
Supplementary Figure 1: Interconnected multiplex with six nodes in two layers (A and D) and corresponding

aggregated networks (B and E). The nodes are ranked by their eigenvector centrality in each layer separately,

in the aggregated and in the whole interconnected structure (C and F). Case A, B and C. Nodes 1 and 3

have a key role in the multilayer, being bridges between the two layers. In a collaboration network they would

represent scientists working on two different research areas who allow information to flow from one subject to

the other. While nodes 1 and 3 gain centrality from their connections to “hubs” on different layers, they also

gain centrality from their own counterparts in other layers, making them important in the multilayer network.

In the aggregated network their versatility disappears, because the information is washed out by projecting on

a single layer, where nodes 2 and 6 are still “hubs” but it is not possible to capture the importance of nodes 1

and 3 in bridging different areas. Case D, E and F. This example shows how aggregating the full information

on a single network introduces a spurious symmetry between nodes 2, 3, 4 and 6 that is not present in the

multilayer, except for 2 and 4. The resulting score in the aggregate is not able to capture the difference between

these nodes (corresponding to a degeneration in the eigenspace) while it is evident that, for instance, node 6 is

more central than node 3 because of its direct connection to node 1 – the “hub” – in layer 1.
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Supplementary Figure 2: Distribution of the difference between the node’s rank, obtained from different

centrality measures, in aggregated and multilayer network for the empirical datasets discussed in the text.

If the rank difference would be negligible a distribution peaked around zero should be observed. We found

useful to show HITS centrality only for Twitter+Instagram dataset, being a directed multilayer. The majority

of authors in the APS dataset have eigenvector centrality not significantly different from zero, leading to the

same ranking and explaining the small rank difference with the aggregated. Except for this case, the figures

show that a negligible number of nodes has the same rank in the multilayer and the corresponding aggregated

network in all cases.
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Supplementary Figure 3: a) Edge-colored graph (i.e., multiplex) representing two different types of interac-

tions (solid and dashed edges) between 5 actors. b) An interconnected multiplex representing the same actors

exhibiting the same relationships but on different levels which are separated by a cost (dotted vertical lines) to

move from one layer to the other.
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Supplementary Figure 4: Multilayered visualization of empirical interconnected multiplex networks, where

interlayer connections are present but not shown for simplicity. (A) Layers correspond to flight routes operated

by different air companies between European airports [1]. (B) Layers show the mobility and the communication

network of sub-prefectures in Ivory Coast, built from mobile phone calls data (data provided during the Data

for Development challenge, http://www.d4d.orange.com/). (C) Layers correspond to two different observations

– separated by three weeks – of one ant colony [2]. (D) Layers correspond to the interaction network (left) of

genes in Saccharomyces cerevisiae, obtained through synthetic genetic array methodology, and correlation-based

network (middle) connecting genes with similar genetic interaction profiles [3]. To improve the visualization,

we show in each layer the largest connected component of the corresponding network, where only pairs with

high genetic interaction score and highly correlated genetic profiles are considered. The resultant aggregated

network (right) is shown to highlight how structural information about the original layers is lost. Map tiles By

Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under CC BY SA.4



Supplementary Figure 5: Schematic of a random walk (dotted trajectories) in a multiplex network. A

walker can jump between nodes within the same layer, or it might switch to another layer. This illustration

evinces how multiplexity allows a random walker to move between nodes that belong to different (disconnected)

components on a given layer.

Supplementary Figure 6: Representative example of the equivalence between the random walk occupation

centrality obtained from Monte Carlo simulations and the theoretical prediction. The case of a multiplex with

two layers and 50 nodes is considered.
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PageRank Centrality Ranking Diversity

Name Versatility Aggregate Average Consensus Intra Global

Edmund F. Robertson 1 1 (+0) 18 (+17) 3 (+2) 1 2

Milton Friedman 2 16 (+14) 22 (+20) 5 (+3) 1 8

Hilary Putnam 3 34 (+31) 1302 (+1299) 237 (+234) 1 4

E. O. Wilson 4 332 (+328) 996 (+992) 480 (+476) 1 8

Harold Clayton Urey 5 537 (+532) 451 (+446) 1244 (+1239) 1 8

Kurt Gödel 6 43 (+37) 325 (+319) 169 (+163) 3 8

Avicenna 7 30 (+23) 8 (+1) 41 (+34) 3 4

Ernst Mayr 8 191 (+183) 582 (+574) 68 (+60) 1 8

Herbert A. Simon 9 48 (+39) 14 (+5) 96 (+87) 3 8

Charles Stark Draper 10 1196 (+1186) 1169 (+1159) 970 (+960) 1 8

Ivan Pavlov 11 423 (+412) 56 (+45) 86 (+75) 2 6

Aristotle 12 3 (−9) 2 (−10) 19 (+7) 5 5

Paul Samuelson 13 26 (+13) 43 (+30) 15 (+2) 1 8

Immanuel Kant 14 2 (−12) 19 (+5) 4 (−10) 1 2

Norbert Wiener 15 68 (+53) 407 (+392) 245 (+230) 2 8

Chien-Shiung Wu 16 100 (+84) 599 (+583) 1315 (+1299) 1 6

George Dantzig 17 217 (+200) 1244 (+1227) 577 (+560) 2 8

Ronald Ross 18 1602 (+1584) 5472 (+5454) 5472 (+5454) 0 5

John C. Slater 19 1242 (+1223) 1627 (+1608) 2119 (+2100) 1 8

Porphyry (philosopher) 20 311 (+291) 1063 (+1043) 958 (+938) 1 3

Peter Mansfield 21 1502 (+1481) 2914 (+2893) 2682 (+2661) 1 5

Rosalyn Yalow 22 888 (+866) 1580 (+1558) 2088 (+2066) 1 7

Samuel Goudsmit 23 1364 (+1341) 1960 (+1937) 2361 (+2338) 1 8

Albert Einstein 24 10 (−14) 11 (−13) 1 (−23) 2 4

Plato 25 4 (−21) 15 (−10) 11 (−14) 2 2

Supplementary Table 1: Wikipedia dataset, ranking by PageRank.
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Eigenvector Centrality Ranking Diversity

Name Versatility Aggregate Average Consensus Intra Global

John Bardeen 1 1 (+0) 5 (+4) 1 (+0) 2 8

Enrico Fermi 2 2 (+0) 27 (+25) 9 (+7) 3 3

Luis Walter Alvarez 3 4 (+1) 90 (+87) 44 (+41) 1 6

Niels Bohr 4 3 (−1) 51 (+47) 18 (+14) 2 2

Isidor Isaac Rabi 5 7 (+2) 74 (+69) 27 (+22) 1 4

Hans Bethe 6 9 (+3) 77 (+71) 35 (+29) 1 1

Eugene Wigner 7 6 (−1) 96 (+89) 57 (+50) 2 6

Arthur Compton 8 13 (+5) 91 (+83) 51 (+43) 1 2

Yoichiro Nambu 9 5 (−4) 140 (+131) 151 (+142) 1 6

Nicolaas Bloembergen 10 8 (−2) 116 (+106) 84 (+74) 1 6

Albert Einstein 11 9 (−2) 25 (+14) 73 (+62) 2 4

Werner Heisenberg 12 14 (+2) 103 (+91) 68 (+56) 2 2

Albert Abraham Michelson 13 22 (+9) 120 (+107) 91 (+78) 1 3

James Chadwick 14 21 (+7) 124 (+110) 99 (+85) 1 3

Norman Foster Ramsey, Jr. 15 23 (+8) 130 (+115) 107 (+92) 1 3

Max Planck 16 15 (−1) 127 (+111) 115 (+99) 2 5

Paul Dirac 17 19 (+2) 110 (+93) 137 (+120) 2 2

Edward Mills Purcell 18 24 (+6) 135 (+117) 131 (+113) 1 4

Felix Bloch 19 26 (+7) 134 (+115) 124 (+105) 1 1

Chen Ning Yang 20 12 (−8) 223 (+203) 350 (+330) 1 6

J. J. Thomson 21 16 (−5) 94 (+73) 170 (+149) 3 5

Riccardo Giacconi 22 18 (−4) 187 (+165) 203 (+181) 1 6

Raymond Davis, Jr. 23 17 (−6) 122 (+99) 249 (+226) 2 7

John Robert Schrieffer 24 30 (+6) 153 (+129) 157 (+133) 1 1

John Hasbrouck Van Vleck 25 25 (+0) 158 (+133) 164 (+139) 2 3

Supplementary Table 2: Wikipedia dataset, ranking by eigenvector centrality.
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Betweenness Centrality Ranking Diversity

Name Versatility Aggregate Average Consensus Intra Global

Edmund F. Robertson 1 1 (+0) 1 (+0) 6 (+5) 1 2

Milton Friedman 2 5 (+3) 795 (+793) 133 (+131) 1 8

Albert Einstein 3 3 (+0) 102 (+99) 22 (+19) 2 4

Charles Darwin 4 7 (+3) 60 (+56) 4 (+0) 2 5

Immanuel Kant 5 9 (+4) 41 (+36) 44 (+39) 1 2

Aristotle 6 2 (−4) 4 (−2) 2 (−4) 5 5

Plato 7 10 (+3) 20 (+13) 11 (+4) 2 2

Bertrand Russell 8 8 (+0) 17 (+9) 77 (+69) 2 2

C. R. Rao 9 11 (+2) 27 (+18) 165 (+156) 1 6

Isaac Newton 10 4 (−6) 2 (−8) 1 (−9) 4 5

Paul Erdős 11 12 (+1) 6 (−5) 24 (+13) 1 1

Gottfried Wilhelm Leibniz 12 6 (−6) 8 (−4) 16 (+4) 3 3

Robert Solow 13 22 (+9) 584 (+571) 91 (+78) 1 6

Carl Friedrich Gauss 14 24 (+10) 21 (+7) 118 (+104) 2 6

Avicenna 15 26 (+11) 500 (+485) 429 (+414) 3 4

Marvin Minsky 16 33 (+17) 2396 (+2380) 328 (+312) 1 4

Kurt Gödel 17 13 (−4) 18 (+1) 101 (+84) 3 8

Benjamin Franklin 18 54 (+36) 459 (+441) 152 (+134) 3 4

Karl Marx 19 18 (−1) 35 (+16) 49 (+30) 2 3

Donald Knuth 20 16 (−4) 90 (+70) 58 (+38) 2 6

Norbert Wiener 21 19 (−2) 31 (+10) 193 (+172) 2 8

David Hume 22 23 (+1) 45 (+23) 57 (+35) 2 3

Karl Popper 23 51 (+28) 546 (+523) 654 (+631) 1 2

Kenneth Arrow 24 52 (+28) 1466 (+1442) 462 (+438) 1 6

Jerzy Neyman 25 31 (+6) 48 (+23) 230 (+205) 1 6

Supplementary Table 3: Wikipedia dataset, ranking by betweenness centrality.
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PageRank

Name Versatility Aggregate

Ivan Pavlov 1 40 (+39)

Albert Einstein 2 1 (−1)

Hermann von Helmholtz 3 25 (+22)

Thomas Henry Huxley 4 14 (+10)

Charles Darwin 5 2 (−3)

David Hilbert 6 3 (−3)

Charles Wheatstone 7 43 (+36)

Felix Klein 8 5 (−3)

W. Thomson, 1st Baron Kelvin 9 24 (+15)

Karl Marx 10 4 (−6)

Karl Weierstrass 11 13 (+2)

Robert Bunsen 12 36 (+24)

Louis Agassiz 13 33 (+20)

Charles-Adolphe Wurtz 14 75 (+61)

Charles Sanders Peirce 15 8 (−7)

Marie Curie 16 20 (+4)

Lord Rayleigh 17 92 (+75)

William James 18 7 (−11)

Max Planck 19 11 (−8)

Friedrich Nietzsche 20 6 (−14)

Arthur Cayley 21 37 (+16)

James Prescott Joule 22 59 (+37)

Ludwig Boltzmann 23 79 (+56)

J. J. Thomson 24 17 (−7)

Karl Pearson 25 35 (+10)

Supplementary Table 4: Wikipedia alternative dataset, ranking by PageRank.
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Eigenvector

Name Versatility Aggregate

Albert Einstein 1 1 (+0)

Max Planck 2 2 (+0)

J. J. Thomson 3 3 (+0)

Hendrik Lorentz 4 5 (+1)

William Henry Bragg 5 6 (+1)

Albert Abraham Michelson 6 7 (+1)

Marie Curie 7 4 (−3)

Charles Thomson Rees Wilson 8 9 (+1)

Pierre Curie 9 10 (+1)

Wilhelm Wien 10 13 (+3)

Max von Laue 11 17 (+6)

Ernest Rutherford 12 8 (−4)

Enrico Fermi 13 14 (+1)

Pieter Zeeman 14 23 (+9)

Henri Becquerel 15 16 (+1)

Walther Bothe 16 26 (+10)

Wilhelm Röntgen 17 15 (−2)

Philipp Lenard 18 28 (+10)

Johannes Stark 19 33 (+14)

Owen Willans Richardson 20 38 (+18)

Charles Glover Barkla 21 40 (+19)

Johannes Diderik van der Waals 22 31 (+9)

Jean Baptiste Perrin 23 41 (+18)

Ernest Lawrence 24 44 (+20)

Heike Kamerlingh Onnes 25 36 (+11)

Supplementary Table 5: Wikipedia alternative dataset, ranking by eigenvector centrality.
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PageRank

Name Versatility Aggregate

Amsterdam Schiphol 1 1 (+0)

Brussels 2 17 (+15)

Charles de Gaulle 3 13 (+10)

Athens International 4 2 (−2)

Frankfurt 5 10 (+5)

Barcelona El Prat 6 4 (−2)

Madrid Barajas 7 3 (−4)

Munich 8 5 (−3)

Copenhagen 9 19 (+10)

Malpensa 10 24 (+14)

Vienna International 11 8 (−3)

Prague 12 21 (+9)

Istanbul Atatürk 13 7 (−6)

Stockholm Arlanda 14 22 (+8)

Oslo Gardermoen 15 11 (−4)

Warsaw Chopin 16 27 (+11)

Palma de Mallorca 17 16 (−1)

Cologne Bonn 18 28 (+10)

Fiumicino 19 12 (−7)

Budapest 20 26 (+6)

Bologna 21 54 (+33)

Zurich 22 18 (−4)

Gatwick 23 9 (−14)

London Stansted 24 6 (−18)

Heathrow 25 25 (+0)

Supplementary Table 6: EU Airports dataset, ranking by PageRank.
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Eigenvector

Name Versatility Aggregate

Frankfurt 1 8 (+7)

Amsterdam Schiphol 2 1 (−1)

Brussels 3 11 (+8)

Charles de Gaulle 4 7 (+3)

Barcelona El Prat 5 5 (+0)

Malpensa 6 13 (+7)

Athens International 7 21 (+14)

Munich 8 6 (−2)

Madrid Barajas 9 2 (−7)

Copenhagen 10 12 (+2)

Vienna International 11 4 (−7)

Prague 12 19 (+7)

Fiumicino 13 3 (−10)

Palma de Mallorca 14 22 (+8)

Stockholm Arlanda 15 26 (+11)

Warsaw Chopin 16 17 (+1)

Budapest 17 16 (−1)

Oslo Gardermoen 18 24 (+6)

Zurich 19 10 (−9)

Heathrow 20 14 (−6)

Düsseldorf 21 9 (−12)

Manchester 22 35 (+13)

Hamburg 23 25 (+2)

Venice Marco Polo 24 29 (+5)

Lisbon Portela 25 18 (−7)

Supplementary Table 7: EU Airports dataset, ranking by eigenvector centrality
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Betweenness

Name Versatility Aggregate

Athens International 1 2 (+1)

Oslo Gardermoen 2 1 (−1)

Amsterdam Schiphol 3 5 (+2)

London Stansted 4 4 (+0)

Tromsø 5 16 (+11)

Istanbul Atatürk 6 3 (−3)

Copenhagen 7 22 (+15)

Frankfurt 8 18 (+10)

Barcelona El Prat 9 7 (−2)

Brussels 10 19 (+9)

Madrid Barajas 11 11 (+0)

Charles de Gaulle 12 23 (+11)

Munich 13 9 (−4)

Stockholm Arlanda 14 10 (−4)

Helsinki 15 8 (−7)

Gatwick 16 6 (−10)

Vienna International 17 12 (−5)

Bodø 18 17 (−1)

Palma de Mallorca 19 20 (+1)

Prague 20 14 (−6)

Dublin 21 15 (−6)

Edinburgh 22 32 (+10)

Riga International 23 24 (+1)

Sabiha Gökçen International 24 25 (+1)

Bergamo Orio al Serio 25 34 (+9)

Supplementary Table 8: EU Airports dataset, ranking by betweenness centrality.
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PageRank

Name Versatility Aggregate

Rosario Fazio 1 1 (+0)

F. M. Peeters 2 2 (+0)

Peter Hänggi 3 5 (+2)

H. T. C. Stoof 4 21 (+17)

Klaus Mølmer 5 6 (+1)

Daniel Loss 6 8 (+2)

A. Loidl 7 3 (−4)

E. V. Chulkov 8 4 (−4)

Christoph H. Keitel 9 38 (+29)

Matthias Scheffler 10 11 (+1)

Erwin Frey 11 53 (+42)

Amand Faessler 12 9 (−3)

Francesco Mauri 13 14 (+1)

Nicolas Gisin 14 12 (−2)

Klaus Richter 15 20 (+5)

Gerard Meijer 16 30 (+14)

Andrzej M. Oleś 17 7 (−10)

Ingrid Mertig 18 10 (−8)

Christoph Simon 19 23 (+4)

J. Ignacio Cirac 20 48 (+28)

Michele Lazzeri 21 32 (+11)

Ralf Stannarius 22 70 (+48)

Tilman Pfau 23 121 (+98)

Francesc Sagués 24 43 (+19)

Marjolein Dijkstra 25 28 (+3)

Supplementary Table 9: EU APS dataset, ranking by PageRank.
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Eigenvector

Name Versatility Aggregate

F. M. Peeters 1 1 (+0)

M. V. Milošević 2 3 (+1)

B. Partoens 3 2 (−1)

G. R. Berdiyorov 4 4 (+0)

S. Bednarek 5 5 (+0)

V. R. Misko 6 7 (+1)

Y. Sidor 7 8 (+1)

M. D. Croitoru 8 10 (+2)

A. A. Shanenko 9 12 (+3)

I. V. Grigorieva 10 15 (+5)

T. Chwiej 11 13 (+2)

J. Adamowski 12 16 (+4)

M. Hayne 13 17 (+4)

Péter Földi 14 6 (−8)

Mihály G. Benedict 15 9 (−6)

A. K. Geim 16 19 (+3)

Orsolya Kálmán 17 14 (−3)

Egidijus Anisimovas 18 20 (+2)

A. Vagov 19 18 (−1)

A. Potenza 20 21 (+1)

S. J. Bending 21 22 (+1)

S. W. S. Apolinario 22 11 (−11)

L. A. Ponomarenko 23 24 (+1)

F. Schedin 24 25 (+1)

M. Henini 25 26 (+1)

Supplementary Table 10: EU APS dataset, ranking by eigenvector centrality.
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Betweenness

Name Versatility Aggregate

Hua Wu 1 1 (+0)

Rosario Fazio 2 3 (+1)

Matthias Scheffler 3 2 (−1)

Daniel Loss 4 15 (+11)

Matthias Troyer 5 7 (+2)

Sander van Smaalen 6 5 (−1)

J. A. Mydosh 7 4 (−3)

Georg Kresse 8 12 (+4)

Ingrid Mertig 9 11 (+2)

Reinhard K. Kremer 10 6 (−4)

Oleg V. Dolgov 11 8 (−3)

Miodrag L. Kulić 12 10 (−2)

Jürgen König 13 28 (+15)

J. Ferré 14 13 (−1)

Peter Kratzer 15 9 (−6)

K. Held 16 20 (+4)

H. Bouchiat 17 33 (+16)

F. F. Assaad 18 23 (+5)

G. Faini 19 25 (+6)

Giovanna Morigi 20 32 (+12)

Gerd Schön 21 43 (+22)

Armen Sedrakian 22 18 (−4)

J. C. Cuevas 23 47 (+24)

Ulrich Hohenester 24 52 (+28)

Antti-Pekka Jauho 25 55 (+30)

Supplementary Table 11: EU APS dataset, ranking by betweenness centrality.
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PageRank

Name Versatility Aggregate

Matthias Scheffler 1 1 (+0)

K. H. Bennemann 2 15 (+13)

Robert Graham 3 46 (+43)

M. A. Liberman 4 305 (+301)

Erio Tosatti 5 4 (−1)

Hans Ågren 6 2 (−4)

H. Winter 7 23 (+16)

G. Landwehr 8 8 (+0)

D. A. Ritchie 9 5 (−4)

Jakub Zakrzewski 10 7 (−3)

R. J. Needs 11 33 (+22)

Andrzej M. Oleś 12 3 (−9)

F. Perrot 13 318 (+305)

N. H. March 14 131 (+117)

J. Zhang 15 393 (+378)

C. W. J. Beenakker 16 41 (+25)

C. T. Foxon 17 9 (−8)

H. R. Ott 18 138 (+120)

P. Weinberger 19 11 (−8)

M. Müller 20 235 (+215)

L. Eaves 21 10 (−11)

Giulio Casati 22 54 (+32)

Daan Frenkel 23 38 (+15)

Michele Parrinello 24 27 (+3)

M. Pepper 25 6 (−19)

Supplementary Table 12: EU APS alternative dataset, ranking by PageRank.
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Eigenvector

Name Versatility Aggregate

D. A. Ritchie 1 1 (+0)

M. Pepper 2 2 (+0)

G. A. C. Jones 3 3 (+0)

J. E. F. Frost 4 4 (+0)

J. T. Nicholls 5 5 (+0)

C. G. Smith 6 6 (+0)

H. P. Hughes 7 7 (+0)

A. J. Shields 8 8 (+0)

D. M. Whittaker 9 9 (+0)

G. Hill 10 10 (+0)

Karsten Flensberg 11 11 (+0)

J. A. A. J. Perenboom 12 12 (+0)

M. S. Skolnick 13 13 (+0)

P. Wyder 14 14 (+0)

R. T. Phillips 15 15 (+0)

J. S. Roberts 16 16 (+0)

P. C. Klipstein 17 19 (+2)

L. Eaves 18 17 (−1)

M. Henini 19 18 (−1)

G. W. Smith 20 20 (+0)

D. J. Mowbray 21 21 (+0)

P. C. Main 22 22 (+0)

P. H. Beton 23 23 (+0)

A. G. M. Jansen 24 24 (+0)

J. C. Portal 25 27 (+2)

Supplementary Table 13: EU APS alternative dataset, ranking by eigenvector centrality.
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PageRank

Name Versatility Aggregate

mashable 1 1 (+0)

BreakingNews 2 3 (+1)

nerdist 3 8 (+5)

robdelaney 4 9 (+5)

feliciaday 5 7 (+2)

britneyspears 6 4 (−2)

VictoriaJustice 7 574 (+567)

Veronica 8 25 (+17)

tyrabanks 9 24 (+15)

USATODAY 10 33 (+23)

AntDeRosa 11 88 (+77)

ijustine 12 21 (+9)

chrisbrogan 13 14 (+1)

problogger 14 19 (+5)

cocorocha 15 82 (+67)

anildash 16 57 (+41)

davemcclure 17 23 (+6)

jowyang 18 17 (−1)

JoshuaDavis 19 488 (+469)

redbull 20 5 (−15)

benparr 21 48 (+27)

arrington 22 39 (+17)

chrismessina 23 71 (+48)

caro 24 171 (+147)

chrisconnolly 25 189 (+164)

Supplementary Table 14: Twitter+Instagram dataset, ranking by PageRank.
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Eigenvector

Name Versatility Aggregate

mashable 1 9 (+8)

BarrettAll 2 7 (+5)

JonahLupton 3 1 (−2)

MarshaCollier 4 3 (−1)

cspenn 5 5 (+0)

mayhemstudios 6 2 (−4)

JessicaNorthey 7 8 (+1)

awakeningaimee 8 4 (−4)

chrisbrogan 9 39 (+30)

BarbaraDuke 10 10 (+0)

Garin 11 13 (+2)

bsainsbury 12 17 (+5)

AnthonyGemma 13 6 (−7)

jkcallas 14 16 (+2)

Britopian 15 14 (−1)

jowyang 16 34 (+18)

problogger 17 62 (+45)

AskAaronLee 18 19 (+1)

bryankramer 19 32 (+13)

cc chapman 20 15 (−5)

BillHibbler 21 37 (+16)

CharityIdeas 22 26 (+4)

BobWarren 23 21 (−2)

chrisguillebeau 24 60 (+36)

BrettGreene 25 35 (+10)

Supplementary Table 15: Twitter+Instagram dataset, ranking by eigenvector centrality.

20



Authority

Name Versatility Aggregate

mashable 1 1 (+0)

chrisbrogan 2 3 (+1)

JonahLupton 3 8 (+5)

BarrettAll 4 9 (+5)

cspenn 5 4 (−1)

MarshaCollier 6 6 (+0)

JessicaNorthey 7 7 (+0)

mayhemstudios 8 2 (−6)

awakeningaimee 9 15 (+6)

problogger 10 5 (−5)

jowyang 11 10 (−1)

Garin 12 16 (+4)

BreakingNews 13 12 (−1)

bsainsbury 14 30 (+16)

BarbaraDuke 15 26 (+11)

jkcallas 16 18 (+2)

Britopian 17 14 (−3)

AnthonyGemma 18 23 (+5)

AskAaronLee 19 13 (−6)

bryankramer 20 37 (+17)

cc chapman 21 11 (−10)

BrettGreene 22 22 (+0)

chrisguillebeau 23 24 (+1)

BillHibbler 24 53 (+29)

CHRISVOSS 25 17 (−8)

Supplementary Table 16: Twitter+Instagram dataset, ranking by authority centrality.
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Hub

Name Versatility Aggregate

JonahLupton 1 1 (+0)

AnthonyGemma 2 3 (+1)

awakeningaimee 3 5 (+2)

MarshaCollier 4 4 (+0)

BarbaraDuke 5 7 (+2)

mayhemstudios 6 2 (−4)

bsainsbury 7 13 (+6)

cspenn 8 12 (+4)

BarrettAll 9 10 (+1)

carece 10 6 (−4)

Garin 11 17 (+6)

BrandYou 12 19 (+7)

7onashoestring 13 9 (−4)

jkcallas 14 18 (+4)

JessicaNorthey 15 16 (+1)

cammipham 16 14 (−2)

CHRISVOSS 17 11 (−6)

BillHibbler 18 39 (+21)

Britopian 18 20 (+2)

AskAaronLee 20 30 (+10)

CharityIdeas 21 40 (+19)

DashBurst 22 35 (+13)

cc chapman 23 15 (−8)

DvinMsM 24 8 (−16)

cfleury 25 24 (−1)

Supplementary Table 17: Twitter+Instagram dataset, ranking by hub centrality.
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Supplementary Note 1. Multilayer, multiplex and interconnected networks

It is important to discuss the difference between the topological structure which represents the core of this

study, namely interconnected multilayer networks [4, 5, 6, 7, 8, 9, 10], and other multilayer structures which

have been named multiplexes in the past and have been the subject of recent studies [11, 12, 13, 14, 15].

Note that interconnected multilayer networks are not simply a special case of or equivalent to interdependent

networks [16]: in multilayer systems, many or even all of the nodes have a counterpart in each layer, so one can

associate a vector of states to each node. This feature has no counterpart in interdependent networks, which

were conceived as interconnected communities within a single, larger network [17, 18].

Historically, the term multiplex has been adopted to indicate the presence of more than one relationship

between the same actors of a social network [19]. This type of network is well understood in terms of “coloring”

(or labeling) the edges corresponding to interactions of different nature. For instance, the same individual might

have connections with other individuals based on financial interests (e.g., color red) and connections with the

same or different individuals based on friendship (e.g., color blue). This type of network is represented by a

non-interconnected multiplex.

Conversely, in other real-world systems, like the transportation network of a city, the same geographical

position can be part, for instance, of the network of subway or the network of bus routes, simultaneously.

In this specific case, an edge-colored graph would not capture the full structure of the network, because it

is missing information about the cost to move from the subway network to the bus route. This cost can be

economic or might account for the time required to physically commute between the two layers. Therefore,

the interconnected multilayer topology presented in this section provides a better representation of the system.

In Supplementary Fig. 3 is shown an illustration of an edge-colored graph (Supplementary Fig. 3a) and an

interconnected multiplex (Supplementary Fig. 3b). It is evident that a simple projection of the latter – math-

ematically equivalent to sum up the corresponding adjacency matrices – would provide a network where the

information about the colors is lost. On the other hand, an edge-colored graph can not account for intercon-

nections, keeping irreconcilable the two structures in Supplementary Fig. 3 which should be used to represent

very different networked systems.

For further details about the classification of such multilayer networks we refer to [20] and references therein.

A real-world example of a multiplex network is provided by transportation network of a city, where the

same geographical position can be part, for instance, of the network of subway or the network of bus routes,

simultaneously. We show in Supplementary Fig. 4A the case of flight routes operated by different air companies
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between European airports. For instance, layers encode the human mobility and the mobile communication

network of different geographical areas (Supplementary Fig. 4B) or physical contacts over time between ants in

a colony (Supplementary Fig. 4C). In other real-world systems, like genetic networks, two genes might exhibit

different interactions (e.g., allelic or non-allelic), or be related because of their chemical interaction or their

functional role (Supplementary Fig. 4D).
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Supplementary Note 2. Tensorial notation

Edge-colored graphs can be represented by a set of adjacency matrices [1, 12, 13, 14]. However, standard

matrices, used to represent networks, are inherently limited in the complexity of the relationships that they

can capture, i.e., they do not represent a suitable framework in the case of interconnected multiplexes. This

is the case of increasingly complicated types of relationships – that can also change in time – between nodes.

Such a level of complexity can be characterized by considering tensors and algebras of higher order [7].

A great advantage of tensor formalism also relies on its compactness. An adjacency tensor can be written

using a more compact notation that is very useful for the generalization to multilayer networks. In this notation,

a row vector a ∈ RN is given by a covariant vector aα (α = 1, . . . , N), and the corresponding contravariant

vector aα (i.e., its dual vector) is a column vector in Euclidean space. A canonical vector is assigned to each

node and the corresponding interconnected multilayer network is represented by a rank-4 adjacency tensor.

However, in the majority of applications, it is not necessary to perform calculations using canonical vectors

and tensors explicitly. Consequently, a classical single-layer network represented by a rank-2 mixed adjacency

tensor Wα
β [7] can be simply indicated by W i

j , where the “abuse of notation” consists in interpreting the indices

i and j as nodes and W i
j would indicate intensity of the relationship between them. Hence, W i

j represents the

well-known adjacency matrix of a graph and the classical notation for the weight wij of the link between i

and j corresponds to W i
j . The “abuse of notation” also consists in treating W i

j as a rank-2 tensor, although it

explicitly indicates the entry of a matrix, while keeping the algebraic rules governing covariant and contravariant

tensors. This “abuse of notation” dramatically reduces the complexity of some tensorial equations, although it

is worth remarking that it should be used only when calculations do not involve canonical tensors explicitly.

To distinguish simple networks from the more complicated situations (e.g., interconnected multiplex net-

works) that we use in this paper, we will use the term monoplex networks to describe such standard networks,

which are time-independent and possess only a single type of edge that connects its nodes.

In general, there might be several types of relationships between pairs of nodes and a more general system

represented as a multilayer object – in which each type of relationship is encompassed in a single layer α

(α = 1, 2, . . . , L) of a system – is required. Note that α has no more the same meaning of the index in the

adjacency tensor discussed above. To avoid confusion, in the following we refer to nodes with Latin letters

and to layers with Greek letters, allowing us to distinguish indices that correspond to nodes from those that

correspond to layers in tensorial equations.

25



We use an intra-layer adjacency tensor for the 2nd-order tensor W i
j (α) that indicates the relationships

between nodes within the same layer α. We take into account the possibility that a node i from layer α can be

connected to any other node j in any other layer β. To encode information about relationships that incorporate

multiple layers, we introduce the 2nd-order inter-layer adjacency tensor Cij(αβ). Note that Cij(αα) = W i
j (α).

It has been shown that the mathematical object accounting for the whole interconnected multilayer structure

is given by a 4th-order (i.e., rank-4) multilayer adjacency tensor M iα
jβ . This tensor might be simply thought

as a higher-order matrix with four indices. It is the direct generalization of the adjacency matrix in the case

of monoplexes, encoding the intensity of the relationship (which may not be symmetric) between a node i in

layer α and a node j in layer β [7]. This object is very general and can be used to represent structures where

an actor is present in some layers but not in all of them. This is the case, for instance when considering a

network of online social relationships, of an individual with an account on Facebook but not on Twitter. The

algebra still holds for these situations without any formal modification. In fact, one simply introduces “empty

nodes” and assigns the value 0 to the associated edges, although the calculations of network diagnostics should

carefully account for the presence of such nodes (for instance, for a proper normalization) [7].

Often, to reduce the notational complexity in the tensorial equations, the Einstein summation convention

is adopted. It is applied to repeated indices in operations that involve tensors. For example, we use this

convention in the left-hand sides of the following equations:

Aii =

N∑
i=1

Aii , (1)

AijB
j
i =

N∑
i=1

N∑
j=1

AijB
j
i , (2)

AiαjβB
kβ
iγ =

N∑
i=1

L∑
β=1

AiαjβB
kβ
iγ , (3)

whose right-hand sides include the summation signs explicitly. It is straightforward to use this convention for

the product of any number of tensors of any order. In the following, we will use the t-th power of rank-4 tensors,

defined by multiple tensor multiplications:

(At)iαjβ = (A)iαj1β1
(A)j1β1

j2β2
. . . (A)

jt−1βt−1

jβ (4)

Repeated indices, such that one index is a subscript and the other is a superscript, is equivalent to perform

a tensorial operation known as a contraction. Moreover, one should be very careful in performing tensorial

calculations. For instance, using traditional notation the product aibj would be a number, i.e., the product of

the components of two vectors. However, in our formulation, the same calculation denotes a Kronecker product
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between two vectors, resulting in a rank-2 tensor, i.e., a matrix.

An interesting network that can be derived from the interconnected structure is the aggregated network,

where the edges between two actors are summed up across all layers. The superposition of the different layers

is equivalent to summing up the adjacency tensor of each layer. The corresponding aggregated network Gij is a

monoplex and is obtained by contracting the layer indices of the multilayer adjacency tensor, i.e., Gij = M iα
jα.

This aggregation loses the information about inter-layer connections. If such an information is important for

the application of interest, then the tensor should be contracted with the 1-tensor uβα (the rank-2 tensor with

all components equal to 1), i.e., Ḡij = M iα
jβu

β
α.

This formalism is extremely useful to put in evidence how topological descriptors of interconnected networks

differ from the ones corresponding to their aggregated graphs [7, 21]. Moreover, it is particularly suitable to

perform compact calculations.

As a representative example, let us consider the number of paths of length 2 from a node in a certain layer to

any other node in any other layer of the system. Taking advantage of the extended algebra, it is straightforward

to show that the resulting rank-4 tensor accounting for such paths is given by Hiα
jβ = M iα

kγM
kγ
jβ . If only the

number of paths between any pair of nodes is required, regardless of the layer, then the corresponding rank-2

tensor of paths is simply obtained by contracting with the 1-tensor uβα, i.e., Xi
j = Hiα

jβu
β
α. Conversely, in the case

of the aggregate, we first contract the multilayer adjacency tensor to obtain the aggregation J ij = M iα
jβu

β
α, where

inter-layer connections are included as self-loops, and then square the resulting tensor to obtain Y ij = J ikJ
k
j . Of

course, a similar argument can be used to calculate the number of longer paths. From these tensorial equations

it is evident that the aggregated graph can not be considered, in general, a good proxy of the interconnected

topology.

Summarizing, the tensorial formulation provides a suitable framework for several real-world networked

systems, from transportation networks to social ones. It is also worth noting that special cases of multilayer

adjacency tensors are time-dependent (i.e., “temporal”) networks [7, 20]. More specifically, in the case of social

sciences the multilayer adjacency tensor can be used, for instance, to model the structural changes of a social

network over time, or to define the topology of actors involved in several different levels of relationships and

for whom it is indispensable to define an inter-connection between such levels. For these networked systems, it

is desirable to adopt descriptors (e.g., clustering coefficient, modularity, etc) that are the natural extension of

their well-known counterparts in monoplex networks.
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Supplementary Note 2.1. On the tensorial nature of adjacency tensors

Although we have already shown in Ref. [7] the advantages of using the tensor formalism to deal with

multilayer networks, the assignment of the indices as covariant or contravariant may seem arbitrary. The

problem arises from the absence of natural basis transformations which could guide us in this decision. The

idea is that, if we perform a change of basis governed by a matrix Qαβ , each contravariant index of any tensor

is transformed using Q, while covariant indices change with Q−1, the inverse of Q. Thus, an object with three

indices which transforms with two Q and one Q−1 is bounded to be 1–covariant and 2–contravariant. However,

these transformation are not the origin but the consequence of the “meaning” of the object. For example, inner

products, metric tensors and symplectic forms must be 2–covariant since they are bilinear functions which

assign two vectors to a number, while linear transformations are 1–covariant and 1–contravariant because they

have to convert a vector (or 1–form) in another vector (or 1–form).

In the case of monoplex networks, the adjacency tensor may be viewed as a linear transformation which,

given a vector (or 1–form) representing a node, returns the set of their adjacent nodes. Thus, the only acceptable

representation for the monoplex adjacency object is a 1–covariant and 1–contravariant tensor. Likewise, the

multilayer adjacency tensor transforms a node in one layer into the set of adjacent nodes, keeping also the

information of which layer they belong to, thus a 2–covariant and 2–contravariant tensor is needed.

Once we know the order of the adjacency tensor, its transformation under a change of coordinates is

completely determined. First we show how this works for a single-layer network and, afterwards, for a full

multilayer network.

By following Ref. [7], the adjacency tensor Wα
β of a network can be represented as a linear combination of

tensors of the canonical basis by

Wα
β =

N∑
i,j=1

wije
α(i)eβ(j) =

N∑
i,j=1

wijE
α
β (ij), (5)

where Eαβ (ij) ∈ RN×N indicates the tensor of the canonical basis corresponding to the tensorial product of the

canonical vectors e(i) and e†(j) (defined in RN ) assigned to nodes i (eα(i)) and j (eβ(j)), respectively. Let

Qαβ =

N∑
i=1

e′α(i)eβ(i) (6)

be the change of basis tensor which transforms the basis vector set {eα(i), i = 1, . . . , N} into a second set

{e′α(i), i = 1, . . . , N}. Here, Qαβ is expressed in terms of the basis vectors from both bases and it is straightfor-

ward to show that e′α(i) = Qαβe
β(i) and e′β(i) = eα(j)(Q−1)αβ . By remarking that a change of basis should not
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affect the intensity of the relationship between nodes ni and nj , by following the above prescription, we obtain:

W ′
γ
δ =

N∑
i,j=1

wije
′γ(i)e′δ(j) =

N∑
i,j=1

wijQ
γ
αe
α(i)eβ(j)(Q−1)βδ

= Qγα

 N∑
i,j=1

wije
α(i)eβ(j)

 (Q−1)βδ = QγαW
α
β (Q−1)βδ , (7)

providing the desired tensor transformation law.

In the following we use the same notation of Ref. [7] to avoid confusion. In the same spirit, we introduce

the vectors eγ̃(k) (γ̃, k = 1, . . . , L) of the canonical basis in the space RL, where the greek index indicates the

components of the vector and the latin index indicates the k-th canonical vector. Therefore, it is straightforward

to build the 2nd-order tensors Eγ̃
δ̃

(hk) = eγ̃(h)eδ̃(k) representing the canonical basis of the space RL×L.

The representation of the multilayer object Mαγ̃

βδ̃
in terms of the Kronecker product of canonical vectors is

given by [7]

Mαγ̃

βδ̃
=

N∑
i,j=1

L∑
h,k=1

wij(hk)eα(i)eβ(j)eγ̃(h)eδ̃(k). (8)

Proceeding as in the case of a single-layer network, we obtain

M ′αγ̃
βδ̃

=

N∑
i,j=1

L∑
h,k=1

wij(hk)Qαρ e
ρ(i)(Q−1)σβeσ(j)Q̃γ̃

φ̃
eφ̃(h)(Q̃−1)ε̃

δ̃
eε̃(k)

= Qαρ Q̃
γ̃

φ̃
Mρφ̃
σε̃ (Q−1)σβ(Q̃−1)ε̃

δ̃
, (9)

providing the desired transformation law of the multilayer adjacency tensor under a change of coordinates.

Supplementary Note 3. Centrality in Interconnected Networks

In this section, we focus on the definition of node centrality in a multilayer network. We obtain these properties

using algebraic operations involving the multilayer adjacency tensor, canonical vectors, and canonical tensors,

achieving the natural extension of the concept of centrality in single-layer networks. We refer to [7] for other

multilayer network diagnostics.

In practical applications one is often interested in assigning a global measure of importance to each node,

aggregating the information obtained from the different layers. A naive choice could be to combine the centrality
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of the nodes – obtained from the different layers separately – according to some heuristic choice. This is a

viable solution when there is no interconnection between layers, i.e., in the case of edge-colored graphs [15, 22].

However, the main drawback of applying this approach to interconnected multilayer networks is that the measure

will depend on the choice of the heuristics and might not evaluate the real importance of nodes. Conversely,

our approach capitalizes on the tensorial formulation of interconnected multilayer networks and accounts for

the higher level of complexity of such systems without relying on external assumptions and naturally extending

the well-known centrality measures adopted for several decades in the case of monoplexes.

Random walk occupation centrality. A random walk is the simplest dynamical process that can occur on a

monoplex network, and random walks can be used to approximate other types of diffusion [23, 24]. Random

walks on monoplex networks [23, 25, 24] have attracted considerable interest because they are both important

and easy to interpret. They have yielded important insights on a huge variety of applications and can be studied

analytically. For example, random walks have been used to rank Web pages [26] and sports teams [27], optimize

searches [28], investigate the efficiency of network navigation [29, 30], characterize cyclic structures in networks

[31], and coarse-grain networks to illuminate meso-scale features such as community structure [32, 33, 34].

Another interesting application of random walks is to calculate the centrality of actors in complex networks

when they have not knowledge of the full topology but only local information is available. In such cases,

centrality descriptors based on shortest-paths, e.g., betweenness and closeness centrality, should be substituted

by centrality notions based on random walks [25, 35].

In this paper, we consider a discrete-time random walk. As we illustrate in Supplementary Fig. 5, a random

walk on a multilayer network induces nontrivial effects because the presence of inter-layer connections affects its

navigation of a networked system [36]. Let T iαjβ denote the tensor of transition probabilities for jumping between

pairs of nodes and switching between pairs of layers, and let piα(t) be the time-dependent tensor that gives the

probability to find a walker at a particular node in a particular layer. Hence, the covariant master equation

that governs the discrete-time evolution of the probability from time t to time t+ 1 is pjβ(t+ 1) = T iαjβ piα(t).

The steady-state solution of this equation, i.e., for t −→∞, is given by Πiα, quantifying the probability to

find a walker in the node i of layer α. In the case of monoplexes, the steady-state solution can be obtained

by solving the eigenvalue problem for the rank-2 transition tensor and calculating the leading eigenvector

corresponding to the unitary eigenvalue. Similarly, in the case of multilayer networks, the solution can be

obtained by calculating the leading eigentensor, solution of the higher-order eigenvalue problem

T iαjβΠiα = λΠjβ . (10)

We refer to 4 for the mathematical details to solve this problem.
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The probability Πjβ , that we define random walk occupation centrality, accounts for the full interconnected

structure of the multilayer network. Although different exploration strategies can be adopted to walk in

a multilayer network [36], here we focus on the natural extension of well-known random walks in monoplex

networks [25]. In this process, the walker in node i and layer α might jump to one of its neighbors j 6= i – within

the same layer – with uniform probability, or might switch to its counterpart i in a different interconnected

layer β 6= α. It is worth remarking that the inter-layer connection is treated as an edge that can be chosen

randomly among all edges traversing the node.

In the more general case of weighted networks, the jumping probability is proportional to the weight of the

edges. Let us indicate with siα the strength of node i in layer α, including the inter-layer connections. The

multi-strength vector, whose components indicate the strength of each node accounting for the full multilayer

structure, is given by summing up its strengths across all layers, i.e., by Si = siαu
α, where uα is the 1-vector,

namely a vector with all components equal to 1. We indicate with Diα
jβ the strength tensor whose entries are

all zeros, except for i = j and α = β where the entries are given by siα. This tensor represents the multilayer

extension of the well-known diagonal strength matrix in the case of monoplexes. Therefore, the transition

tensor is given by T iαjβ = Mkγ
jβ D̃

iα
kγ , where D̃iα

jβ is the tensor whose entries are the inverse1 of the non-zero entries

of the strength tensor. For this classical random walk, it can be easily shown that Πiα ∝ siα [36].

This centrality, as others in the rest of the paper, assigns a measure of importance to each node in each layer,

accounting for the full interconnected structure of the multilayer network. However, in practical applications

one is often interested in assigning a global measure of importance to each node, aggregating the information

obtained from the different layers. The choice of the aggregation method is not trivial, it strongly influences

the final estimation and might lead to wrong results.

However, this is not case for the framework discussed in the present study. In fact, the centrality Πiα is

calculated by inherently accounting for the interconnected structure of the whole system. We do not require to

combine arbitrarily the information from different separate measures. In our framework, the most intuitive type

of aggregation, i.e., summing up over layers, represents the unique and correct choice. Let πi = Πiαu
α be the

random walk centrality measure obtained by aggregating over layers. Here, πi indicates the probability of finding

the walker in node i, regardless of the layer. It is worth noting that this probability is proportional to siαu
α,

i.e., the multi-strength of node i. Therefore, in this specific case, the computation of the centrality by means

of the aggregated network would provide the same result of the calculation accounting for the interconnected

multiplex, if inter-layer edges are accounted for as self-loops. In the more specific case that the inter-layer edges

1It is worth remarking that, in general, this is different from the inverse of a tensor Aiαjβ , that is defined as the tensor Biαjβ such

that AiαkγB
kγ
jβ = δiαjβ , where δiαjβ = δijδ

α
β .
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have the same strength for all nodes, the random walk centrality will be just proportional to the degree of

the aggregated network, without necessity of accounting for the self-loops. Unfortunately, this is no more the

case for the centrality measures discussed in the rest of this study, where calculating the diagnostics from the

aggregate might lead to wrong conclusions.

A ground-truth for this diagnostics can be obtained from numerical simulations of the random walk process

in the multilayer network, where the larger the number of times the walker hits a node larger the random walk

centrality of that node. In Supplementary Fig. 6 we show the comparison between πi obtained from simulation

and its theoretical prediction. As expected, the agreement is excellent and this equivalence holds regardless of

the number of nodes in the network, the number of layers or their topology.

PageRank centrality. We capitalize on this result to extend to interconnected networks a widely adopted

measure of centrality, i.e., the PageRank [26]. A recent study in this direction has been reported in [22], in

the case of edge-colored graphs where the authors, exploiting the random walk interpretation of PageRank

centrality, define the PageRank of a multiplex network by means of a random walk subjected to teleportation.

In that study, the PageRank for nodes in the first layer is computed using the standard definition for a monoplex

[26], whereas the PageRank for nodes in the second layer is computed using the centrality information obtained

from the first one. It is worth noting that this definition is limited to edge-colored graphs with only two layers,

being any extension to a larger number of layers possible but very complicated from the mathematical point of

view.

Here, we exploit the fact that PageRank centrality can be seen as the steady-state solution of the equation

pj(t + 1) = Rijpi(t) in the case of monoplexes, where Rij is the rank-2 transition tensor (i.e., the transition

matrix) of a random walk where the walker jumps to a neighbor with rate r and teleport to any other node in

the network with another rate r′. For simplicity, we assume that r′ = 1 − r in the following. In the case of

interconnected multilayer networks, the teleportation might occur to any other node in any layer. Depending

on the application of interest, the walker can be teleported to other nodes with a rate that is specific to each

layer. However, to keep the study as simple as possible, we consider the case with the same teleportation rate

for all layers. Let Riαjβ be the corresponding transition tensor, where the walker jumps to a neighbor with rate

r and teleport to any other node in the network with rate 1− r. This rank-4 tensor is given by

Riαjβ = rT iαjβ +
(1− r)
NL

uiαjβ , (11)

where uiαjβ is the rank-4 tensor with all components equal to 1. The steady-state solution of the master equation

corresponding to this transition tensor provides the PageRank centrality for interconnected multiplex networks.

It is worth noting that the above definition is valid for all multiplexes where all nodes have out-going edges. If
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this is not the case, as in several real-world networks, Eq. (11) reduces to Riαjβ = 1
NLu

iα
jβ for all nodes i with

no out-going connections, ensuring the correct normalization of the transition tensor Riαjβ . For the analysis

reported in the present study, we use r = 0.85 as in the classical PageRank algorithm.

To compute the aggregate centrality of a node, accounting for the whole interconnected topology, we proceed

as for the random walk occupation centrality previously discussed. Let Ωiα be the eigentensor of the transition

tensor Riαjβ (see 4 for details), denoting the steady-state probability to find the walker in node i and layer α.

The multilayer PageRank is obtained by simply contracting the layer index of the eigentensor with the 1-vector:

ωi = Ωiαu
α, i.e., by summing up over layers.

Eigenvector centrality. Among the numerous notions of centrality introduced to quantify the importance of

nodes (and other components) in a network [37], eigenvector centrality is among the oldest ones. A node i has

a high eigenvector centrality if its neighbors also have high eigenvector centrality, and the recursive nature of

this notion yields a vector of centralities that satisfies an eigenvalue problem.

In the case of monoplexes, the eigenvector centrality vector, whose components are the centralities of nodes

according to [38, 39], is a solution of the tensorial equation W i
jvi = λ1vj , where λ1 is the largest eigenvalue of

W i
j and vi indicates the eigenvector centrality of node i.

A naive approach for the calculation of the importance of each node might be to project the interconnected

topology to an aggregated monoplex, and to associate to each node the centrality he or she has in such an

aggregated network. The main drawback of this approach is that it mixes the information from all layers with

uncontrollable effects, as shown in the Supplemental Material for both synthetic and empirical networks.

Another attempt to extend this calculation to the case of multilayer networks might be to calculate the

eigenvector centralities for each layer separately, to build the tensor V̄iα encoding the centrality of each node

in each layer. The successive step would be to choose an heuristic aggregation of such centralities to assign a

unique centrality measure to each node, regardless of the layer. However, the tensor V̄iα is not the solution of

a unique eigenvalue problem but the combination of the solutions of L different eigenvalue problems treated

separately, therefore it is not the natural extension of the notion of eigenvector centrality to the realm of

interconnected multilayer networks.

Instead, according to [7], this descriptor can be obtained as the solution of the tensorial equation

M iα
jβΘiα = λ1Θjβ , (12)

where λ1 is the largest eigenvalue and Θiα is the corresponding eigentensor encoding the centrality of each
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node in each layer when accounting for the whole interconnected structure. The eigentensor can be obtained

by means of an iterative procedure, as the power method in the case of monoplexes. A proof of the existence

of such eigentensor is provided in 4. Thus, the multilayer generalization of Bonacich’s eigenvector centrality

[38, 39] is given by Θjβ = λ−1
1 M iα

jβΘiα [7].

As already pointed out in the previous sections, the overall centrality of each node can be simply obtained

by contracting over layers the centrality of each node in each layer, i.e., by θi = Θiαu
α.

At variance with the eigenvector centrality calculated from the monoplex aggregated before the calculation

and the one calculated by heuristically aggregating the centralities obtained separately, our measure is obtained

from the mathematical extension of the original definition. The aggregation performed at the end of the

calculation does not require any heuristic choice, because it is already accounting for the whole interconnected

topology and, as we have previously shown, it is enough to contract the resulting eigentensor.

Katz centrality. It is a well-known fact that eigenvector centrality can lead to wrong results in the case of

directed networks. In fact, nodes with only outgoing edges have an eigenvector centrality of 0 if Bonacich’s

definition is adopted. Moreover, in this case there are two leading eigenvectors, for in-going centrality and out-

going centrality, requiring to distinguish between covariant and contravariant calculations. The Katz centrality

[40] attempts to solve the above problem by assigning a small amount b of centrality to each node before

calculating centrality. For monoplexes, the Katz centrality is given by vj = [(δ − aW )−1]ijui, where a must be

smaller than the largest eigenvalue and often one chooses b = 1.

Following a similar idea, we define the centrality tensor for each node in each layer as the solution of the

tensorial equation

Φjβ = aM iα
jβΦiα + bujβ , (13)

corresponding to the natural extension of the equation proposed by Katz to the case of interconnected multilayer

networks. The solution is given by Φjβ = [(δ−aM)−1]iαjβUiα, where δiαjβ = δijδ
α
β . As for the eigentensor centrality,

this Katz centrality tensor accounts for the whole interconnected topology and it is enough to contract it with

the 1-vector to obtain the Katz centrality for each node, i.e., φi = Φiαu
α.

HITS centrality. Similarly to the PageRank, another approach was introduced to rank Web sites with respect

to their importance for users. This approach considers two different descriptors for each node, namely hub and

authority [41]. In fact, Web pages that point to an important page generally also point to other important

pages, building a structure similar to a bipartite topology where relevant pages – i.e., authorities – are pointed
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by special Web pages – i.e, hubs. It follows that nodes with high authority centrality are linked by nodes with

high hub centrality while very influent hubs point to nodes which are very authoritative. Such a mechanism

is described by two coupled equations which reduce to the two eigenvalue problems (WW †)ijvi = λ1vj and

(W †W )ijzi = λ1zj , where W † denotes the transpose of the adjacency tensor, λ1 indicates the leading eigenvalue

while vi and zi indicate hub and authority scores, respectively. The natural extension of the equations proposed

by Kleinberg to the case of interconnected multilayer networks is given by

(MM†)iαjβΓiα = λ1Γjβ , (14)

(M†M)iαjβΥiα = λ1Υjβ , (15)

(16)

where Γiα and Υiα indicate hub and authority centrality, respectively. It is worth remarking that for undirected

interconnected multiplexes, hub and authority scores are the same and equal to the corresponding eigenvec-

tor centrality. The hub and authority tensors should be contracted with the 1-vector to obtain the scores

corresponding to each node regardless of the layer, i.e., γi = Γiαu
α and υi = Υiαu

α, respectively.

Centrality measures based on shortest path. For sake of completeness, in this paragraph we briefly extend

centrality measures based on shortest paths, namely betweenness and closeness.

Equivalently to the case of a monoplex, we define a path `[oσ→dγ] ∈ P[oσ→dγ], in the interconnected multilayer

network, as an ordered sequence of nodes which starts from node o in layer σ and finishes in node d in layer γ.

We require that there exists an edge between all pairs of consecutive nodes in `. Here, P[oσ→dγ] indicates the

set of all possible paths between node o in layer σ and node d in layer γ. For every path `[oσ→dγ] it is possible

to define a cost function c(`[oσ→dγ]), usually depending on the weight of the edges the path traverses and on

the application of interest, to account for the “goodness” of the path. Hence, the shortest path from node o in

layer σ to node d in layer γ is the path

`∗[oσ→dγ] = min
`′
[oσ→dγ]∈P[oσ→dγ]

c(`′[oσ→dγ]) (17)

which minimizes the cost function. Using Eq. (17) we define the shortest path from node o to node d, regardless

of the layer, as

`∗[o→d] = min
σ,γ∈{1,2,...,L}

`∗[oσ→dγ]. (18)

The centrality τ̂j of node j is defined to be proportional to the number of times that node j, regardless of the

layer, belongs to the set `∗[o→d] for every possible origin-destination pair (o, d).

The extension of the shortest-path betweenness centrality, defined in the case of monoplex networks in [42],
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is obtained by counting the number of shortest paths between any pair of origin and destination nodes (o, d),

that go though node j in the interconnected structure.

On the other hand, in the same spirit of monoplex networks, we define the shortest-path closeness centrality

of a node j in an interconnected multilayer topology as the average of the inverse of the cost of the shortest

paths which start from any other node o in the network. Thus, given the cost of a shortest path c(`∗[o→i])

between node i and node o, the shortest-path closeness centrality ξ̂i can be easily computed by considering all

possible origin nodes o.

Supplementary Note 4. Eigenvalue problem with tensors

The eigenvalue problem for a rank-2 tensor, i.e., a standard matrix, is defined by W i
jvi = λvj . The extension

of this problem to rank-4 tensors leads to the equation

M iα
jβViα = λVjβ . (19)

To solve this problem, it is worth noting that any tensor can be unfolded to lower rank tensors [43]. For instance,

a rank-2 tensor like W i
j , with N2 components, can be flattened to a vector wk with N2 components. In the

case of the rank-4 multilayer adjacency tensor M iα
jβ , although any unfolding is allowed, it is particularly useful

for some applications to choose the ones flattening to a squared rank-2 tensor M̃k
l with NL×NL components,

where L indicates the number of layers [5]. In fact, this unfolding produces as many block adjacency matrices,

named supra-adjacency matrices in some applications [5, 36, 21], as the number of permutations of diagonal

blocks of size N2, i.e., L!. However, such unfoldings do not alter the spectral properties of the resulting supra-

matrix and can be used to solve the eigenvalue problem for rank-4 tensors. In fact, the solution of the eigenvalue

problem

M̃k
l ṽk = λ̃1ṽl, (20)

is a supra-vector with NL components which corresponds to the unfolding of the eigentensor Viα.

Supplementary Note 5. Rankings and consensus

In this section we describe the details of the calculation of the rankings of nodes from their centralities, and

the different consensus of layer rankings which have been explored.
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The easiest way to obtain a ranking from any kind of centrality simply consists in sorting the centralities

in descending order, and then assign a rank to each node according to its position in the sorted list; rankings

range from 1 (highest centrality) to N (lowest centrality). However, it must be taken into account that several

nodes may share the same centrality, and in this case we should assign to all of them the same rank; we have

chosen to give them a rank equal to the smallest position in the list among the repeated centralities, e.g. if

positions 85 to 90 have centralities 0.4, 0.3, 0.3, 0.3, 0.2 and 0.1, the corresponding rankings would be 85, 86,

86, 86, 89 and 90.

Another aspect which affects the final ranking of the nodes is the precision of the calculation of the central-

ities. Since the accuracy of the algorithms to find eigenvectors is limited, we have rounded all the centralities

to the sixth significant digit, thus avoiding spurious differences in ranking.

For the comparison of versatility with classical centralities which do not consider the multilayer structure,

there are two main options:

• Aggregate network: Build the aggregate network, and calculate the centralities of the nodes and their

ranks.

• Layer networks: Calculate the centralities at each layer, considered as separate networks, and combine

them (or their ranks) to obtain a new ranking of the nodes.

In the second case, it is necessary to define how to combine the layer centralities or rankings. We have used

the following methods:

• Average: For each node, calculate the average of its centralities in each layer, and create a ranking from

this list of average centralities.

• Consensus: Rank each layer independently and apply a consensus method to obtain the final rank.

– Unweighted consensus: For each node, we sort its rankings from best (lowest) to worst (highest). We

then sort the nodes according to their best rankings; for nodes with equal best ranking, the second

best ranking is used; and if they are still equal, we consider the third, fourth, fifth, and so on, until

all ranks are consumed.

– Weighted (by links) consensus: This is similar to the unweighted consensus, but giving more impor-

tance to the ranks in layers with more links. For each node, instead of having a list containing one

value of the rank for each layer, we clone it as many times as number of links has that layer, thus
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generating a list for each node of length equal to the number of intra-layer edges in the multilayer

network.

– Weighted (by nodes) consensus: Equivalent to the weighted (by links) consensus, but using as weights

the number of non-isolated nodes in each layer.

The aggregation of rankings is an old field of research which has been analyzed from many points of view,

from consensus rules like the ones exposed above, to approaches based on distances between rankings (e.g., the

metric for weak orders by Kemeny and Snell [44]) or using probabilistic models for the rankings and trying to

optimize the expected loss [45]. The main conclusion here is the absence of a unique way to combine rankings,

thus making the comparison between layer-based rankings and versatility rather arbitrary.

Supplementary Note 6. Supplementary tables

Wikipedia dataset

We considered biologists, chemists, computer scientists, economists, inventors, mathematicians, philosophers

and physicists in Wikipedia, and we built an interconnected multilayer network where each layer represents a

subject and two people are connected if a hyperlink exists between their pages. The weight of each link (i.e.,

the number of hyperlinks between two Web pages) is redistributed across all layers where the corresponding

nodes exist. If a pair of nodes does not exist in the same layer, a inter-layer edge between them is created. For

simplicity, we considered only the largest connected component and people with at least four links.

This dataset is only a proxy of the “true” network where biologists, chemists, computer scientists, economists,

inventors, mathematicians, philosophers and physicists are linked according to their role in one or more dis-

ciplines. For this reason, it should be taken into account that some nodes, central in the Wikipedia dataset,

could not play any role in the true network: we identified a few cases of this type. For instance, in the following

table the top ranked node is Edmund F. Robertson. We found that the reason is that he is one of the creators

of the MacTutor History of Mathematics Archive, a Web site containing detailed biographies on many mathe-

maticians in our network, whose corresponding pages point to this Web site and the Wikipedia page of Edmund

F. Robertson. This kind of bias is very difficult to eliminate automatically at large scale and we believed that,

for the purpose of our study, we could just ignore this node in the ranking presented in the paper, without

excluding him from the network. The ranking discussed in the paper have been readjusted accounting this shift

of one unit.
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Moreover, a very few spurious nodes as “Indian astronomy” have been found in the dataset by a later manual

inspection out of thousands of pages. Such nodes have not been removed because the aim of the present work

is not to perform a detailed analysis of the most influent people in the history of science and philosophy

but rather to show the differences between ranking by accounting for the whole interconnected structure of

a network and ranking by neglecting such information. Of course, researchers interested in performing more

meaningful analyses of this dataset should take care and be aware of this kind of biases.

The aggregation of this multilayer network to a weighted single-layer network is performed by accounting

for weight of inter-layer links that are not between nodes’ replica. For example, if there exists a hyperlink

between two scientists (a and b) and these happen to satisfy three disciplines simultaneously (e.g., physicists,

philosophers, and chemists), then we sum up the weights of the 3 intra-layer directed edges between a and b,

one for each layer, obtaining the observed number of hyperlinks between a and b. If a and b do not share at

least one layer, and directed inter-layer edges are made between all pair of layers where a and b exist, we sum

up the weights of these inter-layer edges to obtain the aggregated weight corresponding, again, to the observed

number of hyperlinks between a and b. Finally, inter-layer edges between all nodes’ replicas are not accounted

for in the aggregation process.

In Tables 1 to 3 we show the top 25 ranked persons according to PageRank, eigenvector and betweenness

multilayer centralities, compared to their corresponding rankings obtained from the aggregated network, and

from the average of the layer centralities. We also computed intra- and global diversity measures: Intra-layer

diversity accounts for the number of layers in which a node has intra-layer links, while global diversity is the

number of layers that have any kind of links from or to the corresponding node. Note that layer centralities

lose all the information about interlayer links, thus it is not surprising that their average leads to the most

distant rankings.

Wikipedia alternative dataset

Here we focused our attention on a more homogenous set of individuals considering the subset of people whose

date of death was between 1860 and 1960. The choice of this cut ensures a fair comparison between philosophers,

physicists, etc, being active in their field during the same period.
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EU Airports dataset

Here, the network is built from flight routes operated by 37 different air companies (layers) between 450

European airports (nodes) [1].

The aggregation of this multilayer network to a weighted single-layer network is performed by summing up

the weights of intra-layer links and by discarding inter-layer edges between all nodes’ replicas.

EU APS dataset

We collected all papers published in the journals of the American Physical Society journals (Physical Review

Letters, Physical Review and Review of Modern Physics) between 2005 and 2009, focusing on scientists working

in European institutions. Meta-data in the dataset provided information about the topic of the papers through

the specification of the assigned “Physics and Astronomy Classification Scheme” (PACS) code, developed by

the American Institute of Physics (AIP) and used in Physical Review since 1975 to identify fields and sub-fields

of physics. We restricted the analysis only to papers with at most ten authors, to avoid biases due to the

papers of experimental high-energy physics in which all the project collaborators are listed as co-authors, and

to authors who published at least 5 papers in the considered time period. Then we considered only the giant

connected component of the co-authorship network built starting from those authors, resulting in 3171 authors.

We exploited this information to build an interconnected multilayer network in which each layer represents

a sub-field of physics, as defined by the PACS systems:

• General

• The Physics of Elementary Particles and Fields;

• Nuclear Physics, Atomic and Molecular Physics;

• Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid Dynamics;

• Physics of Gases, Plasmas, and Electric Discharges;

• Condensed Matter: Structural, Mechanical and Thermal Properties;

• Condensed Matter: Electronic Structure, Electrical, Magnetic, and Optical Properties;

• Interdisciplinary Physics and Related Areas of Science and Technology ;
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• Geophysics, Astronomy, and Astrophysics.

Two authors are connected in the aggregated network if they co-authored at least one paper in the dataset.

The weight of the corresponding link is equal to the number of papers that they co-authored. In the multilayer

network the contribution of value 1 of each paper is redistributed across all involved layers. For example, if two

authors a and b co-authored a paper characterized by three (or more) PACS codes belonging to three different

sub-fields, then the following links are created: three intra-layer links between a and b (one on each of the three

layers), three inter-layer links between a on each layer and the replica of itself in each of the two other layers,

three inter-layer links between b on each layer and the replica of itself in each of the two other layers, and six

inter-layer links between a on each layer and b in each of the two other layers, totaling 15 links. The weight of

each link is equal to 1/15, so that the sum of the weights between two nodes across all layers corresponds to

the number of papers co-authored by the corresponding authors, exactly like in the aggregate.

Let us also highlight that two PACS codes belong to two different sub-fields only if they belong to two different

general categories defined above. Therefore a paper could have three PACS codes but the corresponding authors

could be linked only in one or two layers according to how many different categories the three PACS codes

belong to. For example a paper characterized by the codes 89.75.2k, 87.23.Ge, and 05.70.Ln only refers to two

layers: Interdisciplinary Physics and Related Areas of Science and Technology and General.

The aggregation of this multilayer network to a weighted single-layer network is performed similarly to the

case of the Wikipedia dataset, by accounting for weight of inter-layer links that are not between nodes’ replica.

The resulting aggregated network is exactly what one would obtain by observing the number of co-authored

papers among authors in the dataset.

EU APS alternative dataset

We built an alternative dataset in the same fashion described in the previous section, but restricting the analysis

only to the decade starting in 1990. In particular we selected only the authors who published at least ten papers

in this time interval, and were active in at least seven out of the ten years considered, resulting in a network

composed of 535 nodes. In this way we could check our results on a more homogeneous subset.
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Online Social Multiplex dataset

The same user might use different nicknames in different social networks and this is generally the main obstacle

to build a multiplex social network, because it is not possible to retrieve information about the identity corre-

sponding to each nickname. However, many recent online ranking platforms provide a suitable environment to

collect such an information, because each user (with a unique identifier on such platforms) provides his or her

nicknames in the different social networks.

In November 2013, we gathered publicly available information from one of such online ranking platforms

about approximately 32000 users of different online social networks. We focused our attention on Twitter and

Instagram because they provide Application User Interfaces (API) easy to use and fast enough to allow us to

reconstruct the underlying social graph (directed and unweighted). We found 13297 users in our dataset with

an account on both Twitter and Instagram, with an edge overlap between the two networks of about 25%.

The follower/friend relationships between all users of Twitter in our sub-sample have been obtained by

querying Twitter through the official API (https://dev.twitter.com/rest/public) and we used this informa-

tion to build the first layer of directed and unweighted social relationships. The relationships between all

users of Instagram in our sub-sample have been obtained by querying Instagram through the official API

(http://instagram.com/developer/endpoints/) and we used this information to build the second layer of di-

rected and unweighted social relationships. Bidirectional inter-layer edges are made only between a user and

his or her replica on the other layer, if he or she has an account in both online social networks.

The aggregation of this multilayer network to a weighted single-layer network is performed by summing up

the weights of intra-layer links and by discarding inter-layer edges between all nodes’ replicas.
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Supplementary Note 7. Covering and congestion analysis

Random walks covering analysis

Random walk dynamics between vertices and layers of a multilayer network can be described by four funda-

mental transition rules [36] that can be represented in one compact tensorial formulation [7]. Let Pjβiα be the

tensor accounting for the probability to move from node i in layer α to node j in layer β within one step.

Let piα(t) the probability that the random walker is visiting node i in layer α at time t. The master equation

describing the probability of finding the walker in vertex j and in layer β at time t+ ∆t is given by

pjβ(t+ ∆t) = Piαjβpiα(t). (21)

We indicate with pα the row vector with N components piα with respect to layer α, with P ≡ (p1,p2, . . . ,pL)

the supra-vector with NL components, and we rewrite Eq. 21 as Ṗ(t) = −P(t)L, hereafter referred to as the

random walker equation. In this equation, L is the NL × NL normalized supra-Laplacian matrix [5, 36], a

flattening of Piαjβ .

The coverage c(t) is defined as the average fraction of distinct vertices visited at least once in a time less than

or equal to t, regardless of the layer, assuming that walks started from any other vertex in the network. The time

evolution of the supra-vector of probabilities P for a walker starting from vertex j is given by P(t) = Pj(0)e−Lt.

From eigen-decomposition of the normalized supra-Laplacian, we obtain

P(t) = Pj(0)e−Lt = Pj(0)

NL∑
`=1

e−λ`tV`, (22)

where each supra-matrix V` is obtained from products of eigenvectors and λ` are the corresponding eigenval-

ues. Finally, assuming the general case that the normalized supra-Laplacian matrix has more than one null

eigenvalue, the coverage is given by

(̧t) = 1− 1

N2

N∑
i,j=1

δi,j(0)× exp

[
−

∑
`∈Λ0

Ci,j(`)t−
∑
`∈Λ+

Ci,j(`)
e−λ`t − 1

−λ`

]
,

where Λ0 and Λ+ indicate the sets of all null and positive eigenvalues of the normalized supra-Laplacian,

respectively; δi,j(0) = 0 for j = i (i.e., the random walker starts in vertex i and the probability of not finding

it in the same vertex must be zero) and 1 otherwise; Ci,j(`) = Pj(0)V`PE†i are constants depending on the

vertex, the transition matrix, the eigen-decomposition and the initial conditions [36].

43



Congestion analysis

To simulate the airport transportation network traffic, we extended to multilayer networks a previous model

proposed by some of the authors [46] . The modeling of the airports transportation network is as follows. To

each airport, in each layer (airline), we assign a first-in-first-out queue where airplanes will wait to be routed.

Since our analysis is intended to describe the relative increase of the queue, the maximum capacity of a node

in terms of the queue size is unlimited. However, each node has a limited capacity to route planes. We set

this capacity represented by η to one plane per unit of time. The model however can deal with any value of η.

Given that each layer corresponds to an airline, at each time step, each company (node in a given layer) can

route a maximum of τ airplanes from each airport. Note that changing layer corresponds to fly with a flight

operated by a different company. With respect to the dynamics (walkers), at each time step, to each airport,

we inject L × ρ (where L is the number of layers) airplanes with an airport destination chosen at random (a

given node independent on the layer). After injection and during the following time steps the airplanes travel

to their destinations using shortest-path routes. It is possible that several shortest paths exist between the

two airports, some may traverse using a single layer and some may use several layers and so the full multiplex

structure. From these possible paths each airplane chooses one at random, to reach its destination airport.

Since each airport can be represented in several layers it is common that an airplane starts its trip in one layer

and ends its trip in another layer.

The phenomena of congestion occurs when a company in an airport is not able to handle all the incoming

traffic and the amount of airplanes waiting to be routed increases proportional to time [46]. We consider an

airport is congested if any of the companies operating in it is congested. To obtain the maximum injection

rate (maximum ρ value) each airport is able to handle before it reaches a congestion state we conducted a

series of Monte Carlo experiments with different values of ρ starting from 0.1 and ending at 1 in steps of 0.001.

For each experiment, we analyzed how the size of the queue of all companies operating in each airport behave

with respect to time during 9000 time steps (with a warm up of 1000 time steps), we consider the airport is

congested if the linear approximation of the queue’s size with respect to time exceeds an slope of 0.01.

It is known that the node betweenness and the phenomena of congestion are closely related [46]. In partic-

ular, it can be use to accurately compute the critical injection rate that will congest the first airport in single

layer networks. This airport corresponds to the one with higher betweenness. Here, we use a similar approach

extended to multilayer networks [47] and we analyze the order in which airports congest in the simulations

with respect to the order given by its betweenness centrality on the aggregated network and its betweenness

versatility on the multiplex network. For the betweenness versatility, as in the simulations, we consider an
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airport is congested if any of the companies operating in it is congested, so the critical injection rate of the

airport is chosen to be the minimum obtained in the different layers. Results are shown in figure 3 (panel B) of

the main document. Low ranked airports arrive to congestion earlier. We see that the betweenness versatility

is able to accurately predict the first airport that arrive to congestion state. This can be seen in the figure

where the airport ranked zeroth by the simulations is also ranked zeroth by the betweenness. For the other

airports, we see that the betweenness versatility nicely correlates with the order obtained in the simulations.

The results obtained with the betweenness centrality also show that it is able to detect the first airport to arrive

to congestion (even though this results is in general not true). However, we see that the ranking obtained with

it poorly correlates with the simulations.

Supplementary References

[1] Cardillo, A. et al. Emergence of network features from multiplexity. Scientific reports 3, 1344 (2013).

[2] Blonder, B. & Dornhaus, A. Time-ordered networks reveal limitations to information flow in ant colonies.

PloS one 6, e20298 (2011).

[3] Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).

[4] Mucha, P. J., Richardson, T., Macon, K., Porter, M. A. & Onnela, J.-P. Community structure in time-

dependent, multiscale, and multiplex networks. Science 328, 876–878 (2010).
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