
1Scientific Reports | 6:39713 | DOI: 10.1038/srep39713

www.nature.com/scientificreports

Detection of timescales in evolving 
complex systems
Richard K. Darst1, Clara Granell2, Alex Arenas3, Sergio Gómez3, Jari Saramäki1 & 
Santo Fortunato1,4

Most complex systems are intrinsically dynamic in nature. The evolution of a dynamic complex system 
is typically represented as a sequence of snapshots, where each snapshot describes the configuration 
of the system at a particular instant of time. This is often done by using constant intervals but a better 
approach would be to define dynamic intervals that match the evolution of the system’s configuration. 
To this end, we propose a method that aims at detecting evolutionary changes in the configuration of 
a complex system, and generates intervals accordingly. We show that evolutionary timescales can be 
identified by looking for peaks in the similarity between the sets of events on consecutive time intervals 
of data. Tests on simple toy models reveal that the technique is able to detect evolutionary timescales of 
time-varying data both when the evolution is smooth as well as when it changes sharply. This is further 
corroborated by analyses of several real datasets. Our method is scalable to extremely large datasets 
and is computationally efficient. This allows a quick, parameter-free detection of multiple timescales in 
the evolution of a complex system.

We live in a dynamic world, where most things are subject to steady change. Whether we consider the interactions 
between people, proteins, or Internet devices, there is a complex dynamics that may progress continuously with 
varying rates1, or be punctuated by sudden bursts2. Therefore, for understanding such complex systems, rich 
empirical data with detailed time-domain information is required, together with proper statistical tools to make 
use of it. Fortunately, thanks to Information and Communication Technologies (ICT) and the Web, time-stamped 
datasets are increasingly available. However, the development of methods for extracting useful information out of 
massive temporal data sets is still an ongoing task3.

A typical approach for studying the dynamics of a large-scale evolving complex system is to divide the tem-
poral evolution into meaningful intervals where information of single snapshots is aggregated. The “slice” cor-
responding to the interval between times tn and tn+1 then comprises the subset of elements and interactions (or 
events) that are active between tn and tn+1. For instance, a slice may correspond to a group of people exchanging 
phone calls during an interval of one hour, or to a set of tweets containing specific hashtags posted within some 
time span. Once the intervals are defined, the analysis of the system turns into an investigation of the slices.

The main problem is then how to properly “slice” the data, so that the resulting slices provide the understand-
ing we are after. Among several alternatives, one can decide to use a constant slice size corresponding to some 
characteristic temporal scale of the dynamics (if there is any), or a variable slice size that follows the rate of the 
dynamic activity. However, if we focus our attention on the evolutionary aspects of the system, it might be con-
venient to define the slices according to the variability of the system through time. As an example, if we want to 
use data on email exchanges within the company to understand the evolution of the Enron scandal, it is better 
to use slices that capture changes in the composition of communication groups and thus track the evolution of 
communication patterns, as compared to slices based solely on the rate of activity in the email communication 
network. Consequently, the choice of slice size will be determined both by the availability and granularity of data, 
and by the timescales that reflect evolutionary changes in the configuration of events.

It follows that there is a clear need for a principled way of automatically identifying suitable evolutionary 
timescales in data-driven investigations of evolving complex systems. This is the motivation behind the method 
proposed in the present paper. A proper time-slicing method should produce meaningful evolutionary timescales 
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(intervals) describing changes in the event landscape, both when these changes are smooth and when they are 
abrupt. For abrupt changes, the problem becomes related to anomaly detection4,5 that has applications in e.g. 
fraud or malware detection, and in particular to change-point detection in temporal networks that comprise 
time-stamped contact events between nodes. For temporal networks, several ways for detecting change points 
have been proposed, based on techniques of statistical quality control6,7, generative network models8–10, boot-
strapping11, and snapshot clustering12–14. Note that our approach is not specifically designed for change-point 
detection, but it does reveal change points as a side product of the timescale detection.

In this work, we introduce an automatic time-slicing method for detecting timescales in the evolution of 
complex systems that consist of recurring events, such as recurring phone calls between friends, emails between 
colleagues and coworkers, mobility patterns of a set of individuals, or Twitter activity about a certain topic. The 
method can be easily extended to systems in which interactions are permanent after their appearance (e.g. cita-
tion networks). Our approach is sequential, and consists of determining the size of each interval from the size of 
the previous interval, trying to maximize the similarity between the sets of events within consecutive intervals 
(slices). In general, there is a unique maximum: too short intervals contain few, random events whereas too long 
intervals are no longer representative of the system’s state at any point. Consider, e.g., a set of phone calls in a 
social system aggregated for a month – compared to this slice, one-minute slices would contain apparently ran-
dom calls, and a 10-year slice would contain system configurations that have nothing to do with the initial slice. 
The method is parameter-free and validated on toy models and real datasets.

Results
Method for detecting evolutionary timescales.  Let us consider a series of time-stamped events 
recorded during some period of time. Our goal is to create time slices, i.e. sets of consecutive time intervals, that 
capture the significant evolutionary timescales of the dynamics of the system. There are some minimal conditions 
that data must fulfil for this to be a useful procedure: events must be recurrent in time and the total period of 
recording must be long enough to capture the evolution of the system.

In this framework, the appropriate timescales detected must have the following properties: i) Evolution is 
understood as changes in the event landscape, i.e., intervals will only depend on the identities of events within 
them, not on the rate of events in time. ii) Timescales should become shorter when the system is evolving faster, 
and longer when it is evolving more slowly. iii) The particular times when all events suddenly change (critical 
times) should have an interval placed at exactly that point. This is a limiting case of (ii).

To obtain timescales satisfying the above properties, our method iteratively constructs the time intervals  
[tn, tn+1) according to a similarity measure between each pair of consecutive slices Sn−1 and Sn, where Sn is the set 
of events between time tn and tn+1. By looking at the similarity measure as a function of time, one can detect mul-
tiple time scales. The algorithm is designed to detect the longest possible timescales in a parameter-free fashion. 
For discussion of timescale detection and why this is a good choice for real data, see Supplementary Information 
(SI), Section S1.

For the sake of clarity, assume that our method is in progress and we have a previous slice Sn−1. We want to 
find the next slice Sn that is defined by the interval [tn, tn +​ Δ​tn). The increment Δ​tn is the objective variable, and 
is determined by locally optimizing the Jaccard index between Sn−1 and Sn:
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This is shown in Fig. 1(a). The Jaccard Index15 J(Δ​tn) estimates the similarity of the two sets as the fraction of their 
common items (events) with respect to the total number of different items in them. In our case, the optimization 
process is performed by increasing Δ​tn until a peak for J(Δ​tn) is found (see Materials and Methods). The Jaccard 
similarity can then be used to understand the underlying event dynamics. We stress that in the case where the 
same event can occur multiple times, one could also consider using weighted similarity measures, that account 
for the number of occurrences of the events. We discuss weighted similarity measures in the SI. In the examples 
we discuss results are well aligned with expectations, even though multiple event occurrences are disregarded.

This iterative process requires an initial slice, which is computed as follows: Beginning with the initial time t0, 
we construct two intervals [t0, t0 +​ Δ​t) and [t0 +​ Δ​t, t0 +​ 2Δ​t). Repeating the process above, we find the maximum 
of J(Δ​t) and use that to set the first two intervals at once. This initialization preserves the meaning of our slices 
and does not include any additional hypothesis. After computing both slices, the second one is discarded so that 
all subsequent intervals have the same semantic meaning, and we start the iterative process described above. Note 
that the method is parameter free. The Jaccard Index is used in a similar way in refs 13, 14 to assess the similarity 
of consecutive snapshots that are eventually grouped by means of hierarchical clustering to build relevant inter-
vals, and in ref. 16 to study the effects of time window lengths in social network analysis.

The logic behind the method is easy to understand. Let us first consider a smoothly evolving system. We take 
the previous interval Sn−1 as fixed, and try to find the next interval Sn(Δ​t). On one hand, if Δ​t is small, increasing 
Δ​t will very likely add events already present in Sn−1. Thus, the numerator (intersection term) of Eq. (1) increases 
more than the denominator (union term), and J(Δ​t) becomes larger. On the other hand, if Δ​t is very large, the 
increase in Δ​t will tend to add new events not seen in the previous interval. Therefore the denominator (union 
term) of Eq. (1) grows faster than the numerator (intersection term), and consequently J(Δ​t) decreases. These 
principles combined imply the existence of an intermediate value of Δ​t representing a balance of these factors, 
which is a solution satisfying our basic requirements of sliced data. If the smoothness in the evolution of the tem-
poral data is altered by an abrupt change (critical time), the previous reasoning still holds, and a slice boundary 
will be placed directly at the snapshot where the anomalous behavior begins.
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Our method has several technical advantages. First and foremost, it is fast and scalable. The method is O(N) 
in the total data size N (e.g. number of distinct events), if intervals are small. Efficient hash table set implementa-
tions also allow linear scaling in interval size, and therefore extremely large data sizes can be processed. The data 
processing is done online: only the events from the previous interval must be saved to compute the next interval. 
There are no input parameters or a priori assumptions that must be made before the method can begin. The input 
is simple, consisting simply of (event_id, time) tuples. The method finds an initial intrinsic scale to the data, where 
each interval represents roughly the same amount of change.

Validation on synthetic data.  First we have generated synthetic temporal data examples to be analyzed 
with our method. The data displays several common configurations of the temporal evolution of a toy system. 
Figure 1 shows some examples and the timescales that our method detects. In Fig. 1(a) we sketch the details of 
the method. Figure 1(b) shows three clearly distinguishable sets of events, which are correctly sliced into their 
respective timescales. Within each interval, events repeat very often, but between intervals there are no repeti-
tions. Figure 1(c) shows that the rate of the short-term repetitions does not matter from our evolutionary point of 
view. The second interval has the same characteristic events at all times, so no evolutionary changes are observed. 
Figure 1(d) shows a continually evolving system. For the first half, the long-term rate of evolutionary change is 

Figure 1.  Schematic representation of the application of our method to synthetic data. In each plot, the 
horizontal axis represents time in arbitrary units, and the vertical axis the event ID. A dot is present at each 
point where a given event occurs at a given time. The gray and white segments show the detected intervals. 
(a) The Jaccard score J is computed for the sets of events between adjacent intervals. Intervals are adjusted to 
maximize J. (b) Interval identification in a trivial case. Each region contains a characteristic set of events, all 
distinct from those of the other regions. (c) The total event rate (see second interval) does not affect interval 
size, only the characteristic set of events does. (d) Example of varying interval sizes. In the first half of time, 
events change more slowly than in the second half, and thus intervals are longer. Because this is data with clear 
transitions, (a–c) have first intervals merged.
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slow (events are repeated for a longer time before dying out), and thus the intervals are longer. Thereafter, the 
process occurs much faster, and thus the intervals are shorter.

We have also validated our method on more complex synthetic data designed to reveal non-trivial but con-
trolled evolutionary timescales. We choose a dynamics where there is a certain fixed number of events which, 
at every time, might be active or inactive (short-term repetition). We impose that the volume of active events 
per time unit must be, on average, constant. Additionally, to account for the long-term evolution, we change the 
identities of the events at a (periodically) varying rate. Low rates of change, that is, changing the identities of only 
a few events at any time, should result in large time intervals for the slices, while faster rates lead to high variations 
in the identities of the events and should produce shorter slices.

We check our method on this benchmark using a periodic evolutionary rate, with period τ =​ 500 (see 
Materials and Methods). In Fig. 2, the method shows the desired behavior, namely, it produces short intervals in 
regions where change is fastest (t ≈​ 250, 750) and longer intervals for low variability of events, i.e. slow evolution 
(t ≈​ 0, 500, 1000). Most notably, the Jaccard similarity is seen to reflect these dynamics, too. When change is slow-
est, the inter-interval similarity is high, and vice versa. These similarities could be used to perform some form 
of agglomerative clustering to produce super-intervals representing longer-term dynamics. We also show the 
Shannon entropy within each interval. We see that our method produces intervals containing roughly the same 
amount of information.

At times t =​ 1200 and t =​ 1400, we add two “critical points”, when the entire set of active events changes 
instantly. This is the limiting case of evolutionary change. As one would expect, slice boundaries are placed at 
exactly these points. Furthermore, the drastic drop in similarity indicates that unique change has happened here, 
and that dynamics across this boundary are uncorrelated.

Analysis of real temporal data.  In this section we apply our approach to real-world data, where any true 
signal is obfuscated by noise and we do not have any information about the underlying dynamics.

We start with the Enron email dataset (see Materials and Methods). This dataset was made public during the 
legal investigation concerning the Enron Corporation, which ended in the bankruptcy and collapse of this cor-
poration17. Here, each event is an email communication sent or received by any of the senior managers who were 
subsequently investigated. During the course of the investigation, there were major structural changes in the com-
pany (see SI). Figure 3 shows the results of applying the method to the Enron data. Generally, the intervals are of 
the order of several weeks, which appears to be a reasonable time frame for changes in email communication pat-
terns. As expected, we see that the detected intervals do not simply follow changes in the rate of events, but rather 
in event composition. When comparing interval boundaries to some of major events of the scandal (exogenous 
information, shown as red vertical lines), we see that the interval boundaries often align with the events; note 
that there is no a priori reason for external events always to result in abrupt changes in communication patterns. 
Additionally, we present the results of the application of the change point detection method of Peel and Clauset 
(cpdetect)8. Unlike cpdetect, our method reveals the underlying basic evolutionary timescale (weeks), rather than 
only major change points. On the other hand, cpdetect requires a basic scale as an input before its application (in 
this case, one week). Performing a randomization hypothesis test, we find evidence (at significance p =​ 0.0194) 
that cpdetect change points correspond to lower-than-random similarity values within our method (see SI).

Next, we focus on the MIT Reality Mining personal mobility dataset. In this experiment, about 100 subjects, 
most of them affiliated to MIT Media Lab, have cellphones which periodically scan for nearby devices using 
the Bluetooth personal area network18. Here, events correspond to pairs of devices being in Bluetooth range 

Figure 2.  Artificial data with changing event turnover rate with period τ = 500. (Top) Representation of 
events. Events have been ordered to show the envelope of the dynamics. Events change at the slowest rate at 
t =​ 500, 1000, and there are critical points at t =​ 1200, 1400. For clarity, only 10% of events are shown. (Middle) 
Detected intervals (gray/white regions), and inter-interval similarity (plotted green lines) for the slicing 
algorithm. We can see that the internal length reacts to the rate of change of events, and that the critical points 
correspond to intervals boundaries and to large drops in similarity. The similarity also reflects the rate of change 
of events at other times. (Bottom) Event rate (dark blue) and interval entropy (light yellow) over time. We see 
that overall event rate is constant and cannot be used to detect dynamical properties. We also see that each 
interval contains about the same amount of information, 7.3 to 7.7 bits.
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(i.e. physically close). Note that we do not limit the analysis to interactions only between the 100 subjects, but 
process all ≈​5 ×​ 104 unique Bluetooth pairs seen (including detected devices not part of the experiment), a total 
of 1.8 ×​ 106 distinct data points. The major events (see SI) correspond to particular days in the MIT academic 
calendar or internal Media Lab events. In Fig. 4 we plot the time slices generated by our method. Again, we see 
that the basic evolutionary timescale is about one week. We see a correlation with some of the real events, such as 
a long period during winter holidays (late December) and Spring Break (late March). At the beginning (August) 
and end (June) there is a minimal data volume, assimilable to noise, which precludes the method to find reliable 
timescales.

In our last example, we look at the social media response to the semifinals of the UEFA Champions League 
2014–2015, a major European soccer tournament. We collected data from Twitter looking for tweets containing 
the hashtag #UCL, the most widely used hashtag to refer to the competition. As all captured tweets contain the 
hashtag #UCL, we define events by considering the other hashtags that a tweet may contain.

If a tweet contains more than one other hashtag, each of them is considered as a separate event. For example, 
if at time t there is a tweet containing #UCL, #Goal and #Football, we consider that we have two events at time 
t, one for #Goal and the other for #Football. In Fig. 5(a), we see a one-week span around the two first semifinal 
games. Because Twitter discourse is rather unstructured, intervals are very small, comprising at most a few hours. 
During the games themselves (May 5, 6 evenings), we see extremely short intervals representing the fast evolution 
of topics. In Fig. 5(b), we zoom in the first semifinal game. As the game begins, intervals become much shorter as 
we capture events that did not manifest in the previous games to the match. We see other useful signatures, like 
the rapid dynamics at the beginning of the second half (21:45) and at the time of the game-winning goal (21:58).

One could wonder if our method detects something in our data, beyond what one would expect in random 
data. To study this, we do a shuffling test. For each dataset, we compare the initial data with 100 randomized cases. 
Randomization is performed by shuffling all event IDs while preserving the same set of timestamps. For the base 
case, we calculate the widths of all intervals. We use a Mann-Whitney U test to compare this distribution to the 

Figure 3.  Comparison of our method and the change point detection method of ref. 8 on the Enron email 
data. Thick red lines indicate events from the company’s timeline. (Top) Results of our method on the network, 
in the same format as Fig. 2. (Middle) Results of the cpdetect method on the network. Dark vertical lines mark 
change points. (Bottom) Event density of the network. We see that both methods align with the company’s 
events to some degree. Our method provides more fine-grained intervals, not just the major points, and is 
capable of more accurately aligning with the real events since it does not have predefined window sizes as an 
input.

Figure 4.  Slicing of the MIT reality mining dataset. In this dataset, an event is considered the (from, to) 
pair of Bluetooth scanning, representing two devices being located within proximity of each other. The times 
of major events are known, such as important conferences or start/ends of semesters (see SI). We see that the 
slicing can find such major events, including the beginning of the 2005 semester and the beginning of classes at 
2005-Feb.
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distribution of all widths found in 100 resamples. The resulting p-values are listed in Table 1 and show that our 
results are clearly distinguishable from those found in random event streams datasets.

Discussion
Complex systems are inherently dynamic on varying timescales. Given the amount of available data on such 
systems, especially on human behavior and dynamics, there is a need for fast and scalable methods for gaining 
insight on their evolution. Here, we have presented a method for automatically slicing the time evolution of a 
complex system to intervals (evolutionary timescales) describing changes in the event landscape, so that the evo-
lution of the system may be studied with help of the resulting sequence of slices.

Our method provides the starting point of a pipeline analysis. Many time-varying data analysis techniques 
require segmented data as an input, and if the intervals are decided according to some fixed divisions, the bound-
aries will not be in the optimal places. Our method places snapshot boundaries in principled locations, which will 
tend to be the places with the highest rate of change - or actual sharp boundaries, if they exist. After this process, 
the sliced data can be input to other methods which further aggregate them into even higher orders of structure 
while respecting the underlying dynamics.

Our code for this method is available at ref. 19 and released under the GNU General Public License.

Figure 5.  (a) Slicing of Twitter hashtag sequences generated during UEFA Champions League 2014–2015 
football tournament. The format of the figure is as in Fig. 2. In this data all tweets corresponding to the #UCL 
hashtag are captured, so the rest of the co-occurring hashtags are taken as our events. The two increments in the 
event rate represent the two matches, which are captured through very fine intervals in the data slicing. (b) First 
semifinal of UEFA Champions League 2014–2015, between Juventus and Real Madrid. The format of the figure 
is as in Fig. 2. The game runs from 20:45 until 22:30, with the halftime from 21:30 until 21:45. We see sped-up 
activity around the goals in the slicing (top) that is not simply explained by the event rate (bottom). When goals 
are scored (20:53, 21:12 and 21:55) there is a much faster topics turnover.

p-value
width, mean ± std 

baseline
width, mean ± std 

reshuffled No Nr

MIT reality 
mining 2.75 ×​ 10−16 1.5 ×​ 105 ±​ 2.5 ×​ 105 s 3.3 ×​ 105 ±​ 6.2 ×​ 105 s 191 9088

Enron 3.0 ×​ 10−27 17 ±​ 12 days 153 ±​ 182 days 69 783

Twitter 2.2 ×​ 10−113 1248 ±​ 5410 s 3775 ±​ 6086 s 513 16961

Table 1.   Test of results on real datasets with respect to a baseline consisting of a random reshuffling of 
the events. The p-values refer to the likelihoods that the width distribution of intervals of our method on the 
original data is the same as the width distribution of randomized data (100 resamplings). No and Nr refer to the 
total number of detected intervals on the original data and in all 100 resampled trials respectively. The width 
distributions are extremely broad, thus standard deviations are large relative to the means.
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Methods
Identification of optimum interval.  The value of Δ​t is searched from the raw data, and various strategies 
can be used. A simple linear search suffices, but is inefficient at long timescales. An event-driven approach checks 
only Δ​t intervals corresponding to actual events, but this too is inefficient at long timescales. An ideal approach, 
and the one adopted in this paper, is to use exponentially spaced intervals (see SI). The shortest Δ​t searched is 
taken from the next event in the data.

Temporal benchmark.  The proposed benchmark has a periodic activity change in time, while having a 
uniform event rate. A universe of N =​ 1000 event IDs is created. Upon initialization, each event is independently 
placed into an activated status with probability q. At each time step, each active ID creates an event with probabil-
ity p. Also, at each time step (and before event creation), a fraction c(t) of event IDs are picked. Each of these IDs 
has its active status updated, being made active with probability q regardless of its previous state. This preserves 
the mean total number of activated IDs as qN at all times. At each time step, on average pqN events are expressed. 
Thus, by looking at simply the rate of events, the model is completely uniform and there is a constant average 
event rate in time.

The changeover rate c(t) is periodic, however, obeying
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with c0 being the minimum changeover rate, c the scale of changeover, and τ the period. Thus, at some points, 
the IDs of the expressed events is changing more rapidly than at other times, and this is the cause of longer and 
shorter intervals.

When there is a critical event at time tcrit, we exceptionally set c(tcrit) =​ 1 at that time. This produces a state of 
the system uncorrelated from the previous time. According to the model, this changeover occurs before the time 
step, which matches with placing a new interval at tcrit in our half-open segment convention. However, the total 
universe of event IDs stays the same, and there is no statically observable change in behavior.

In this work, we use N =​ 1000, τ =​ 500, p =​ 0.2, q =​ 0.2, c0 =​ 0, and c =​ 0.01.

Shannon Entropy.  The Shannon entropy ref. 20 is calculated by = −∑H p plni i over a series of events i 
with corresponding probability pi.

Enron temporal data.  The Enron Email Dataset consists of emails of approximately 150 senior managers 
of the Enron Corporation, which collapsed in 2001 after market manipulation was uncovered, leading to an 
accounting scandal17. We have all bidirectional email communications to and from each key person with a res-
olution of one day. An event is the unordered pair (source, destination) of each email. Our particular input data 
is already aggregated by day, therefore each event is only repeated once each day, with a weight of the number of 
mails that day. SI Tables S1 and S2 lists the basic properties and SI Table S3 lists the major events of this dataset.

Reality mining.  The Reality Mining dataset covers a group of persons affiliated with the MIT Media Lab who 
were given phones which tracked other devices in close proximity via the Bluetooth personal area network protocol18.  
An event is defined as every ordered pair (personal_device, other_device). We only have data from the personal 
devices of the 91 subjects who completed the experiment, not full ego networks. The data contains 1881152 
unique readings from 2004 August 8 until 2005 July 14, with most centered in the middle of the academic year. SI 
Table S4 lists basic properties and SI Table S5 lists the major events of this dataset21.

UCL hashtags.  In this dataset, we scrape Twitter for all hashtags containing #UCL, referring to the Europe 
Champions League tournament. We scrape between the dates of 30 April 2015 and 08 May 2015, covering the 
two first semifinal games of the tournament. An event is any hashtag co-occurring with #UCL, except #UCL 
itself. If there are multiple co-occurring hashtags, each counts as one event. All hashtags are interpreted as UTF-8 
Unicode and case-normalized (converted to lowercase) before turning into events. SI Table S6 lists basic proper-
ties and SI Table S7 lists the major events.
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