

< σj >ξ=ξμ = +1 · P (σμ
j = +1) + (−1) · P (σμ

j = −1)

= tanh(βhμ
j) = tanh

(
β

(∑
k

ωjkξ
μ
k − θj

))
. (3.24)

23

With the components of ξμ and the thresholds we are using, this is

< σj >ξ=ξμ = tanh

(
β

(∑
k

ωjk(2δ
μ
k − 1) +

∑
k

ωjk

))

= tanh(2βωjμ). (3.25)

If we look for solutions to < σj >ξ=ξμ= σμ
j = ωjμ, taking into account that for our choice

of weights ωjμ can be either +1 or −1, the equation for β will be in any case

1 = tanh 2β, (3.26)

whose only solution is β → ∞, i.e. T = 0. Thus, in this sense, no critical temperature

exists. However, this reasoning allows us to find error bounds. The difference between

the average obtained and the desired result will be

< σj >ξ=ξμ −σμ
j = tanh(2βσμ

j) − σμ
j

=

⎧⎪⎨
⎪⎩

tanh 2β − 1 if σμ
j = +1

− tanh 2β + 1 if σμ
j = −1

(3.27)

Hence,

| < σj >ξ=ξμ −σμ
j | = 1 − tanh 2β. (3.28)

If we wish to work in such conditions that

| < σj >ξ=ξμ −σμ
j | ≤ ε, (3.29)

for a given ε, by the above relations we find that this temperature must have a value

satisfying

β ≥ 1

4
log

2 − ε

ε
. (3.30)

e.g. , if, at a given moment we want our average values to be reliable up to the fourth

decimal digit, taking ε = 10−5 we get β ≥ 3.05 or T ≤ 0.33, which agrees quite fairly

with the behaviour observed in our simulations.

4 Conclusions.

Encoding with multilayer neural networks is interpreted as an alternative to supervised

learning. This approach makes possible a deeper study of the working of these sort

24

of networks when an encoding scheme is found. The lack of solution to the minimal

encoding problem —when arbitrary input and output alphabets are considered— has

led us to the study of other non-optimal set-ups. For several architectures, we have

found adequate sets of weights and thresholds giving rise to particularly simple and

highly adaptative encoding processes. All our answers take advantage of the full power

of multilayer network schemes.

We have also analyzed the behaviour of one of our systems when the input sup-

plied does not belong to the initial set, a situation in which the intermediate binary

units may no longer yield a definite sign. The procedure followed has consisted in al-

lowing for the occurrence of null values and treating the sequences containing zeros as

‘spurious’. Despite the presence of such patterns, we have produced a general method

for calculating the accessibility on ‘non-spurious’ memories when the number of digital

units in the input pattern is N = 2R, R ∈ N. Further, those unwanted sequences

disappear when the level of thermal noise is raised above zero.

As a result, the accessibilities of the ‘non-spurious’ sequences are modified in such

a way that all of them maintain their equiprobability on average. At the same time, as

T increases the average values of the outputs become more and more noisy —i.e. away

from the expected result at T = 0. Since it turns out that there is no phase transition,

this degradation is actually continuous, but if one demands just a certain accuracy in

the preservation of the zero-temperature results, an upper bound to the T ’s fulfilling

this condition can be found.

Possible applications of our results include all the situations in which multi-

layer neural networks made of binary units are used, besides processes such as signal

encoding-decoding or pattern recognition, which may be understood as particular cases.

In addition, some of the methods and equations involving the frequencies of orthogonal-

ities may be useful whenever two-state particle statistical models are considered, and

even from a purely mathematical point of view.

Prospects for future developments of these ideas are the pursuit of more amenable

expressions for the accessibilities, particularly their dependence on the number of units

and on the encoding solution adopted, as well as the design of algorithms aimed at

the achievement of learning skills and the improvement of memory access. Moreover,

25

extensions of the encoding to non-binary networks, and to cases in which the number

of input patterns is greater than the number of input units, are of maximum interest.

A Appendix: Accessibilities in terms of orthogonal-

ities.

Substituting (3.20) into (3.18) we obtain

f(h1 �= 0, . . . , hR �= 0) = 2N −
R∑

j=1

(
R

j

)
f(h1 = 0, . . . , hj = 0)

+(−1)2
R∑

j=1

R−j∑
k=1

(
R

j

)(
R − j

k

)
f(h1 = 0, . . . , hj+k = 0, hj+k+1 �= 0, . . . hR �= 0). (A.1)

By recurrent iterations of this sort of substitution in the last term each time, we finally

end up with

f(h1 �= 0, . . . , hR �= 0) = 2N

+
R∑

l=1

(−1)l
R∑

k1=1

R−k1∑
k2=1

R−k1−k2∑
k3=1

· · ·
R−k1−...−kl−1∑

kl=1(
R

k1

)(
R − k1

k2

)(
R − k1 − k2

k3

)
. . .

(
R − k1 − . . . − kl−1

kl

)
f(h1 = 0, . . . , hk1+...+kl

= 0)

≡ 2N +
R∑

l=1

(−1)lSl, (A.2)

where we have introduced Sl as a shorthand for each l-dependent term in the multiple

summatory. Defining the new indices⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j1 ≡ k1 + . . . + kl

j2 ≡ k1 + . . . + kl−1

j3 ≡ k1 + . . . + kl−2

...

jl ≡ k1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l ≤ j1 ≤ R

l − 1 ≤ j2 ≤ j1 − 1

l − 2 ≤ j3 ≤ j2 − 1
...

1 ≤ jl ≤ jl−1

we can put Sl as

Sl =
R∑

j1=l

j1−1∑
j2=l−1

j2−1∑
j3=l−2

· · ·
jl−1−1∑
j1=l

(
R

jl

)(
R − jl

jl−1 − jl

)(
R − jl−1

jl−2 − jl−1

)
· · ·

(
R − j2

j1 − j2

)

26

×f(h1 = 0, . . . , hj1 = 0). (A.3)

Multiplying and dividing each term by j1! j2! · · · jl−1!, this becomes

Sl =
R∑

j1=l

(
R

j1

)
f(h1 = 0, . . . , hj1 = 0)

j1−1∑
j2=l−1

(
j1

j2

) j2−1∑
j3=l−2

(
j2

j3

)
· · ·

jl−1−1∑
jl=1

(
jl−1

jl

)
. (A.4)

Next, successively recalling that
k∑

j=0

(
k

j

)
= 2k and exercising due care with the missing

terms in each of the sums occurring we get

Sl =
R∑

j1=l

(
R

j1

)
f(h1 = 0, . . . , hj1 = 0)

j1−1∑
j2=l−1

(
j1

j2

)
· · ·

jl−2−1∑
jl−1=2

(
jl−2

jl−1

)
(2jl−1 − 2)

=
R∑

j1=l

(
R

j1

)
f(h1 = 0, . . . , hj1 = 0)

j1−1∑
j2=l−1

(
j1

j2

)
· · ·

jl−3−1∑
jl−2=3

(
jl−3

jl−2

)
(3jl−2 − 3 · 2jl−2 + 3)

=
R∑

j1=l

(
R

j1

)
f(h1 = 0, . . . , hj1 = 0)

j1−1∑
j2=l−1

(
j1

j2

)
· · ·

jl−4−1∑
jl−3=4

(
jl−4

jl−3

)
(4jl−3−4·3jl−3+6·2jl−3−4)

...

=
R∑

j1=l

(
R

j1

)
f(h1 = 0, . . . , hj1 = 0)

[
(−1)l

l∑
k=1

(−1)k

(
l

k

)
kj1

]
. (A.5)

Next, let us focus on the quantity in square brackets. Using the notation

S(l, j) ≡
l∑

k=1

(−1)k

(
l

k

)
kj, (A.6)

one can check the quite remarkable properties:

S(l, j) = 0, for 1 ≤ j < l, (A.7)
j∑

l=1

S(l, j) = (−1)j , for 1 ≤ j, (A.8)

whose proof is given in the next appendix. Then, in terms of S(l, j),

R∑
l=1

(−1)lSl =
R∑

l=1

R∑
j=1

(
R

j

)
f(h1 = 0, . . . , hj = 0)S(l, j), (A.9)

where, by the first property, the range of the sum over j has been extended from j = 1

to R changing nothing. As a result we can write

R∑
l=1

(−1)lSl =
R∑

j=1

(
R

j

)
f(h1 = 0, . . . , hj = 0)

R∑
l=1

S(l, j). (A.10)

27

Moreover, by virtue of the same property the sum over l can be restricted to the range

from 1 to j, because the remaining terms give a zero contribution, and then, applying

the second one,

R∑
l=1

(−1)lSl =
R∑

j=1

(
R

j

)
f(h1 = 0, . . . , hj = 0)(−1)j . (A.11)

Consequently,

f(h1 �= 0, . . . , hR �= 0) = 2N +
R∑

j=1

(−1)j

(
R

j

)
f(h1 = 0, . . . , hj = 0), (A.12)

which is (3.21).

B Appendix: Proof of two properties.

B.1 Proof of S(l, j) = 0, 1 ≤ j < l.

We start by considering the function

y(l,0) ≡ (1 − x)l =
l∑

k=1

(−1)k

(
l

k

)
xk. (B.1)

Then, we make the definitions:

y(l,1) ≡ d

dx
y(l,0)(x) =

l∑
k=1

(−1)k

(
l

k

)
kxk−1, (B.2)

y(l,j+1) ≡ d

dx
(xy(l,j)(x)), j ≥ 1, (B.3)

the second one being a recurrent constructive rule. In terms of these functions, one has

S(l, 0) = y(l,0)(1) − 1, l ≥ 1, (B.4)

S(l, j) = y(l,j)(1), j ≥ 1, l ≥ 1. (B.5)

Since y(l,0) = 0, one realizes that

S(l, 0) = −1, l ≥ 1. (B.6)

The next step is to show that S(l, j) = 0 for 1 ≤ j < l. By taking sucessive derivatives,

it is not difficult to notice that y(l,k)(x) is a sum of terms proportional to (1 − x)l−k,

with 1 ≤ k < l. Therefore

y(l,j)(1) = 0 = S(l, j), for 1 ≤ j < l. (B.7)

28

B.2 Proof of
j∑

l=1
S(l, j) = (−1)j, j ≥ 1.

j∑
l=1

S(l, j) =
j∑

l=1

l∑
k=1

(−1)k

(
l

k

)
kj . (B.8)

Given that the binomial coefficients vanish for l < k, the second sum can be extended

to the range from k = 1 to j and interchanged with the first afterwards

j∑
l=1

S(l, j) =
j∑

k=1

(−1)kkj
j∑

l=1

(
l

k

)
. (B.9)

Further, by the same reasoning the l-summatory may now be restricted to k ≤ l. Then,

we obtain
j∑

l=k

(
l

k

)
=

(
j + 1

k + 1

)
. (B.10)

Replacing this into the previous expression and making the index renaming⎧⎪⎨
⎪⎩

N ≡ j + 1

r ≡ k + 1,
(B.11)

we arrive at
j∑

l=1

S(l, j) =
N∑

r=2

(−1)r−1(r − 1)N−1

(
N

r

)

= −
N∑

r=0

(−1)r(r − 1)N−1

(
N

r

)
+ (−1)N−1

(
N

0

)
. (B.12)

The first term vanishes by a known property ([Gradshteyn and Ryzhik] form. [0.154(6)])

and what remains reads
j∑

l=1

S(l, j) = (−1)j . (B.13)

Acknowledgements
This work has been partly supported by Comisión Interministerial de Ciencia y

Tecnoloǵıa (CICYT) contract no. AEN 90-0033. AR is thankful for an FPI fellowship

from the Spanish Ministry of Education and Science that has provided financial help

during the first stages of this research, and SG acknowledges the awarding of the same

type of grant during the last stages.

29

References

[Amit et al 90] D.J. Amit, M.R. Evans, H. Horner and K.Y.M. Wong,

J. Phys. A 23 (1990) 3361-3381.

[Bacci et al 90] S. Bacci, G. Mato and N. Parga, J. Phys. A 23 (1990)

1801-1810.

[Denby 90] B. Denby, Fermilab preprint Conf-90/94.

[Denby et al 90] B. Denby, M. Campbell, F. Bedeschi, N. Chris, C. Bow-

ers and F. Nesti, Fermilab preprint Conf-90/20

[Derrida et al 87] B. Derrida, E. Gardner and A. Zippelius, Europhys.

Lett. 4 (1987) 167-173.

[Gradshteyn and Ryzhik] Gradshteyn and Ryzhik, Table of Integrals, Series and

Products, Acad. Press, New York (1980).

[Herz et al 90] A.V.M. Herz, Z. Li and J.L. van Hemmen, Institue for

Advanced Study preprint IASSNS-HEP-90/67, Prince-

ton 1990.

[Hertz and Palmer 88] J.A. Hertz and R.G. Palmer, Duke University lecture

notes, 1988.

[Hopfield 82-84] J.J. Hopfield, Proc. Nat. Acad. Sci. USA 79 (1982)

2554, 81 (1984) 3088.

[Hopfield et al 83] J.J. Hopfield, D.I. Feinstein and R.G. Palmer, Nature

304 (1983) 158-159.

[Hopfield and Tank 85] J.J. Hopfield and D.W. Tank, Biol. Cybernetics 52

(1985) 141-152.

[Little 74] W.A. Little, Math. Biosc. 19 (1974) 101.

30

[Minsky and Papert 69] M. Minsky and S. Papert, Perceptrons, MIT Press,

Cambridge MA, USA (1969).

[Nakamura and Nishimori 90] T. Nakamura and H. Nishimori, J. Phys. A 23 (1990)

4627-4641.

[Parga and Virasoro 86] N. Parga and M.A. Virasoro, J. Physique 47 (1986)

1857-1864.

[Rumelhart et al 86] D.E. Rumelhart, G.E. Hinton and R.J. Williams, Na-

ture 323 (1986) 533-536.

[Rumelhart and McClelland 86] D.E. Rumelhart, J.L. McClelland and the PDP re-

search group, Parallel Distributed Processing, chap. 8,

MIT Press, Cambridge, MA (1986).

[Schempp 84] W. Schempp, Proc. of the A.M.S. 92 (1984) 345-382.

[Schempp 89] W. Schempp, Results in Math. 16 (1989) 103-110.

[Stimpfl-Abele and Garrido 90] G.Stimpfl-Abele and L. Garrido, Universitat Autònoma

de Barcelona preprint UAB-LFAE 90-06, Computer

Phys. Commun. 64 (1991) 46-56.

31

0 100 200 300 400
Iteration

0.10

0.20

0.30

0.40

A
ve

ra
ge

 a
cc

es
si

bi
lit

y

Figure 2: Result of a simulation for N=4 at finite T . The curves represent the cumulative

average accesibilities of each ξμ.

32

