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In the following subsection we will describe four representative
random walk processes – covering a wide variety of real phys-
ical processes – and we will provide the corresponding transi-
tion rules to build the supra-Laplacian matrix, although other
type of walkers, e.g., [1, 2], are also possible to implement in
multiplex.

Classical random walkers.The classical description of ran-
dom walkers on a graph (i.e., monoplex networks) is already
present in [3,4], although applications to networks with com-
plex topology are more recent [5, 6].

In monoplex networks, the random walker has probability
1/ki to move from vertex i to vertex j in the neighborhood
of i, where ki indicates the degree of a vertex i. The direct
extension of such walks to the case of multiplex networks is to
consider the inter-layer connections as additional edges avail-
able in vertex i. It follows that the probability of moving from
vertex i to vertex j within the same layer α or to switch to the
counterpart of vertex i in layer β is uniformly distributed. In
such a scenario, the normalizing factor to obtain the correct
probability is the total strength si,α + Si,α of vertex i. The
resulting transition rules for this classical random walker in a
multiplex (RWC) are given in Table 1. For sake of complete-
ness, the Laplacian matrix corresponding to this process in
monoplex networks is generally referred to as the “normalized
Laplacian”.

Diffusive random walkers. In monoplex networks, this type of
random walk has been studied in detail in [7]. Here, at micro-
scopic level, the random walker moves from a vertex i to one
of its neighbor with hopping rate which depends on i. In fact,
if smax = max

i,α
{si,α + Si,α} is the maximum vertex strength

in the network, the walker is allowed to wait in vertex i with
rate 1− si/smax and to jump to any vertex with rate si/smax.
Hence, the nature of this walk is very different from the clas-
sical one previously described, where the hopping rate does
not depend on the vertex, and it can be shown that the corre-
sponding Laplacian matrix, once unnormalized, is equivalent
to the one of the classical diffusive process (we refer to [7] for
further detail).

We extend this walk to the case of multiplex networks by
considering inter-layer connections as additional edges to esti-
mate the maximum vertex strength. The resulting transition
rules for this random walker in a multiplex (RWD) are given
in Tab. 1.

Physical random walkers. Here we propose a new type of ran-
dom walk dynamics in the multiplex, which reduces to the
classical random walk in the case of monoplex. The transi-
tion rules are the same, except that we assume that the time
scale to switch layer is negligible with respect to the time scale
required to move from a vertex to another one in its neighbor-
hood. Therefore, in the same time step the random walker is
allowed to switch layer and to jump to another vertex, with
layer-switching and the vertex-jumping actions being indepen-
dent. This is a fundamental difference with the random walk-
ers described so far, because they were not allowed to switch
and jump in the same time unit. Moreover, another major
difference lies in treating inter-layer connections as another
type of edges, not competing with the intra-layer edges.

As an example of this dynamics, one might imagine the
case of online social networks where each layer corresponds to
a different social structure (e.g., Facebook and Twitter) and
users play the role of vertices. In this case, the time required
to a user to switch from one layer to the other one requires
less than a few seconds.

The resulting transition rules for this physical random
walker in a multiplex (RWP) are given in Tab. 1. It is straight-
forward to show that this process is equivalent to the classical
random walker in the case of monoplexes.

Table 1. Transition probability for four different ran-
dom walk processes on multiplex. We account for jump-
ing between vertices (latin letters) and switching between
layers (greek letters). When appearing in pairs, j 6= i and
β 6= α must be considered. See text for further detail.
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Maximal entropy random walkers. In classical random walks,
a walker jumps from a vertex to a neighbor with uniform prob-
ability which depends only on the local structure, namely the
vertex strength. However, it has been recently proposed a
walk dynamics where the transition rate of jumps is influ-
enced by the global structure of the network [8], or only lo-
cal information is available [2]. More specifically, the walkers
choose the next vertex to jump into maximizing the entropy
of their path at a global level, whereas classical random walk-
ers maximize the entropy of their path at neighborhood level.
To achieve such maximal entropy paths, the transition rates
are governed by the largest eigenvalue of the adjacency matrix

and the components of the corresponding eigenvector [8].
In the case of multiplex, we use the supra-adjacency ma-

trix

A =

0BBBB@
D11I + W(1) D12I . . . D1LI

D21I D22I + W(2) . . . D2LI
...

. . .
...

DL1I DL2I . . . DLLI + W(L)

1CCCCA
to achieve the same result (see Materials and Methods in
the main text for further detail). We indicate with λmax the
largest eigenvalue of this matrix and with ψ the correspond-
ing eigenvector. Therefore, according to the prescription given

(a) BA+ER, D12 = D21 = 1 (b) BA+ER, D12 = D21 = 100

Fig. 1. Random walks realizations on different multiplex structures. Vertices (top panels) and layers (bottom panels) visited by one random

walker in 100 time steps. The four types of walk considered in this study are shown. The multiplex is built with one Barabási-Albert (layer one) and one Erdős-Rényi (layer

two) network with 200 vertices, while inter-layer weights are specified above.

Classical Diffusive Physical Maximal entropy

Fig. 2. Probabilities governing four random walk strategies on multiplex. Top panels: transition probabilities for walks considered in

this study. Note that we have rescaled by a factor 2 the transition matrix of diffusive walk for better visualization and to allow comparisons. Middle panels: occupation

probability, for each vertex in each layer, considering one random walk starting only from the first vertex. Bottom panels: as in middle panels, but considering one random

walk starting with uniform probability from any other vertex. Multiplex of 20 vertices embedded in two different realizations of a Watts-Strogatz small-world network (rewiring

probability is 0.2), where D11 = D21 = D12 = D21 = 1. Different exploration strategies are responsible for the different probability that a vertex is visited and occupied

by a random walker.
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in [8], the resulting transition rules for this maximal entropy
random walker in a multiplex (RWME) are given in Tab. 1.

A representative example of each walk is shown in Fig. 1,
where vertices and layers visited by one random walker up to
100 time steps are reported. We show two different cases, cor-
responding to different choices of inter-layer weights, to make
evident the difference in the dynamics.

In the top panels of Fig. 2 we show the transition proba-
bilities in the case of a multiplex of 20 vertices embedded in
two different realizations of a Watts-Strogatz small-world net-
work [9]. The probability to find a random walker in a certain
vertex on a certain layer is also shown in the same figure, con-
sidering one walk starting from the first vertex only (middle
panels) and from any other vertex with uniform probability
(bottom panels). As expected, different exploration strategies
result in different occupation probability, where some vertices
in a certain layer might be explored more (or less) frequently,
as in the case of RWC, RWP and RWME, or uniformly as in
the case of RWD.

Fig. 1 and Fig. 2 clearly highlight the different dynamics
and how navigation strategy influences the exploration of the
multiplex.

Occupation Probability of Random Walkers

We define the occupation probability Πi,α = lim
t−→∞

pi,α(t) to

find a walker in vertex i of layer α in the limit t −→ ∞, and
we indicate with Π the corresponding supra-vector. In gen-
eral, Π is the left eigenvector of the supra-transition matrix
corresponding to the unit eigenvalue. In some cases, the occu-
pation probability can be estimated from the detailed balance
equation

Πi,αPαβij = Πj,βPβαji , [1]

obtaining

Πi,α =
si,α + Si,αP

β

P
j sj,β + Sj,β

[2]

for RWC, generalizing the well-known result obtained for
walks in a monoplex network,

Πi,α =
1

NL
[3]

for RWD, as expected for a purely diffusive walk, and

Πi,α = ψ2
(α−1)N+i, [4]

for RWME, generalizing the results obtained in [8] for mono-
plex networks.

Indeed, following the approach proposed in [5] for random
walks on monoplexes, it is possible to show that the time re-
quired to a random walker starting from vertex i to arrive
back to the same vertex, i.e., the mean return time, is given
by

〈Tii〉 =
1

LP
α=1

Πi,α

. [5]

It is straightforward to verify that distributions expected in
the case of monoplex are recovered for L = 1. It is worth
noting that for classical random walks the occupation prob-
ability of vertex i is proportional to its supra-strength, i.e.,
intra- plus inter-layer strengths, whereas for diffusive walks
such a probability is the same for any vertex, regardless of
multiplex topology.

Dynamical vs Topological Descriptors

We show in Fig. 3 the coverage versus time in the case of
RWP only, for some representative multiplexes where D12

(i) =

D21
(i) = D11

(i) = D22
(i) = 1, ∀i = 1, 2, ..., N . Results for differ-

ent combination of topologies (double acronym in the legend)
are shown, together with results for walks in a single layer
(single acronym in the legend). “Diff” indicates same topol-
ogy but different random realizations, while “same” indicates
same topology and same random realization on both layers.
Inset shows the relative difference of coverages with respect
to the case of an ER monoplex.

The multiplex topology has an evident impact on the walk
process, delaying or accelerating the exploration of the net-
work with respect to a random search in a monoplex random

Fig. 3. Dependence of the coverage on multiplex topology.
Number of visited vertices versus time for monoplex and multiplex topologies (see

the text for further details about the simulations). The inset shows the relative dif-

ference of each curve with respect to the coverage obtained for an ER monoplex,

evidencing that vertices in different topologies are visited with different time scales.

Fig. 4. Dependence of the coverage on multiplex topology.
Same as the inset of Fig. 4, where the relative difference of each curve is calculated

with respect to the coverage obtained for a multiplex of two different scale-free net-

works with degree distribution ∝ k−1.2. Top panels refer to RWC, whereas bottom

panels refer to RWP. Left panels (top and bottom) refer to multiplexes of different

scale-free networks with other degree distributions, whose indices are specified in the

legend. Right panels (top and bottom) refer to multiplexes of other topologies.
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network.
This is a genuine effect of the multi-layer structure and it

is not related to the finite size of the considered networks as
shown in Fig. 4, where multiplexes of 2000 nodes and many
different topologies are considered.

In Fig. 5, for each random walk considered, we show the
inverse of the time τC required to cover the 50% of a BA+ER
multiplex with 200 vertices as a function of the inter-layer
weight DX = D12 = D21. It is worth mentioning that the
final result depends only quantitatively, but not qualitatively,
on the choice of the covered fraction. This representative ex-

Fig. 5. Critical dependence of the coverage on navigation
strategy and inter-layer connection strength. Different random

walks are used to calculate the inverse of the time τC required to cover the 50% of

a BA+ER multiplex with 200 vertices, as a function of DX = D12 = D21. The

values for walks in each layer are shown for comparison and make clear how different

exploration strategies have a strong effect on the coverage time scale.

Fig. 6. Different types of diffusion characterize different
topological structures and navigation strategies. Coverage

versus time for two different multiplex topologies (BA+BA on the top panels and

BA+WS on the bottom panels) and two different walk rules (RWC on the left panels

and RWME on the right panels). While the diffusion on single layers separately and

on the multiplex is similar for RWC on BA+BA, this is not the case for RWME on

BA+BA where enhanced diffusion is shown in the multiplex. In the other cases, the

diffusion is infra-diffusive.

ample shows the impact of transition rules on the exploration
of the multiplex, putting in evidence that the best strategy to
adopt to cover the network depends on the topology and on
the weight of inter-layer connections. Moreover, in this spe-
cific experiment, the walk in the multiplex is infra-diffusive
(sub-diffusive) depending on the value of DX , i.e., the time to
cover the multiplex lies between (is smaller than) the times re-
quired to cover each layer separately. It is worth noting that
in other cases, like RWME on BA+BA multiplexes, walks
show enhanced diffusion, i.e., the time to cover the multiplex
is smaller than the time to cover each layer separately. This
is shown, for instance, in Fig. 6.

Intriguingly, we observe a similar behavior for λ2, i.e., the
second smallest eigenvalue of the supra-Laplacian. We show
in Fig. 7 the values of 1/τC (top panels) and λ2 (bottom pan-
els) versus DX for the four random walks and three different
multiplex topologies with 200 vertices, namely BA+BA (left
panels), BA+ER (middle panels) and ER+ER (right panels).
Except for the smallest values of DX , the behavior is the same,
especially in the limit of DX −→∞.

See the main text and the corresponding Materials and
Methods for a qualitative explanation of this result. From

ρ(t) ≈ 1− 1

N2

NX
i,j=1

∆ije
−Ci,j(1)t−Ci,j(2)λ−1

2 , [6]

the importance of λ2 in the evolution of the coverage is ev-
ident. Let τ? be the time required to cover a certain frac-
tion ρ? = ρ(τ?). For large values of τ?, the weighted sum
of exponentials in Eq. (6) is dominated by terms with largest
temporal scale of exponential decay, i.e., by terms where the
constants Ci,j(1) are the minimum ones. We indicate with

Fig. 7. Relation between dynamical and topological de-
scriptors of a multiplex. Inverse of the time required to cover 50% of the

network (top panels) and second smallest eigenvalue of the supra-Laplacian (bottom

panels) as a function of DX for three different multiplex topologies and different

random walk. The solid straight line indicates D−1
X . These results show an inti-

mate relationships between the structure of the multiplex and the dynamics of the

stochastic process taking place on it.
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Cr,s(1) the smallest among all such constants. In the worst
case, all terms equally contribute to ρ(τ?) and, therefore, the
following inequality is satisfied:

ρ? ≤ 1− e−Cr,s(1)τ?−Cr,s(2)λ−1
2 . [7]

A rough estimation τ of τ? can be obtained by always con-
sidering the case with equality in the above formula, leading
to

τ ≈ −
Cr,s(2)

λ2
+ log (1− ρ?)
Cr,s(1)

. [8]

By using the Perron-Frobenius it is possible to show that
Cr,s(1) ≥ 0. To have a positive value of τ , the numera-
tor in Eq. (8) should be negative, i.e., we are able to pro-
vide an estimation only for temporal scales such that the cor-
responding coverage satisfies the additional constraint ρ? >
1− exp

ˆ
−Cr,s(2)λ−1

2

˜
.

From Eq. (8) it is evident the strong influence of λ2 on the
inverse coverage time. The constants Cr,s(1), playing a crucial
role in the time evolution of the coverage, explicitly depend
on eigenvector centralities and are smaller for more peripheral
vertices which are less reachable because of the topological
structure and the nature of the walk.

It is also worth investigating the behavior of Eq. (6) in
the limit of small or large values of DX , i.e., the inter-layer
strength and, in the following, we focus on classical and dif-
fusive random walks.

In [10] it has been shown that in the limit DX −→ ∞
there are eigenvalues converging to a constant value and other
eigenvalues diverging proportionally to DX . The eigenvalues
obtained from the normalized supra-Laplacian in the case of
random walkers are related to the eigenvalues of the diffusion

Fig. 8. Resilience of the public transport network of Lon-
don to random failures. I) Theoretical expectations (solid lines) reproduce

with great accuracy the resilience (points) obtained from simulations for each trans-

portation layer and the whole interconnected system (DX = 10−1), assuming

random-walk based navigation. II) Structural resilience, defined as the average frac-

tion of vertices surviving in the giant connected component after random failures.

process by λ` ∝ λDiff
` /DX . Substituting λ2 ∝ D−1

X in Eq. (6)
we obtain that the time required to cover any given fraction
of the multiplex is larger for increasing values of DX . Our
numerical experiments verify this theoretical expectation. An
intuitive explanation is that when DX is much larger than
the average vertex strength, the random walkers spend most
of the time in switching layer instead of jumping to other ver-
tices. In the specific case of RWP each switching action is
followed by a jump within the same time step and, therefore,
for this type of walk the time to cover a given fraction of the
multiplex is not influenced by DX .

With a similar argument and the results obtained in [10],
we have λ2 ∝ DX when DX −→ 0. This extremal case corre-
sponds to a multiplex with vanishing inter-layer connections
and the resulting coverage is no more dependent on the value
of DX , reducing Eq. (6) to the coverage for a single layer.

Dynamical vs Topological Resilience

We capitalize on the presented theoretical framework to inves-
tigate the navigability resilience of interconnected networks to
random failures, focusing on the particular case of the public
transport of London. A failure, here, is considered as the in-
operability of a station in a certain transportation layer (e.g.
because of an accident, a traffic jam, or catastrophe). Such an
event can happen randomly on the system and can affect one
or more stations at the same time. A measure of the operabil-
ity of the full system in response to unexpected failures, can
be inferred from the coverage of the respective networks after
such events. This is what we call the navigability resilience.
The resilience r(φ) of the system to a fraction φ of random
failures is defined by r(φ) = 〈ρφ(τ)〉/ρ0(τ), where ρφ(t) is the
coverage at time τ of the network subjected to φ failures and
the averages are calculated over several random realizations
of the failures. The normalization guarantees a fair compari-
son between the resilience of the multiplex and the monoplex
networks. When a vertex fails in a single transportation layer,
it can not be traversed by any path. However, if that vertex
is part of an interconnected network it can be still reached
on other layers. This intrinsic feature of multiplexes enhances
the resilience of the system with respect to monoplexes, as
shown in Fig. 8-I for the public transport of London.

We show in Fig. 8-II the topological resilience correspond-
ing to the same multiplex, defined by the average fraction of
vertices surviving in the giant connected component after ran-
dom failures. The navigability, i.e. the dynamical resilience, is
inherently smaller than the topological resilience of this mul-
tiplex network.
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Empirical data of real disrupted services in London

Finding information about possible disruptions in the trans-
portation network of London, from the Oyster data in our
possession (see the Main text for information), is not trivial.
Moreover, it is difficult to collect information about disrup-
tions occurring in 2009, the period in which our Oyster data
refers to. For this reason, we have opted for collecting new
data about disrupted services in London during a more recent
period of time.

Our first choice has been the official data provided by
Transport for London (TfL). Such data is provided in real time
but, unfortunately, it concerns only “Tube departure boards,
line status and station status”, with no support for disruptions
occurring to Overground and DLR, two out of three layers in
the multiplex transportation network considered in this study.
Moreover, it is not possible to access to historical disruptions.

For this reason, we decided to gather data from Twitter.
In fact, delays and disruptions are reported in real time in this
online social network by means of many different accounts,
each one corresponding to a particular line. For our data col-
lection, we considered tweets sent by the following accounts:
TfLTravelAlerts, bakerlooline, metline, wlooandcityline, cir-
cleline, victorialine, LDNOverground, jubileeline, districtline,
northernline, hamandcityline, LondonDLR and piccadillyline.
We collected all the tweets containing the string “no service”
in the message, sent from those accounts between 11 February
2012 and 26 March 2014. The two years of data guarantees
a fair representation of the true distribution of disrupted ser-
vices. Our choice is justified by the fact that we consider dis-
rupted stations, not delays in the traffic. We collected more
than 3000 tweets and, by means of conservative heuristics,
we classified 64% of them into 357 unique pairs of disrupted
stations.

Here, we report some representative examples of the lat-
est tweets in our dataset, together with information about the
account who sent the tweets and the date. Many tweets are
just reply to other users:

Account: LDNOverground

Date: 15 mar 2014

Message:

@alexandrafinlay there’s no service on that line

today. i advise you to de-select london overground

from the search. i’ll pass this on too

Such tweets are not used to classify disruptions. The rest
of the tweets do not use a standard format and heuristics
have been used to parse the information, conservatively. For
instance, messages like

Account: LDNOverground

Date: 9 mar 2014

Message: no service between richmond - camden road,

shepherds bush- willesden junction & watford junction-

queens park due to planned upgrade work.

are difficult to be parsed, because the usage of symbols “&”
and “-” is somehow arbitrary. Nevertheless, our algorithm
is able to recognize at least the disrupted pair “richmond /
camden road”. Apart from this type of tweets with ambiguous
syntax, the majority of them have been correctly parsed. For
instance, the algorithm correctly finds the multiple disrupted
pairs “euston / harrow&wealdstone”, “harrow&wealdstone /
watford” in

Account: LDNOverground

Date: 14 set 2014

Table 2. Real disruptions in London transportation network, ranked by their occurrence in our dataset. The partially
disrupted line (“Line” column) is reported, together with the starting (“From” column) and ending (“To” column) stations
affected by the disruption. The rate of occurrence (“Freq.” column) is also reported together with the fraction of stations
indirectly affected (“Affected” column).

ID Line From To Freq. Affected

DISR1 metropolitan aldgate bakerstreet 3.35% 2.44%
DISR4 overground claphamjunction surreyquays 2.02% 1.90%
DISR3 dlr beckton canningtown 2.56% 2.44%
DISR2 hammersmith&city barking moorgate 2.89% 3.52%
DISR9 piccadilly raynerslane uxbridge 1.53% 1.90%
DISR8 overground claphamjunction willesdenjunction 1.57% 1.63%
DISR7 piccadilly actontown uxbridge 1.57% 4.07%
DISR6 northern edgware hampstead 1.82% 1.90%
DISR5 overground richmond willesdenjunction 1.94% 1.63%
DISR26 metropolitan aldgate wembleypark 1.07% 2.98%
DISR25 overground richmond stratford 1.07% 6.23%
DISR24 metropolitan aldgate harrow-on-the-hill 1.12% 3.79%
DISR23 district ealingbroadway turnhamgreen 1.11% 1.36%
DISR22 overground highbury&islington newcross 1.11% 3.52%
DISR21 overground camdenroad richmond 1.16% 4.07%
DISR20 northern camdentown kennington 1.16% 2.71%
DISR19 metropolitan northwood wembleypark 1.16% 2.17%
DISR18 dlr bowchurch stratford 1.20% 0.81%
DISR17 overground sydenham westcroydon 1.24% 1.36%
DISR16 northern camdentown millhilleast 1.28% 2.17%
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Message: (1 of 2) no service btn euston - harrow &

wealdstone and severe delays btn harrow &

wealdstone - watford junction.

or “bank / poplar”, “bank / west india quay”, “tower gateway
/ poplar” and “tower gateway / west india quay”

Account: LondonDLR

Date: 21 set 2014

Message: morning, ahmed & alex providing updates.

due to planned work there is no service today between

bank/tower gateway and poplar/west india quay

or “bank / canning town”, “tower gateway / canning town”
and “stratford / canary wharf” in

Account: LondonDLR

Date: 23 mar 2014

Message: no service btn bank / tower gateway and

canning town / canary wharf, and also between

stratford and canary wharf. replacement buses operate.

where “btn” and “between” are used for the same purpose. It
is worth remarking here that this dataset is not intended to
provide us with complete information about real disruptions
occurring in London, but only to provide a fair sample of rea-
sonable and most frequent disruptions, to be used as input in
our simulations.

The information about disruptions occurring to whole
lines has been extracted manually from the data, without the
usage of heuristics. However, for sake of completeness, we
found reasonable to test all possible full-line disruptions (for
a total of 11 possible disrupted multiplexes, excluding Over-
ground and DLR which in our case are considered layers by
themselves).

Here, we report details about some disruptions, ordered
by their rank with respect to specific criteria. For instance,
we consider:

• Disruptions ranked by their frequency. Here, fre-
quency is calculated with respect to the data we have
collected, and this is only a proxy for the true frequency
of each disruption. Moreover, the most frequent disrup-
tions are not, in general, the most dangerous for the
traffic, involving only a limited amount of affected sta-
tions and often guaranteeing the connectedness of the
underlying network. See Tab. 2.

• Disruptions ranked by the number of stations
they affect. Here, disruptions might be more critical
for the navigability of the system with respect to the
previous ones. See Tab. 3.

• Whole-line disruptions. Disruption of a complete
tube line is considered in each scenario, for a total of
11 lines. See Tab. 5.

In Tab. 4 we report the dynamical resilience calculated,
numerically and theoretically, for some representative real
partial disruptions, mainly sampled from Tab. 2 and Tab. 3.
In Tab. 5 we report the same analysis for disruptions of whole
lines. The values of the data-driven simulations are in remark-
able agreement with our theory.
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Table 3. Real disruptions in London transportation network, ranked by the number of stations they affect. The partially
disrupted line (“Line” column) is reported, together with the starting (“From” column) and ending (“To” column) stations
affected by the disruption. The rate of occurrence (“Freq.” column) is also reported together with the fraction of stations
indirectly affected (“Affected” column).

ID Line From To Freq. Affected

DISR325 northern eastfinchley morden 0.04% 7.05%
DISR281 northern goldersgreen morden 0.04% 6.78%
DISR25 overground richmond stratford 1.07% 6.23%
DISR245 piccadilly actontown arnosgrove 0.04% 6.78%
DISR88 northern edgware kennington 0.33% 5.15%
DISR61 overground claphamjunction stratford 0.45% 5.96%
DISR44 overground highbury&islington westcroydon 0.58% 5.69%
DISR347 district earlscourt westham 0.04% 5.69%
DISR322 overground southacton stratford 0.04% 5.42%
DISR250 jubilee stratford willesdengreen 0.04% 5.42%
DISR227 metropolitan aldgate rickmansworth 0.08% 5.42%
DISR220 overground hackneywick richmond 0.08% 5.96%
DISR199 metropolitan aldgate croxley 0.08% 5.42%
DISR195 district towerhill upminster 0.08% 5.42%
DISR184 northern millhilleast stockwell 0.08% 5.15%
DISR181 northern highbarnet stockwell 0.08% 5.96%
DISR180 metropolitan aldgate uxbridge 0.08% 5.96%
DISR175 hammersmith&city bakerstreet barking 0.12% 5.15%
DISR151 district embankment upney 0.12% 5.15%
DISR140 northern highbarnet kennington 0.17% 5.42%

Table 4. Real partial disruptions in the London transportation network. Representative disruptions are considered, together
with the starting (“From” column) and ending (“To” column) stations affected by the disruption. The rate of occurrence
(“Freq.” column) is reported, together with the fraction of stations indirectly affected (“Affected” column). It is indicated if
the resulting multiplex is disconnected in 2 or more components (“Discon.?” column). The resilience obtained from Monte
Carlo simulations (random walk and shortest-path based) are reported together with our theoretical expectation.

ID Line From To Freq. Affected Discon.? Th.Res. RW Res. SP Res.

DISR1 metropolitan aldgate bakerstreet 3.35% 2.44% NO 99.60% 100% 99.99%
DISR4 overground claphamjunction surreyquays 2.02% 1.90% YES 92.34% 90.56% 100%
DISR3 dlr beckton canningtown 2.56% 2.44% YES 94.41% 93.10% 94.85%
DISR325 northern eastfinchley morden 0.04% 7.05% YES 85.90% 82.52% 87.07%
DISR25 overground richmond stratford 1.07% 6.23% YES 89.07% 91.53% 97.90%
DISR245 piccadilly actontown arnosgrove 0.041% 6.78% YES 88.50% 86.51% 90.85%
DISR181 northern highbarnet stockwell 0.083% 5.96% YES 86.11% 82.55% 84.49%
DISR61 overground claphamjunction stratford 0.45% 5.96% YES 86.59% 84.99% 99.66%
DISR119 northern charingcross highbarnet 0.25% 4.61% YES 90.67% 87.99% 91.32%

Table 5. Complete line disruptions in London transportation network. Same as table 4, but also indicating if the result-
ing multiplex is disconnected in 2 or more components (“Discon.?” column). The resilience obtained from Monte Carlo
simulations (random walk and shortest-path based) are reported together with our theoretical expectation.

ID Line Affected Discon.? Th.Res. RW Res. SP Res.

DISR-L1 bakerloo 6.78% YES 95.80% 96.25% 99.79%
DISR-L2 circle 9.49% NO 99.68% 100% 99.93%
DISR-L3 district 16.26% YES 89.37% 89.47% 96.61%
DISR-L4 hammersmith&city 7.86% YES 99.18% 99.460% 99.71%
DISR-L5 jubilee 7.32% YES 91.50% 93.08% 100%
DISR-L6 metropolitan 9.21% YES 91.96% 91.53% 95.43%
DISR-L7 northern 13.55% YES 84.41% 80.98% 89.51%
DISR-L8 piccadilly 14.36% YES 85.07% 83.43% 91.23%
DISR-L9 victoria 4.34% YES 95.33% 96.78% 100%
DISR-L10 central 13.27% YES 83.35% 80.49% 90.00%
DISR-L11 waterloo&city 0.54% NO 99.98% 100% 100%
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