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Assessing the navigability of interconnected networks (transport-
ing information, people, or goods) under eventual random failures
is of utmost importance to design and protect critical infra-
structures. Random walks are a good proxy to determine this
navigability, specifically the coverage time of random walks,
which is a measure of the dynamical functionality of the network.
Here, we introduce the theoretical tools required to describe
random walks in interconnected networks accounting for struc-
ture and dynamics inherent to real systems. We develop an
analytical approach for the covering time of random walks in
interconnected networks and compare it with extensive Monte
Carlo simulations. Generally speaking, interconnected networks
are more resilient to random failures than their individual layers
per se, and we are able to quantify this effect. As an application––
which we illustrate by considering the public transport of London––
we show how the efficiency in exploring the multiplex critically
depends on layers’ topology, interconnection strengths, and walk
strategy. Our findings are corroborated by data-driven simula-
tions, where the empirical distribution of check-ins and checks-
out is considered and passengers travel along fastest paths in
a network affected by real disruptions. These findings are funda-
mental for further development of searching and navigability
strategies in real interconnected systems.

Network theory has been revealed to be a perfect instrument
to model the structure of complex systems and the dynam-

ical process in which they are involved. However, the classical
approach does not take into account the possibility that agents
can be networked in different ways, and with different intensity,
on multiple layers simultaneously. As an example, in the case of
social sciences the same user might choose to subscribe to two or
more online social networks and to build different social rela-
tionships with different users on each social platform (e.g.,
LinkedIn for the network of professional contacts, Facebook for
the network of friends, etc.). Another example is represented by
transportation networks in a city: the network of bus stops, the
first layer, is different from the tube network, the second layer,
but people make use of both by combining paths to move from
one place to another within the city. The cases where one vertex
is not present in the full multiplex can be accounted for by in-
cluding it as an isolated vertex in the layers where it is missing,
without altering either topological or dynamical properties of the
interconnected network.
The existence of such multiple connections on different layers

invites a generalization of the theory of complex networks to
cope with multilayer interconnected networked systems. More
specifically, very recent studies focused on a particular type of
multilayer network, the multiplex, where each agent participates
in different layers simultaneously, like our previous example in
the case of online social networks. Indeed, the actors (vertices) in
every layer are the same and are indeed vectors of multiplex
states that can self-interact, at variance with interdependent
networks which are conceived as interconnected communities
within a single, larger network (1, 2).
The emergent physics of dynamical processes on top of multi-

plex networks has still to be discovered and formalized. Recently, it
has been shown that diffusion processes in multiplex can have an

enhanced-diffusive behavior (3), meaning that the time scales as-
sociated with diffusion in the whole multiplex can be shorter than
those associated with the individual layers. This phenomenon is
strictly related to the particular setup of the multiplex, and has no
counterpart in classical “monoplex” networks.
Moreover, it has been recently shown that any real-world

interconnected system is potentially at risk for abrupt changes in
its structure, which may manifest new dynamical properties (4).
However, diffusion processes describe states of vertices in terms
of continuous variables that can be differentiated, whereas real
diffusive processes in networks are better represented by a finite
number of discrete visits (e.g., communication in online social
networks, people commuting in transportation networks, etc.). A
natural way to represent these processes in physics, and in par-
ticular in networks, is by considering random walkers (5–10),
whose exploration of the full networked system is akin to a dif-
fusion process (11) and might help, for instance, to uncover
community structures on multiple layers (12), to infer gene
regulatory pathways (13), to identify genes associated with he-
reditary disorders in protein–protein interaction networks (14),
or to model first-passage time in complex disordered media (15).
The implications of the study of random walks, however, go

beyond the scope of physics, and are useful in other disciplines
such as financial time series analysis (16), genetics (17, 18),
evolution (19), social sciences (20), contagion processes (21–23),
and to rank websites in the world wide web by importance and
quality (24), to cite a few.
Here we focus on this specific type of dynamical process on

interconnected networks, i.e., random walks. We estimate ana-
lytically the coverage of multilayer interconnected networks for
several types of random walks. This estimation allows us to
quantify the differences in navigability, and its resilience to
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random failures, of multilayer networks with respect to the
navigability of the individual layers.
At variance with other navigation problems in science and

technology, only local information of network is required, i.e.,
any source vertex does not possess the knowledge of the entire
topology. It has been shown that the design and development of
optimal navigation can be achieved exploiting shortest paths,
either with local knowledge and the presence of long-range
connections in a lattice network (25) or by imposing cost con-
straints, regardless of the available (global or local) information
(26). However, in the presence of random failures it is not pos-
sible to have real-time information about the subsequent con-
gestion. Moreover, the catastrophic cascade of failures, which
might follow because of the interdependence of transport sys-
tems (27), is likely to propagate along shortest paths affecting the
vertices with highest betweenness (28). Random walks represent
a good choice to overcome this problem, and a good proxy to the
real scenario. The coverage of random walks is a rich concept of
interest in many phenomena, from ecology to physics (29, 30), as
it provides a quantitative measure of the territory explored by
a diffusing particle. For instance, its generalization to the num-
ber of distinct sites visited by several agents randomly walking
simultaneously allowed a range of important problems to be
solved, as in mathematical ecology (31).
We illustrate an application to the real-world problem of trav-

eling efficiently in a transportation network. In particular, we
consider the public transport of London, where each layer corre-
sponds to a different type of rail network, and we show how
neglecting to account for the cost of switching between layers of
a multiplex can lead to an underestimation or an overestimation of
navigability and exploration performances, as well as to its resil-
ience. We corroborate our findings by performing data-driven
simulations, considering the empirical distribution of check-ins and
check-outs in the transportation system and assuming passengers
traveling along fastest paths connecting two stations. Moreover, we
simulate real disruptions, according to “no service” status reported
by the Transport for London system. We show that the resilience
of the whole interconnected structure under random failures,
quantified by assuming a random-walk strategy, successfully cap-
tures the resilience calculated using empirical data and fastest-path
strategies, providing a good approximation to the real resilience.
The overall results show quantifiable dependences between the
dynamical process and the underlying topology that are of utmost
importance in the design of searching–routing–exploring strategies
in real interconnected networks.

Results
Modeling Multilayer Relationships of Networked Systems. A multi-
plex network is a multilayer graph where vertices belong to
several different layers (i.e., monoplex networks) simultaneously,
and they are connected by means of a specific set of edges in
each layer. The weighted intralayer connection between two
vertices i and j in the layer α of the multiplex is indicated byW ðαÞ

ij ,
where we use Latin letters to indicate vertices ði; j= 1; 2; . . . ;NÞ
and Greek letters for indices indicating layers ðα= 1; 2; . . . ;LÞ.
Because of the peculiar interconnected structure, it is possible

to move from one layer to another one, provided that such layers
are connected with each other. We show in Fig. 1 a repre-
sentative example of a multiplex topology, where each layer is
connected bidirectionally to the other layers. The interlayer
connections among the layers present in the multiplex define
a networked system at a macroscopic level. To account for this
network of layers, representing a fundamental characteristic of
the multiplex, we introduce here the matrix Dαβ

ðiÞ to quantify the
cost to switch from layer α to layer β for a walker placed in
a vertex i.
Therefore, it is useful to distinguish between the strength

si;α =
P

jW
ðαÞ
ij of a vertex i with respect to its connections with

other vertices j ð j= 1; 2; . . . ;NÞ in the same layer α, and the
strength Si;α =

P
βD

αβ
ðiÞ of the same vertex with respect to con-

nections to its counterparts in different layers. For the sake of
simplicity, in the following we consider that the cost to switch
between any pair of layers is Dαβ

ðiÞ =DX for all vertices.

Navigation on an Interconnected Network. At a microscopic level,
we can reduce the problem of describing the walk dynamics
between vertices and layers per time unit to the definition of four
fundamental transition rules accounting for all possibilities. In
fact, we have (i) Pαα

ii , the probability of staying for one time step
in the same vertex i and in the same layer α; (ii) Pαα

ij , the
probability of staying in the same layer α while moving from
vertex i to a vertex j≠ i in its neighborhood; (iii) Pαβ

ii , the prob-
ability of staying in the same vertex while switching to its coun-
terpart from layer α to layer β≠ α; (iv) Pαβ

ij , the probability of
moving from vertex i to vertex j≠ i while switching from layer α
to layer β≠ α, in the same time step. Within such prescriptions,
the master equation describing the probability of finding the
walker in vertex j and in layer β at time t+Δt is given by

pj;βðt+ΔtÞ=Pββ
jj pj;βðtÞ+

XL
α=1
α≠ β

Pαβ
jj pj;αðtÞ+

XN
i=1
i≠ j

Pββ
ij pi;βðtÞ

+
XL
α=1
α≠ β

XN
i=1
i≠ j

Pαβ
ij pi;αðtÞ;

[1]

where the terms account for transitions (i)–(iv) described above.
We indicate with pα the row vector with N components pi;α
with respect to layer α, and we introduce the supravector P≡
ðp1; p2; . . . ; pLÞ with NL components. Moreover, in the special
case with Δt= 1 we have _PðtÞ=Pðt+ 1Þ−PðtÞ. Therefore, Eq. 1
can be written in a more compact form as _PðtÞ=−PðtÞL, hereafter
referred to as the random-walker equation. In this equation, L is
the NL×NL normalized supra-Laplacian matrix, whose structure
is similar, although not identical, to the supra-Laplacian matrix
recently proposed in ref. 3 to model the diffusion process in a mul-
tiplex network (SI Appendix).
The structure of the random-walk equation is the same re-

gardless of the transition rules adopted to describe any particular
case of interest. See SI Appendix for further details about the
navigation strategies considered in this study, the transition rules,
and the occupation probability.

Exploration Efficiency of an Interconnected Network. In the fol-
lowing we will consider only multiplex networks with undirected

Fig. 1. Example of the navigation on an interconnected network. Path
(dotted red line) of a randomwalker exploiting the multiplex topology to find
a way around to jump between disconnected components. In this example the
walker is not allowed to switch between layer 1 and layer 3 in one time step.
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intra- and interlayer connections. To quantify the efficiency of
the random walk in exploring the multiplex network, we focus on
the coverage ρðtÞ, defined as the average fraction of distinct
vertices visited at least once in a time less than or equal to t,
regardless of the layer, assuming that walks started from any
other vertex in the network. We find that a good approximation
to the coverage (Materials and Methods) is given by

ρðtÞ= 1−
1
N2

XN
i; j=1

δi;jð0Þexp
�
−Pjð0ÞPE†

i

�
; [2]

where Pjð0Þ indicates the supravector of probabilities at time
t= 0 (assuming that the walker started in vertex j), the matrix
P accounts for the probability to reach each vertex through any
path of length 1; 2; . . . or t+ 1, and E†

i is a supracanonical vector
allowing one to compact the notation. Eq. 2 can be solved nu-
merically to obtain the correct coverage at each time step. It is
worth noting that Eq. 2 shows how the exploration of a multiplex
network is influenced by different factors encoded in the matrix
P, i.e., the topological structure of each layer, the strength of
interlayer connections, and the exploration strategy defined by
random-walk transition rules. All these factors critically deter-
mine the time scale to cover the network. From the eigendecom-
position of the supra-Laplacian, the alternative representation

ρðtÞ≈ 1−
1
N2

XN
i; j=1

Δije−Ci; jð1Þt−Ci;jð2Þλ
−1
2 ; [3]

can be obtained (Materials and Methods). To validate our theo-
retical predictions, we consider different two-layer multiplex to-
pologies, where each layer can be a Barabási–Albert (BA)
network (32), an Erd}os–Rényi (33) or a Watt–Strogatz graph
(34). For each multiplex topology random-walk rules and inter-
layer weights are fixed, and from each vertex we simulate the
propagation of 100 random walkers for 104 time steps. There-
fore, we estimate the average fraction of visited vertices from the
random-walk ensemble as a function of time. In Fig. 2 we show
the comparison between the coverage obtained from detailed
Monte Carlo simulations and the predictions given by Eqs. 2
and 3, for three different interconnected topologies. The theo-
retical curves approximate the simulations quite well, with small
differences only for the case of BA + BA topology, the multiplex
with highest heterogeneity among the shown scenarios. In SI
Appendix we show additional representative examples demon-
strating that the multiplex topology and the navigation strategy
have an evident impact on the walk process, delaying or ac-
celerating the exploration of the network with respect to

a navigation in a monoplex random network. This is a genuine
effect of the multilayer structure whose control might help to
build multilayer structures or strategies enhancing or reducing
the navigability of the network.

Application to the Public Transport of London. The study of the
navigability performance on cities is a large area of study; see, for
instance, refs. 35 and 36 and references therein. In particular,
a recent study (37) presents a remarkable analysis of the path
optimization processes behind the transportation facilities in
a large city like London. In fact, with more than 10 million
inhabitants, London requires an efficient transportation network
allowing people to move easily and quickly through the city.
Here, we assume a more abstract scenario to get insight about
the fundamental interrelations between the dynamical process
and the underlying topology of the transportation network in
London. We consider three different layers of such a network,
namely the tube, the overground, and the docklands light railway
(see Materials and Methods for further detail about the dataset).
Each station represents a vertex, whereas real connections be-
tween stations are considered as weighted links (see Fig. 3I for
a schematic illustration). We also show the corresponding ag-
gregate network, obtained by the weighted projection of the
multiplex to a single-layer graph, where the information about
the type of transport is lost (Fig. 3II). Only a few stations exist
simultaneously on more than one transportation layer.
We capitalize on the presented theoretical framework to in-

vestigate the navigability resilience of interconnected networks
to random failures, focusing on the particular case of the public
transport of London. A failure here is considered as the inop-
erability of a station in a certain transportation layer (e.g., be-
cause of an accident, a traffic jam, or catastrophe). Such an event
can happen randomly on the system and can affect one or more
stations at the same time. A measure of the operability of the full
system in response to unexpected failures can be inferred from
the coverage of the respective networks after such events. This is
what we call the navigability resilience. The resilience rðϕÞ of the
system to a fraction ϕ of random failures is defined by rðϕÞ=
hρϕðτÞi=ρ0ðτÞ, where ρϕðtÞ is the coverage at time t of the network

Fig. 2. Theoretical description of the navigability of a multiplex against
simulation. Coverage versus time obtained from Monte Carlo simulations
and our theoretical predictions given by Eqs. 2 and 3. A two-layer multiplex
with DX =D11 = D22 = 1 is considered.

Fig. 3. Multilayer network of public transport of London. (I) Tube, over-
ground, and DLR define three layers of the multiplex transportation net-
work. Each station, individuated by a geographical position, represents a
vertex, whereas the existence of a real connection between two stations
defines the presence of an edge. (II) Aggregate network corresponding to
the weighted projection of the multiplex to a single-layer graph, where the
information about the type of transport is lost.
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subjected to ϕ failures and the averages are calculated over sev-
eral random realizations of the failures. The normalization guar-
antees a fair comparison between the resilience of the multiplex
and the monoplex networks. When a vertex fails in a single
transportation layer, it cannot be traversed by any path. However,
if that vertex is part of an interconnected network it can still be
reached on other layers. This intrinsic feature of multiplexes
enhances the resilience of the system with respect to monoplexes,
as shown in Fig. 4, I for the public transport of London. Eqs. 2 and
3 are used to predict the resilience obtained by extensive simu-
lations, and results are reproduced with great accuracy.
To evaluate the resilience of the system in a more realistic

scenario, we consider the empirical distribution of check-ins and
check-outs in the public transport of London and we simulate
passengers traveling along the shortest paths connecting two
stations. We consider the adjacency matrices of each trans-
portation system and we construct a weighted interconnected
network where weights represent the cost to move between two
connected stations. Here, the cost corresponds to the time re-
quired by an individual to travel along a connection, assuming
that the involved modes of transport travel with an average speed
of 33 km/h (38). Because the commutation time is not available,

we assume it corresponds, on average, to the time an individual
requires to walk 500 m with an average speed of 5 km/h. For each
“shortest-path” walker, the starting and ending stations are
sampled according to the data. When a destination is reached we
consider it as a new starting station and a new target is sampled,
iterating this procedure for 1 mo. As for the random-walk
strategy, the coverage is given by the fraction of stations visited
over time. In the case of random failures, the cost matrix is
recalculated “on the fly” to simulate the behavior of individuals
more realistically. We show in Fig. 4, II the resilience obtained in
this case, in agreement with the estimation obtained assuming
random-walk-based strategies. Our results show that resilience
based on random-walk navigation provides an approximation to
the empirical one.
For the sake of completeness, see SI Appendix for the topo-

logical resilience corresponding to the same multiplex, defined
by the average fraction of vertices surviving in the giant con-
nected component after random failures. The navigability, i.e.,
the dynamical resilience, is inherently smaller than the topo-
logical resilience of this multiplex network.
We also report the numerical resilience, and its theoretical

expectation, in the case of real disruptions affecting the trans-
portation network of London (Table 1 and SI Appendix). Our
predictions are in excellent agreement with numerical simu-
lations and, in the case of more realistic simulation, they always
provide a good approximation of empirical resilience.

Discussion
Our world is inherently networked and actors coexist in several
different levels of relationships. People interacting during fi-
nancial transactions and in real (or virtual) social systems, goods
moving from one location to another by means of different
modes of transport (e.g., air, rail, and road), and information
flowing through different media (e.g., radio, satellite, and in-
ternet) represent important multilayer systems. Recently, prog-
ress has been made to include such levels in network analysis
within the more general framework of interconnected networks
(12, 39), accounting for the influence of their topologies and
their interconnections to dynamical processes taking place on the
networked system (3, 4). The lack of a systematic theory of
random walkers on multilayer systems and their crucial role in
the description of a wide variety of real-world systems, as resil-
ience to random failures, has motivated our study. More spe-
cifically, we have investigated the behavior of different walks on
interconnected networks and characterized their main statistical
properties. We have identified in the coverage a suitable proxy for
the exploration efficiency of the network, providing an accurate
theoretical and analytical description. Our results have shown how
the exploration of a multiplex is influenced by different factors.
On one hand, the topological structure of each layer and the
strength of interlayer connections determine the “topological
reachability” of vertices, where more peripherals agents are more
difficult to be visited because of their poorly influential position
in the network. On the other hand, the exploration strategy

Fig. 4. Resilience of the public transport network of London to random
failures. (I) Theoretical expectations (solid lines) reproduce with great ac-
curacy the resilience (points) obtained from simulations for each trans-
portation layer and the whole interconnected system ðDX =10−1Þ, assuming
random-walk-based navigation. (II) The same as I but assuming shortest-
path-based navigation and empirical data.

Table 1. Real disruptions in London transportation network

Line From To Freq., % Affected, % Theory, % RW, % SP, %

DLR Beckton Canningtown 2.56 2.44 94.41 93.10 94.85
Piccadilly Actontown Arnosgrove 0.04 6.77 88.49 86.51 90.85
Northern Highbarnet Stockwell 0.08 5.96 86.11 82.55 84.49
Northern Charingcross Highbarnet 0.25 4.61 90.67 87.99 91.32

Representative partial line disruptions “From”–“To” stations are considered. The rate of occurrence “Freq.” is
reported together with the fraction of stations indirectly “Affected.” The resilience obtained from Monte Carlo
simulations (random walk, RW, and shortest-path, SP) are reported together with our theoretical expectation.
See full table in SI Appendix.

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1318469111 De Domenico et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1318469111/-/DCSupplemental/pnas.1318469111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1318469111/-/DCSupplemental/pnas.1318469111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1318469111/-/DCSupplemental/pnas.1318469111.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1318469111


defined by random-walk transition rules determine the “dy-
namical reachability” of vertices, where agents are more difficult
to be visited because their position in the network is not privi-
leged with respect to the flow of information. All such factors
critically determine the time scale to cover the network.
To show the potential of the developed framework, we have

considered an application to the public transport of London, fo-
cusing on three different transportation layers, i.e., tube, over-
ground, and docklands light railway. We have investigated the
resilience of this interconnected transport network to random
failures, a study of importance to design and protect critical
infrastructures. We have shown, theoretically and by means of
extensive simulations, how the whole system is more resilient
to random failures than its individual layers separately. Indeed,
interconnected networks introduce additional dimensions that can
help to find paths from apparently isolated parts of single layers,
enhancing the resilience to random failures, and we provide a way
to quantify this.
The results can be used to design optimal searching strategies

(in the line of the findings in ref. 40), for instance, to characterize
the cyclic structure of the multiplex (41), to infer gene regulatory
pathways (13), to coarse grain the network structure (42), to assess
the PageRank in these topologies (43), or to identify genes associ-
ated with hereditary disorders in protein–protein interaction net-
works (14), providing a step for further development of searching
and navigability strategies in real interconnected systems.

Materials and Methods
Derivation of the Coverage: Transition Matrix. To quantify the efficiency of the
random walk in exploring the multiplex network, we focus on the coverage
ρðtÞ, defined as the average fraction of distinct vertices visited at least once
in a time less than or equal to t, regardless of the layer, assuming that walks
started from any other vertex in the network.

Let piðtÞ=
P

αpi,αðtÞ be the probability to find the walker in vertex i at time
t regardless of the layer. We introduce the supravector Ei ≡ ðei ,ei , . . . ,eiÞ, ei
being the ith canonical vector, to obtain piðt + 1Þ= PðtÞPE†i . The probability to
not find the walker in vertex i after t time steps, assumed that it started in
vertex j, is given by δi,jðtÞ=∐t

τ=1½1−piðt − τÞ�½1−pjð0Þ�. Moreover, the recursive
equation δiðt + 1Þ= δiðtÞ½1−piðt + 1Þ� leads to

_δi,jðtÞ=−δi,jðtÞPðtÞPE†i : [4]

The solution of Eq. 4 is given by

δi,jðtÞ= δi,jð0Þexp
�
−Pjð0ÞPE†i

�
, P=

Xt
τ=0

Pτ+1, [5]

where Pjð0Þ≡ ðej ,0, . . . ,0Þ explicitly indicates that at time t = 0 the walker
started in vertex j and in the first layer, without loss of generality. The matrix
P has a clear meaning: it accounts for the probability to reach each vertex
through any walk of length 1,2, . . . or t + 1. Moreover, δi,jð0Þ= 0 for j= i (i.e.,
the random walker starts in vertex i and the probability of not finding it in
the same vertex must be zero) and 1 otherwise. Therefore, a good ap-
proximation to the coverage is given by double averaging over all vertices
the probability 1− δi,jðtÞ, obtaining Eq. 2, which can be solved numerically to
obtain the correct coverage at each time step.

Derivation of the Coverage: Eigendecomposition. The time evolution of the
supravector of probabilities P for a walker starting from vertex j is also given

by PðtÞ= Pjð0Þe−Lt , L being the normalized supra-Laplacian matrix. From
eigendecomposition of the normalized supra-Laplacian, we obtain

PðtÞ= Pjð0Þe−Lt = Pjð0Þ
XNL
ℓ=1

e−λℓtV ℓ, [6]

where each supramatrix Vℓ is obtained from products of eigenvectors. By
substituting this expression into Eq. 4 for the dynamical evolution of δi,jðtÞ,
we obtain

_δi,jðtÞ
δi,jðtÞ=−

XNL
ℓ=1

e−λℓtCi,jðℓÞ, [7]

where Ci,jðℓÞ= Pjð0ÞV ℓPE†i are constants depending on the vertex, the tran-
sition matrix, the eigendecomposition, and the initial conditions. Let us
recall that the coverage is defined by double averaging the probability
1− δi,jðtÞ over all vertices. Hence, another expression for the coverage versus
time, alternative to Eq. 2, is given by

ρðtÞ= 1−
1
N2

XN
i,j=1

δi,jð0Þexp
"
−Ci,jð1Þt −

XNL
ℓ=2

Ci,jðℓÞ e
−λℓt − 1
−λℓ

#
:

After enough time, i.e., λ2t � 1, the sum in the above exponentials is
dominated by the term with ℓ= 2 and, additionally, e−λ2t � 1, leading to Eq.
3. Note that for normalized supra-Laplacian matrices with more than one
null eigenvalue, the more general version of Eq. 3 is given by

ρðtÞ= 1−
1
N2

XN
i,j=1

δi,jð0Þexp
"
−
X
ℓ∈Λ0

Ci,jðℓÞt −
X
ℓ∈Λ+

Ci,jðℓÞ e
−λℓt − 1
−λℓ

#
,

where Λ0 and Λ+ indicate the sets of all null and positive eigenvalues of the
normalized supra-Laplacian, respectively.

Overview of the Dataset. The list of tube, overground, and docklands light
railway (DLR) stations, their positions, and their coordinates have been ob-
tained from publicly available information in the official website dedicated to
the transport of London (44) and in Wikipedia (www.wikipedia.org). The
total number of stations is 369, among which there are 271 vertices with 312
connections considering all lines of the tube, 83 vertices with 83 connections
in the overground, and 45 vertices with 46 connections in the DLR layer.
Connections are undirected and weighted, where, in the case of the tube,
the weight is given by the number of different underground lines con-
necting two stations. Check-ins and check-outs have been obtained from
a 5% sample of all Oyster card journeys performed in a week during No-
vember 2009 on bus, tube, DLR, and London overground, available from ref.
44. The empirical distributions adopted in our simulations refer to the
probability of observing a check-out in a certain station conditional to the
probability that a passenger started his or her journey in another one. For
details about the collection of data concerning the “no service” status in this
transportation network, see SI Appendix.
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Navigation Strategies in Interconnected Networks

In the following subsection we will describe four representative
random walk processes – covering a wide variety of real phys-
ical processes – and we will provide the corresponding transi-
tion rules to build the supra-Laplacian matrix, although other
type of walkers, e.g., [1, 2], are also possible to implement in
multiplex.

Classical random walkers.The classical description of ran-
dom walkers on a graph (i.e., monoplex networks) is already
present in [3,4], although applications to networks with com-
plex topology are more recent [5, 6].

In monoplex networks, the random walker has probability
1/ki to move from vertex i to vertex j in the neighborhood
of i, where ki indicates the degree of a vertex i. The direct
extension of such walks to the case of multiplex networks is to
consider the inter-layer connections as additional edges avail-
able in vertex i. It follows that the probability of moving from
vertex i to vertex j within the same layer α or to switch to the
counterpart of vertex i in layer β is uniformly distributed. In
such a scenario, the normalizing factor to obtain the correct
probability is the total strength si,α + Si,α of vertex i. The
resulting transition rules for this classical random walker in a
multiplex (RWC) are given in Table 1. For sake of complete-
ness, the Laplacian matrix corresponding to this process in
monoplex networks is generally referred to as the “normalized
Laplacian”.

Diffusive random walkers. In monoplex networks, this type of
random walk has been studied in detail in [7]. Here, at micro-
scopic level, the random walker moves from a vertex i to one
of its neighbor with hopping rate which depends on i. In fact,
if smax = max

i,α
{si,α + Si,α} is the maximum vertex strength

in the network, the walker is allowed to wait in vertex i with
rate 1− si/smax and to jump to any vertex with rate si/smax.
Hence, the nature of this walk is very different from the clas-
sical one previously described, where the hopping rate does
not depend on the vertex, and it can be shown that the corre-
sponding Laplacian matrix, once unnormalized, is equivalent
to the one of the classical diffusive process (we refer to [7] for
further detail).

We extend this walk to the case of multiplex networks by
considering inter-layer connections as additional edges to esti-
mate the maximum vertex strength. The resulting transition
rules for this random walker in a multiplex (RWD) are given
in Tab. 1.

Physical random walkers. Here we propose a new type of ran-
dom walk dynamics in the multiplex, which reduces to the
classical random walk in the case of monoplex. The transi-
tion rules are the same, except that we assume that the time
scale to switch layer is negligible with respect to the time scale
required to move from a vertex to another one in its neighbor-
hood. Therefore, in the same time step the random walker is
allowed to switch layer and to jump to another vertex, with
layer-switching and the vertex-jumping actions being indepen-
dent. This is a fundamental difference with the random walk-
ers described so far, because they were not allowed to switch
and jump in the same time unit. Moreover, another major
difference lies in treating inter-layer connections as another
type of edges, not competing with the intra-layer edges.

As an example of this dynamics, one might imagine the
case of online social networks where each layer corresponds to
a different social structure (e.g., Facebook and Twitter) and
users play the role of vertices. In this case, the time required
to a user to switch from one layer to the other one requires
less than a few seconds.

The resulting transition rules for this physical random
walker in a multiplex (RWP) are given in Tab. 1. It is straight-
forward to show that this process is equivalent to the classical
random walker in the case of monoplexes.

Table 1. Transition probability for four different ran-
dom walk processes on multiplex. We account for jump-
ing between vertices (latin letters) and switching between
layers (greek letters). When appearing in pairs, j 6= i and
β 6= α must be considered. See text for further detail.

Tr. RWC RWD RWP RWME

Pααii
Dαα(i)

si,α+Si,α

smax+Dαα(i) −si,α−Si,α
smax

0
Dαα(i)
λmax

Pαβii
D
αβ
(i)

si,α+Si,α

D
αβ
(i)

smax
0

D
αβ
(i)

λmax

ψ(β−1)N+i
ψ(α−1)N+i

Pααij
W

(α)
ij

si,α+Si,α

W
(α)
ij

smax

W
(α)
ij

si,α

Dαα(i)
Si,α

W
(α)
ij

λmax

ψ(α−1)N+j
ψ(α−1)N+i

Pαβij 0 0
W

(β)
ij

si,β

D
αβ
(i)

Si,α
0
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Maximal entropy random walkers. In classical random walks,
a walker jumps from a vertex to a neighbor with uniform prob-
ability which depends only on the local structure, namely the
vertex strength. However, it has been recently proposed a
walk dynamics where the transition rate of jumps is influ-
enced by the global structure of the network [8], or only lo-
cal information is available [2]. More specifically, the walkers
choose the next vertex to jump into maximizing the entropy
of their path at a global level, whereas classical random walk-
ers maximize the entropy of their path at neighborhood level.
To achieve such maximal entropy paths, the transition rates
are governed by the largest eigenvalue of the adjacency matrix

and the components of the corresponding eigenvector [8].
In the case of multiplex, we use the supra-adjacency ma-

trix

A =

0BBBB@
D11I + W(1) D12I . . . D1LI

D21I D22I + W(2) . . . D2LI
...

. . .
...

DL1I DL2I . . . DLLI + W(L)

1CCCCA
to achieve the same result (see Materials and Methods in
the main text for further detail). We indicate with λmax the
largest eigenvalue of this matrix and with ψ the correspond-
ing eigenvector. Therefore, according to the prescription given

(a) BA+ER, D12 = D21 = 1 (b) BA+ER, D12 = D21 = 100

Fig. 1. Random walks realizations on different multiplex structures. Vertices (top panels) and layers (bottom panels) visited by one random

walker in 100 time steps. The four types of walk considered in this study are shown. The multiplex is built with one Barabási-Albert (layer one) and one Erdős-Rényi (layer

two) network with 200 vertices, while inter-layer weights are specified above.

Classical Diffusive Physical Maximal entropy

Fig. 2. Probabilities governing four random walk strategies on multiplex. Top panels: transition probabilities for walks considered in

this study. Note that we have rescaled by a factor 2 the transition matrix of diffusive walk for better visualization and to allow comparisons. Middle panels: occupation

probability, for each vertex in each layer, considering one random walk starting only from the first vertex. Bottom panels: as in middle panels, but considering one random

walk starting with uniform probability from any other vertex. Multiplex of 20 vertices embedded in two different realizations of a Watts-Strogatz small-world network (rewiring

probability is 0.2), where D11 = D21 = D12 = D21 = 1. Different exploration strategies are responsible for the different probability that a vertex is visited and occupied

by a random walker.
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in [8], the resulting transition rules for this maximal entropy
random walker in a multiplex (RWME) are given in Tab. 1.

A representative example of each walk is shown in Fig. 1,
where vertices and layers visited by one random walker up to
100 time steps are reported. We show two different cases, cor-
responding to different choices of inter-layer weights, to make
evident the difference in the dynamics.

In the top panels of Fig. 2 we show the transition proba-
bilities in the case of a multiplex of 20 vertices embedded in
two different realizations of a Watts-Strogatz small-world net-
work [9]. The probability to find a random walker in a certain
vertex on a certain layer is also shown in the same figure, con-
sidering one walk starting from the first vertex only (middle
panels) and from any other vertex with uniform probability
(bottom panels). As expected, different exploration strategies
result in different occupation probability, where some vertices
in a certain layer might be explored more (or less) frequently,
as in the case of RWC, RWP and RWME, or uniformly as in
the case of RWD.

Fig. 1 and Fig. 2 clearly highlight the different dynamics
and how navigation strategy influences the exploration of the
multiplex.

Occupation Probability of Random Walkers

We define the occupation probability Πi,α = lim
t−→∞

pi,α(t) to

find a walker in vertex i of layer α in the limit t −→ ∞, and
we indicate with Π the corresponding supra-vector. In gen-
eral, Π is the left eigenvector of the supra-transition matrix
corresponding to the unit eigenvalue. In some cases, the occu-
pation probability can be estimated from the detailed balance
equation

Πi,αPαβij = Πj,βPβαji , [1]

obtaining

Πi,α =
si,α + Si,αP

β

P
j sj,β + Sj,β

[2]

for RWC, generalizing the well-known result obtained for
walks in a monoplex network,

Πi,α =
1

NL
[3]

for RWD, as expected for a purely diffusive walk, and

Πi,α = ψ2
(α−1)N+i, [4]

for RWME, generalizing the results obtained in [8] for mono-
plex networks.

Indeed, following the approach proposed in [5] for random
walks on monoplexes, it is possible to show that the time re-
quired to a random walker starting from vertex i to arrive
back to the same vertex, i.e., the mean return time, is given
by

〈Tii〉 =
1

LP
α=1

Πi,α

. [5]

It is straightforward to verify that distributions expected in
the case of monoplex are recovered for L = 1. It is worth
noting that for classical random walks the occupation prob-
ability of vertex i is proportional to its supra-strength, i.e.,
intra- plus inter-layer strengths, whereas for diffusive walks
such a probability is the same for any vertex, regardless of
multiplex topology.

Dynamical vs Topological Descriptors

We show in Fig. 3 the coverage versus time in the case of
RWP only, for some representative multiplexes where D12

(i) =

D21
(i) = D11

(i) = D22
(i) = 1, ∀i = 1, 2, ..., N . Results for differ-

ent combination of topologies (double acronym in the legend)
are shown, together with results for walks in a single layer
(single acronym in the legend). “Diff” indicates same topol-
ogy but different random realizations, while “same” indicates
same topology and same random realization on both layers.
Inset shows the relative difference of coverages with respect
to the case of an ER monoplex.

The multiplex topology has an evident impact on the walk
process, delaying or accelerating the exploration of the net-
work with respect to a random search in a monoplex random

Fig. 3. Dependence of the coverage on multiplex topology.
Number of visited vertices versus time for monoplex and multiplex topologies (see

the text for further details about the simulations). The inset shows the relative dif-

ference of each curve with respect to the coverage obtained for an ER monoplex,

evidencing that vertices in different topologies are visited with different time scales.

Fig. 4. Dependence of the coverage on multiplex topology.
Same as the inset of Fig. 4, where the relative difference of each curve is calculated

with respect to the coverage obtained for a multiplex of two different scale-free net-

works with degree distribution ∝ k−1.2. Top panels refer to RWC, whereas bottom

panels refer to RWP. Left panels (top and bottom) refer to multiplexes of different

scale-free networks with other degree distributions, whose indices are specified in the

legend. Right panels (top and bottom) refer to multiplexes of other topologies.
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network.
This is a genuine effect of the multi-layer structure and it

is not related to the finite size of the considered networks as
shown in Fig. 4, where multiplexes of 2000 nodes and many
different topologies are considered.

In Fig. 5, for each random walk considered, we show the
inverse of the time τC required to cover the 50% of a BA+ER
multiplex with 200 vertices as a function of the inter-layer
weight DX = D12 = D21. It is worth mentioning that the
final result depends only quantitatively, but not qualitatively,
on the choice of the covered fraction. This representative ex-

Fig. 5. Critical dependence of the coverage on navigation
strategy and inter-layer connection strength. Different random

walks are used to calculate the inverse of the time τC required to cover the 50% of

a BA+ER multiplex with 200 vertices, as a function of DX = D12 = D21. The

values for walks in each layer are shown for comparison and make clear how different

exploration strategies have a strong effect on the coverage time scale.

Fig. 6. Different types of diffusion characterize different
topological structures and navigation strategies. Coverage

versus time for two different multiplex topologies (BA+BA on the top panels and

BA+WS on the bottom panels) and two different walk rules (RWC on the left panels

and RWME on the right panels). While the diffusion on single layers separately and

on the multiplex is similar for RWC on BA+BA, this is not the case for RWME on

BA+BA where enhanced diffusion is shown in the multiplex. In the other cases, the

diffusion is infra-diffusive.

ample shows the impact of transition rules on the exploration
of the multiplex, putting in evidence that the best strategy to
adopt to cover the network depends on the topology and on
the weight of inter-layer connections. Moreover, in this spe-
cific experiment, the walk in the multiplex is infra-diffusive
(sub-diffusive) depending on the value of DX , i.e., the time to
cover the multiplex lies between (is smaller than) the times re-
quired to cover each layer separately. It is worth noting that
in other cases, like RWME on BA+BA multiplexes, walks
show enhanced diffusion, i.e., the time to cover the multiplex
is smaller than the time to cover each layer separately. This
is shown, for instance, in Fig. 6.

Intriguingly, we observe a similar behavior for λ2, i.e., the
second smallest eigenvalue of the supra-Laplacian. We show
in Fig. 7 the values of 1/τC (top panels) and λ2 (bottom pan-
els) versus DX for the four random walks and three different
multiplex topologies with 200 vertices, namely BA+BA (left
panels), BA+ER (middle panels) and ER+ER (right panels).
Except for the smallest values of DX , the behavior is the same,
especially in the limit of DX −→∞.

See the main text and the corresponding Materials and
Methods for a qualitative explanation of this result. From

ρ(t) ≈ 1− 1

N2

NX
i,j=1

∆ije
−Ci,j(1)t−Ci,j(2)λ−1

2 , [6]

the importance of λ2 in the evolution of the coverage is ev-
ident. Let τ? be the time required to cover a certain frac-
tion ρ? = ρ(τ?). For large values of τ?, the weighted sum
of exponentials in Eq. (6) is dominated by terms with largest
temporal scale of exponential decay, i.e., by terms where the
constants Ci,j(1) are the minimum ones. We indicate with

Fig. 7. Relation between dynamical and topological de-
scriptors of a multiplex. Inverse of the time required to cover 50% of the

network (top panels) and second smallest eigenvalue of the supra-Laplacian (bottom

panels) as a function of DX for three different multiplex topologies and different

random walk. The solid straight line indicates D−1
X . These results show an inti-

mate relationships between the structure of the multiplex and the dynamics of the

stochastic process taking place on it.
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Cr,s(1) the smallest among all such constants. In the worst
case, all terms equally contribute to ρ(τ?) and, therefore, the
following inequality is satisfied:

ρ? ≤ 1− e−Cr,s(1)τ?−Cr,s(2)λ−1
2 . [7]

A rough estimation τ of τ? can be obtained by always con-
sidering the case with equality in the above formula, leading
to

τ ≈ −
Cr,s(2)

λ2
+ log (1− ρ?)
Cr,s(1)

. [8]

By using the Perron-Frobenius it is possible to show that
Cr,s(1) ≥ 0. To have a positive value of τ , the numera-
tor in Eq. (8) should be negative, i.e., we are able to pro-
vide an estimation only for temporal scales such that the cor-
responding coverage satisfies the additional constraint ρ? >
1− exp

ˆ
−Cr,s(2)λ−1

2

˜
.

From Eq. (8) it is evident the strong influence of λ2 on the
inverse coverage time. The constants Cr,s(1), playing a crucial
role in the time evolution of the coverage, explicitly depend
on eigenvector centralities and are smaller for more peripheral
vertices which are less reachable because of the topological
structure and the nature of the walk.

It is also worth investigating the behavior of Eq. (6) in
the limit of small or large values of DX , i.e., the inter-layer
strength and, in the following, we focus on classical and dif-
fusive random walks.

In [10] it has been shown that in the limit DX −→ ∞
there are eigenvalues converging to a constant value and other
eigenvalues diverging proportionally to DX . The eigenvalues
obtained from the normalized supra-Laplacian in the case of
random walkers are related to the eigenvalues of the diffusion

Fig. 8. Resilience of the public transport network of Lon-
don to random failures. I) Theoretical expectations (solid lines) reproduce

with great accuracy the resilience (points) obtained from simulations for each trans-

portation layer and the whole interconnected system (DX = 10−1), assuming

random-walk based navigation. II) Structural resilience, defined as the average frac-

tion of vertices surviving in the giant connected component after random failures.

process by λ` ∝ λDiff
` /DX . Substituting λ2 ∝ D−1

X in Eq. (6)
we obtain that the time required to cover any given fraction
of the multiplex is larger for increasing values of DX . Our
numerical experiments verify this theoretical expectation. An
intuitive explanation is that when DX is much larger than
the average vertex strength, the random walkers spend most
of the time in switching layer instead of jumping to other ver-
tices. In the specific case of RWP each switching action is
followed by a jump within the same time step and, therefore,
for this type of walk the time to cover a given fraction of the
multiplex is not influenced by DX .

With a similar argument and the results obtained in [10],
we have λ2 ∝ DX when DX −→ 0. This extremal case corre-
sponds to a multiplex with vanishing inter-layer connections
and the resulting coverage is no more dependent on the value
of DX , reducing Eq. (6) to the coverage for a single layer.

Dynamical vs Topological Resilience

We capitalize on the presented theoretical framework to inves-
tigate the navigability resilience of interconnected networks to
random failures, focusing on the particular case of the public
transport of London. A failure, here, is considered as the in-
operability of a station in a certain transportation layer (e.g.
because of an accident, a traffic jam, or catastrophe). Such an
event can happen randomly on the system and can affect one
or more stations at the same time. A measure of the operabil-
ity of the full system in response to unexpected failures, can
be inferred from the coverage of the respective networks after
such events. This is what we call the navigability resilience.
The resilience r(φ) of the system to a fraction φ of random
failures is defined by r(φ) = 〈ρφ(τ)〉/ρ0(τ), where ρφ(t) is the
coverage at time τ of the network subjected to φ failures and
the averages are calculated over several random realizations
of the failures. The normalization guarantees a fair compari-
son between the resilience of the multiplex and the monoplex
networks. When a vertex fails in a single transportation layer,
it can not be traversed by any path. However, if that vertex
is part of an interconnected network it can be still reached
on other layers. This intrinsic feature of multiplexes enhances
the resilience of the system with respect to monoplexes, as
shown in Fig. 8-I for the public transport of London.

We show in Fig. 8-II the topological resilience correspond-
ing to the same multiplex, defined by the average fraction of
vertices surviving in the giant connected component after ran-
dom failures. The navigability, i.e. the dynamical resilience, is
inherently smaller than the topological resilience of this mul-
tiplex network.
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Empirical data of real disrupted services in London

Finding information about possible disruptions in the trans-
portation network of London, from the Oyster data in our
possession (see the Main text for information), is not trivial.
Moreover, it is difficult to collect information about disrup-
tions occurring in 2009, the period in which our Oyster data
refers to. For this reason, we have opted for collecting new
data about disrupted services in London during a more recent
period of time.

Our first choice has been the official data provided by
Transport for London (TfL). Such data is provided in real time
but, unfortunately, it concerns only “Tube departure boards,
line status and station status”, with no support for disruptions
occurring to Overground and DLR, two out of three layers in
the multiplex transportation network considered in this study.
Moreover, it is not possible to access to historical disruptions.

For this reason, we decided to gather data from Twitter.
In fact, delays and disruptions are reported in real time in this
online social network by means of many different accounts,
each one corresponding to a particular line. For our data col-
lection, we considered tweets sent by the following accounts:
TfLTravelAlerts, bakerlooline, metline, wlooandcityline, cir-
cleline, victorialine, LDNOverground, jubileeline, districtline,
northernline, hamandcityline, LondonDLR and piccadillyline.
We collected all the tweets containing the string “no service”
in the message, sent from those accounts between 11 February
2012 and 26 March 2014. The two years of data guarantees
a fair representation of the true distribution of disrupted ser-
vices. Our choice is justified by the fact that we consider dis-
rupted stations, not delays in the traffic. We collected more
than 3000 tweets and, by means of conservative heuristics,
we classified 64% of them into 357 unique pairs of disrupted
stations.

Here, we report some representative examples of the lat-
est tweets in our dataset, together with information about the
account who sent the tweets and the date. Many tweets are
just reply to other users:

Account: LDNOverground

Date: 15 mar 2014

Message:

@alexandrafinlay there’s no service on that line

today. i advise you to de-select london overground

from the search. i’ll pass this on too

Such tweets are not used to classify disruptions. The rest
of the tweets do not use a standard format and heuristics
have been used to parse the information, conservatively. For
instance, messages like

Account: LDNOverground

Date: 9 mar 2014

Message: no service between richmond - camden road,

shepherds bush- willesden junction & watford junction-

queens park due to planned upgrade work.

are difficult to be parsed, because the usage of symbols “&”
and “-” is somehow arbitrary. Nevertheless, our algorithm
is able to recognize at least the disrupted pair “richmond /
camden road”. Apart from this type of tweets with ambiguous
syntax, the majority of them have been correctly parsed. For
instance, the algorithm correctly finds the multiple disrupted
pairs “euston / harrow&wealdstone”, “harrow&wealdstone /
watford” in

Account: LDNOverground

Date: 14 set 2014

Table 2. Real disruptions in London transportation network, ranked by their occurrence in our dataset. The partially
disrupted line (“Line” column) is reported, together with the starting (“From” column) and ending (“To” column) stations
affected by the disruption. The rate of occurrence (“Freq.” column) is also reported together with the fraction of stations
indirectly affected (“Affected” column).

ID Line From To Freq. Affected

DISR1 metropolitan aldgate bakerstreet 3.35% 2.44%
DISR4 overground claphamjunction surreyquays 2.02% 1.90%
DISR3 dlr beckton canningtown 2.56% 2.44%
DISR2 hammersmith&city barking moorgate 2.89% 3.52%
DISR9 piccadilly raynerslane uxbridge 1.53% 1.90%
DISR8 overground claphamjunction willesdenjunction 1.57% 1.63%
DISR7 piccadilly actontown uxbridge 1.57% 4.07%
DISR6 northern edgware hampstead 1.82% 1.90%
DISR5 overground richmond willesdenjunction 1.94% 1.63%
DISR26 metropolitan aldgate wembleypark 1.07% 2.98%
DISR25 overground richmond stratford 1.07% 6.23%
DISR24 metropolitan aldgate harrow-on-the-hill 1.12% 3.79%
DISR23 district ealingbroadway turnhamgreen 1.11% 1.36%
DISR22 overground highbury&islington newcross 1.11% 3.52%
DISR21 overground camdenroad richmond 1.16% 4.07%
DISR20 northern camdentown kennington 1.16% 2.71%
DISR19 metropolitan northwood wembleypark 1.16% 2.17%
DISR18 dlr bowchurch stratford 1.20% 0.81%
DISR17 overground sydenham westcroydon 1.24% 1.36%
DISR16 northern camdentown millhilleast 1.28% 2.17%
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Message: (1 of 2) no service btn euston - harrow &

wealdstone and severe delays btn harrow &

wealdstone - watford junction.

or “bank / poplar”, “bank / west india quay”, “tower gateway
/ poplar” and “tower gateway / west india quay”

Account: LondonDLR

Date: 21 set 2014

Message: morning, ahmed & alex providing updates.

due to planned work there is no service today between

bank/tower gateway and poplar/west india quay

or “bank / canning town”, “tower gateway / canning town”
and “stratford / canary wharf” in

Account: LondonDLR

Date: 23 mar 2014

Message: no service btn bank / tower gateway and

canning town / canary wharf, and also between

stratford and canary wharf. replacement buses operate.

where “btn” and “between” are used for the same purpose. It
is worth remarking here that this dataset is not intended to
provide us with complete information about real disruptions
occurring in London, but only to provide a fair sample of rea-
sonable and most frequent disruptions, to be used as input in
our simulations.

The information about disruptions occurring to whole
lines has been extracted manually from the data, without the
usage of heuristics. However, for sake of completeness, we
found reasonable to test all possible full-line disruptions (for
a total of 11 possible disrupted multiplexes, excluding Over-
ground and DLR which in our case are considered layers by
themselves).

Here, we report details about some disruptions, ordered
by their rank with respect to specific criteria. For instance,
we consider:

• Disruptions ranked by their frequency. Here, fre-
quency is calculated with respect to the data we have
collected, and this is only a proxy for the true frequency
of each disruption. Moreover, the most frequent disrup-
tions are not, in general, the most dangerous for the
traffic, involving only a limited amount of affected sta-
tions and often guaranteeing the connectedness of the
underlying network. See Tab. 2.

• Disruptions ranked by the number of stations
they affect. Here, disruptions might be more critical
for the navigability of the system with respect to the
previous ones. See Tab. 3.

• Whole-line disruptions. Disruption of a complete
tube line is considered in each scenario, for a total of
11 lines. See Tab. 5.

In Tab. 4 we report the dynamical resilience calculated,
numerically and theoretically, for some representative real
partial disruptions, mainly sampled from Tab. 2 and Tab. 3.
In Tab. 5 we report the same analysis for disruptions of whole
lines. The values of the data-driven simulations are in remark-
able agreement with our theory.
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Table 3. Real disruptions in London transportation network, ranked by the number of stations they affect. The partially
disrupted line (“Line” column) is reported, together with the starting (“From” column) and ending (“To” column) stations
affected by the disruption. The rate of occurrence (“Freq.” column) is also reported together with the fraction of stations
indirectly affected (“Affected” column).

ID Line From To Freq. Affected

DISR325 northern eastfinchley morden 0.04% 7.05%
DISR281 northern goldersgreen morden 0.04% 6.78%
DISR25 overground richmond stratford 1.07% 6.23%
DISR245 piccadilly actontown arnosgrove 0.04% 6.78%
DISR88 northern edgware kennington 0.33% 5.15%
DISR61 overground claphamjunction stratford 0.45% 5.96%
DISR44 overground highbury&islington westcroydon 0.58% 5.69%
DISR347 district earlscourt westham 0.04% 5.69%
DISR322 overground southacton stratford 0.04% 5.42%
DISR250 jubilee stratford willesdengreen 0.04% 5.42%
DISR227 metropolitan aldgate rickmansworth 0.08% 5.42%
DISR220 overground hackneywick richmond 0.08% 5.96%
DISR199 metropolitan aldgate croxley 0.08% 5.42%
DISR195 district towerhill upminster 0.08% 5.42%
DISR184 northern millhilleast stockwell 0.08% 5.15%
DISR181 northern highbarnet stockwell 0.08% 5.96%
DISR180 metropolitan aldgate uxbridge 0.08% 5.96%
DISR175 hammersmith&city bakerstreet barking 0.12% 5.15%
DISR151 district embankment upney 0.12% 5.15%
DISR140 northern highbarnet kennington 0.17% 5.42%

Table 4. Real partial disruptions in the London transportation network. Representative disruptions are considered, together
with the starting (“From” column) and ending (“To” column) stations affected by the disruption. The rate of occurrence
(“Freq.” column) is reported, together with the fraction of stations indirectly affected (“Affected” column). It is indicated if
the resulting multiplex is disconnected in 2 or more components (“Discon.?” column). The resilience obtained from Monte
Carlo simulations (random walk and shortest-path based) are reported together with our theoretical expectation.

ID Line From To Freq. Affected Discon.? Th.Res. RW Res. SP Res.

DISR1 metropolitan aldgate bakerstreet 3.35% 2.44% NO 99.60% 100% 99.99%
DISR4 overground claphamjunction surreyquays 2.02% 1.90% YES 92.34% 90.56% 100%
DISR3 dlr beckton canningtown 2.56% 2.44% YES 94.41% 93.10% 94.85%
DISR325 northern eastfinchley morden 0.04% 7.05% YES 85.90% 82.52% 87.07%
DISR25 overground richmond stratford 1.07% 6.23% YES 89.07% 91.53% 97.90%
DISR245 piccadilly actontown arnosgrove 0.041% 6.78% YES 88.50% 86.51% 90.85%
DISR181 northern highbarnet stockwell 0.083% 5.96% YES 86.11% 82.55% 84.49%
DISR61 overground claphamjunction stratford 0.45% 5.96% YES 86.59% 84.99% 99.66%
DISR119 northern charingcross highbarnet 0.25% 4.61% YES 90.67% 87.99% 91.32%

Table 5. Complete line disruptions in London transportation network. Same as table 4, but also indicating if the result-
ing multiplex is disconnected in 2 or more components (“Discon.?” column). The resilience obtained from Monte Carlo
simulations (random walk and shortest-path based) are reported together with our theoretical expectation.

ID Line Affected Discon.? Th.Res. RW Res. SP Res.

DISR-L1 bakerloo 6.78% YES 95.80% 96.25% 99.79%
DISR-L2 circle 9.49% NO 99.68% 100% 99.93%
DISR-L3 district 16.26% YES 89.37% 89.47% 96.61%
DISR-L4 hammersmith&city 7.86% YES 99.18% 99.460% 99.71%
DISR-L5 jubilee 7.32% YES 91.50% 93.08% 100%
DISR-L6 metropolitan 9.21% YES 91.96% 91.53% 95.43%
DISR-L7 northern 13.55% YES 84.41% 80.98% 89.51%
DISR-L8 piccadilly 14.36% YES 85.07% 83.43% 91.23%
DISR-L9 victoria 4.34% YES 95.33% 96.78% 100%
DISR-L10 central 13.27% YES 83.35% 80.49% 90.00%
DISR-L11 waterloo&city 0.54% NO 99.98% 100% 100%
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